Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China
Abstract
:1. Introduction
2. Related Work
2.1. Neighborhood Vibrancy
2.2. Urban Form and Neighborhood Vibrancy
3. Study Area and Data Sources
3.1. Study Area
3.2. Data Resources
4. Definitions of Variables
4.1. Neighborhood Vibrancy (Dependent Variable)
4.2. Socio-Economic Indicators (Independent Variables)
4.3. Shape Indicators (Independent Variables)
4.4. Accessibility Indicators (Independent Variables)
4.5. Mixed Function (Independent Variables)
4.6. Density and Construction Strength (Independent Variables)
4.7. Regression Model
5. Results and Analysis
5.1. Analysis of Vibrancy and Selected Factors
5.2. Analysis of Linear Regression
5.3. Comparisons of Inner Neighborhood Urban Forms
6. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Grant, J.L. New Urbanism. International Encyclopedia of the Social and Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 809–814. [Google Scholar]
- Ye, Y.; Nes, A.V. Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS. J. Space Syntax 2013, 4, 18–37. [Google Scholar]
- Rowley, A. Definitions of urban design: The nature and concerns of urban design. Plan. Pract. Res. 1994, 9, 179–197. [Google Scholar] [CrossRef]
- Carmona, M. Public Places, Urban Spaces: The Dimensions of Urban Design; Routledge: London, UK, 2010. [Google Scholar]
- Braun, L.M.; Malizia, E. Downtown vibrancy influences public health and safety outcomes in urban counties. J. Transp. Health 2015, 2, 540–548. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Malizia, E.; Motoyama, Y. The economic development—Vibrant center connection: Tracking high-growth firms in the DC region. Prof. Geogr. 2016, 68, 349–355. [Google Scholar] [CrossRef]
- Lynch, K. A Theory of Good City Form; MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Florida, R. The Rise of the Creative Class, 2nd ed.; Basic Books: New York, NY, USA, 2012. [Google Scholar]
- Markusen, A. Fuzzy concepts, proxy data: Why indicators would not track creative placemaking success. Int. J. Urban Sci. 2013, 17, 291–303. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C. Does block size matter? The impact of urban design on economic vitality for Chinese cities. Environ. Plan. B Urban Anal. City Sci. 2017, 25, 353–359. [Google Scholar] [CrossRef]
- Kim, Y.-L. Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Comput. Environ. Urban Syst. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.O.; Xie, J.; Ma, C.; Li, Q. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy. Int. J. Geogr. Inf. Syst. 2017, 31, 658–675. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Kong, X.; Wang, R.; Chen, L. Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt, China. Appl. Geogr. 2018, 94, 163–177. [Google Scholar] [CrossRef]
- Balram, S.; Dragićević, S. Attitudes toward urban green spaces: Integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landsc. Urban Plan. 2005, 71, 147–162. [Google Scholar] [CrossRef]
- Yue, Y.; Lan, T.; Yeh, A.G.O.; Li, Q. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies. Travel Behav. Soc. 2014, 1, 69–78. [Google Scholar] [CrossRef]
- Lu, S.; Fang, Z.; Zhang, X.; Shaw, S.; Yin, L.; Yang, X.; Zhao, Z. Understanding the representativeness of mobile phone location data in characterizing human mobility indicators. ISPRS Int. J. Geoinform. 2017, 6, 7. [Google Scholar] [CrossRef]
- Lu, S.; Shaw, S.-L.; Fang, Z.; Zhang, X.; Yin, L. Exploring the effects of sampling locations for calibrating the huff model using mobile phone location data. Sustainability 2017, 9, 159. [Google Scholar] [CrossRef]
- Khalili, A.; Fallah, N.S. Role of social indicators on vitality parameter to enhance the quality of women’s communal life within an urban public space (case: Isfahan’s traditional bazaar, Iran). Front. Archit. Res. 2018, 7, 440–454. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem; Geo Books: Norwick, UK, 1983. [Google Scholar]
- Hunter, A. The urban neighborhood: Its analytical and social contexts. Urban Aff. Quart. 1979, 14, 267–288. [Google Scholar] [CrossRef]
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Song, Y.; Popkin, B.; Gordon-Larsen, P. A national-level analysis of neighborhood form metrics. Landsc. Urban Plan. 2013, 116, 73–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowry, J.H.; Lowry, M.B. Comparing spatial metrics that quantify urban form. Comput. Environ. Urban Syst. 2014, 44, 59–67. [Google Scholar] [CrossRef]
- Song, Y.; Quercia, R.G. How are neighbourhood design features valued across different neighbourhood types? J. Hous. Built Environ. 2008, 23, 297–316. [Google Scholar] [CrossRef]
- Gohar, M.; Muzammal, M.; Rahman, A.U. SMART TSS: Defining transportation system behavior using big data analytics in smart cities. Sustain. Cities Soc. 2018, 41, 114–119. [Google Scholar] [CrossRef]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile Landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Chi, G.; Liu, Y.; Wu, H. Ghost cities analysis based on positioning data in China. Comput. Sci. 2015, 68, 1150–1156. [Google Scholar]
- Li, L.; Yang, L.; Zhu, H.; Dai, R. Explorative analysis of Wuhan intra-urban human mobility using social media check-in data. PLoS ONE 2015, 10, e0135286. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, P.; Stimson, R.J.; Western, J.S. Modelling the factors of neighbourhood attractiveness reflected in residential location decision choices. Stud. Reg. Sci. 2006, 36, 393–417. [Google Scholar] [CrossRef]
- Gehl, J. New City Spaces; Danish Architectural Press: Copenhagen, Denmark, 2000; pp. 33–37. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Attoe, W.; Logan, D. American Urban Architecture: Catalysts in the Design of Cities; University of California Press: Oakland, CA, USA, 1989. [Google Scholar]
- Maas, P.R. Towards a Theory of Urban Vitality; University of British Columbia: Vancouver, BC, Canada, 1984. [Google Scholar]
- Landry, B. Race, Gender and Class: Theory and Methods of Analysis; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Akkerman, A. Harmonies of urban design and discords of city-form: Urban aesthetics in the rise of western civilization. J. Urban Des. 2000, 5, 267–290. [Google Scholar] [CrossRef]
- Adedeji, J.A.; Fadamiro, J.A. Urban open space transition and management in Lagos, Nigeria. Manag. Environ. Qual. Int. J. 2015, 26, 951–965. [Google Scholar] [CrossRef]
- March, A.; Rijal, Y.; Wilkinson, S.; Özgür, E.F. Measuring building adaptability and street vitality. Plan. Pract. Res. 2012, 27, 531–552. [Google Scholar] [CrossRef]
- Zarin, S.Z.; Niroomand, M.; Heidari, A.A. Physical and social aspects of vitality case study: Traditional street and modern street in Tehran. Procedia Soc. Behav. Sci. 2015, 170, 659–668. [Google Scholar] [CrossRef]
- Filion, P.; Hammond, K. Neighbourhood land use and performance: The evolution of neighbourhood morphology over the 20th century. Environ. Urban Plan. B Plan. Des. 2003, 30, 271–296. [Google Scholar] [CrossRef]
- Wu, J.; Ta, N.; Song, Y.; Lin, J.; Chai, Y. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing. Cities 2018, 74, 100–108. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. How did urban polycentricity and dispersion affect economic productivity? A case study of 306 Chinese cities. Landsc. Urban Plan. 2018, 173, 51–59. [Google Scholar] [CrossRef]
- Conzen, M.R.G. Alnwick, Northumberland: A study in town-plan analysis. Trans. Pap. (Inst. Br. Geogr.) 1960, 27, 1–122. [Google Scholar] [CrossRef]
- Song, Y.; Knaap, G.J. Measuring urban form: Is Portland winning the war on sprawl? J. Am. Plan. Assoc. 2004, 70, 210–225. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, L.S.; Brownson, C.R.; Clemente, O.; Winston, E. Identifying and measuring urban design qualities related to walkability. J. Phys. Act. Health 2006, 3, S223–S240. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Ambarwati, L.; Verhaeghe, R.; Arem, B.V.; Pel, A.J. The influence of integrated space-transport development strategies on air pollution in urban areas. Transp. Res. Part D Transp. Environ. 2016, 44, 134–146. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R.; Preuss, I.; Dodds, A. Measuring sprawl and its impacts. J. Plan. Educ. Res. 2002, 57, 320–326. [Google Scholar] [CrossRef]
- Chao, L.; Qing, S. An empirical analysis of the influence of urban form on household travel and energy consumption. Comput. Environ. Urban Syst. 2011, 35, 347–357. [Google Scholar]
- Bereitschaft, B.; Debbage, K. Urban form, air pollution, and CO2 emissions in large U.S. metropolitan areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S.; Theuray, N.; Lindley, S. Characterising the urban environment of UK cities and towns: A template for landscape planning. Landsc. Urban Plan. 2008, 87, 210–222. [Google Scholar] [CrossRef]
- Katz, P. The New Urbanism: Toward an Architecture of Community; McGraw-Hill Professional: New York, NY, USA, 1993. [Google Scholar]
- Delclòs-Alióa, X.; Gutiérrezc, A.; Miralles-Guasch, C. The urban vitality conditions of Jane Jacobs in Barcelona: Residential and smartphone-based tracking measurements of the built environment in a Mediterranean metropolis. Cities 2019, 86, 220–228. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Song, Y.; Wu, J.; Yin, C.; Mou, Y. The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Richardson, H.W. The Economics of Urban Size; Saxon House: Lexington, KY, USA, 1973. [Google Scholar]
- Miles, R.; Song, Y. “Good” neighborhoods in Portland, Oregon: Focus on both social and physical environments. J. Urban Aff. 2009, 31, 491–509. [Google Scholar] [CrossRef]
- Cairnes, L. The compact city: A sustainable urban form. Urban Des. Int. 1996, 1, 293–294. [Google Scholar] [CrossRef]
- Randolph, B. Delivering the compact city in Australia: Current trends and future implications. Urban Policy Res. 2006, 24, 473–490. [Google Scholar] [CrossRef]
- Weitz, J. Smart growth in a changing world. J. Am. Plan. Assoc. 2008, 74, 142–143. [Google Scholar] [CrossRef]
- Shi, B.; Yang, J. Scale, distribution, and pattern of mixed land use in central districts: A case study of Nanjing, China. Habitat Int. 2015, 46, 166–177. [Google Scholar] [CrossRef]
- Wesolowski, A.; Eagle, N. The impact of biases in mobile phone ownership on estimates of human mobility. J. R. Soc. Interface 2013, 10, 20120986. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, A.; Eagle, N.; Noor, A.M.; Snow, R.W.; Buckee, C.O. Heterogeneous mobile phone ownership and usage patterns in Kenya. PLoS ONE 2012, 7, e35319. [Google Scholar] [CrossRef] [PubMed]
Type | Amount | Type | Amount | Type | Amount |
---|---|---|---|---|---|
Retail and wholesale | 45,942 | Textile and food | 18,119 | Public facilities | 1967 |
Scenic sites | 839 | Restaurants | 31,555 | Hotel and recreation | 9224 |
Government and organization | 8554 | Companies and enterprises | 32,372 | Medical and health care | 13,068 |
Sports and cultural | 7689 | Residential | 12,679 | Research and education | 13,424 |
Financial and insurance | 6321 | Transportation | 21,842 | Total | 223,595 |
Urban Form | Indicator | Definition |
---|---|---|
Shape index | Area | Area of each neighborhood |
RCI | Richardson compactness index: The smaller the value of the compactness index, the greater the dispersion of urban form and the less compact the urban space | |
POI diversity | Entropy | Diversity of POIs: Describes the degree of mixed use of the neighborhood. |
Accessibility | RTI | Rail-transit convenience index: The distance between each neighborhood and its nearest railway station |
NBS | Number of bus stations: The number of bus stations within the neighborhood | |
Density | FAR | Floor area ratio: The total spatial construction area divided by the area of the neighborhood |
BDI | Building density index: The total projected construction area divided by the total area of the neighborhood | |
PDI | POI density index: The number of POIs divided by the area of the neighborhood | |
RDI | Road network density index: The total length of roads divided by the area of the neighborhood |
Urban Form | Indicator | Min | Mean | Max | Standard Deviation | Units |
---|---|---|---|---|---|---|
Social-economic data | Population | 0.0012 | 0.69 | 6.14 | 0.69 | 10,000 persons |
Tax | 0 | 0.29 | 3.15 | 0.30 | 100 M CNY | |
Shape index | Area | 0.06 | 0.71 | 7.17 | 0.72 | km2 |
RCI | 0.16 | 0.39 | 0.46 | 0.44 | ||
POI mixed use | Entropy | 0 | 0.90 | 1.07 | 0.13 | |
Accessibility | RTI | 0.03 | 2.65 | 11.58 | 2.26 | km |
NBS | 0 | 4.02 | 27 | 3.54 | ||
Density | FAR | 0 | 1.05 | 4.02 | 0.77 | |
BDI | 0 | 0.20 | 0.44 | 0.10 | ||
PDI | 0.01 | 1.07 | 6.15 | 0.94 | Thousand/km2 | |
RDI | 0 | 2.59 | 6.80 | 1.13 | km/km2 |
Indicator | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
b | Standard Error | b | Standard Error | b | Standard Error | |
Intercept | 4.95 | 0.06 | 4.32 | 0.42 | 1.90 | 0.48 |
Population | 0.58 | 0.05 | 0.59 | 0.05 | 0.37 | 0.05 |
Tax | 0.63 | 0.12 | 0.62 | 0.12 | 0.26 | 0.11 |
Area | −0.22 | 0.06 | 0.04 | 0.07 | ||
RCI | 1.91 | 1.01 | 0.43 | 0.89 | ||
Entropy | 1.74 | 0.30 | ||||
RTI | 0.02 | 0.02 | ||||
NBS | 0.06 | 0.01 | ||||
FAR | −0.06 | 0.09 | ||||
BDI | 0.74 | 0.54 | ||||
PDI | 0.15 | 0.06 | ||||
RDI | 0.03 | 0.01 | ||||
Adjust R2 | 0.23 | 0.26 | 0.45 |
Neighborhood | Vibrancy | Entropy | RTI | NBS | FAR | BDI | PDI | RDI |
---|---|---|---|---|---|---|---|---|
No. 1 | 0.55 | 0.99 | 9.57 | 2 | 2.05 | 0.30 | 1.10 | 2.75 |
No. 2 | 0.78 | 0.96 | 9.62 | 2 | 1.41 | 0.24 | 1.85 | 3.70 |
No. 3 | 0.86 | 0.96 | 9.83 | 2 | 1.57 | 0.24 | 3.75 | 5.91 |
No. 4 | 0.85 | 0.96 | 9.66 | 2 | 3.88 | 0.43 | 5.01 | 4.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Huang, Y.; Shi, C.; Yang, X. Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China. ISPRS Int. J. Geo-Inf. 2019, 8, 165. https://doi.org/10.3390/ijgi8040165
Lu S, Huang Y, Shi C, Yang X. Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China. ISPRS International Journal of Geo-Information. 2019; 8(4):165. https://doi.org/10.3390/ijgi8040165
Chicago/Turabian StyleLu, Shiwei, Yaping Huang, Chaoyang Shi, and Xiping Yang. 2019. "Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China" ISPRS International Journal of Geo-Information 8, no. 4: 165. https://doi.org/10.3390/ijgi8040165
APA StyleLu, S., Huang, Y., Shi, C., & Yang, X. (2019). Exploring the Associations Between Urban Form and Neighborhood Vibrancy: A Case Study of Chengdu, China. ISPRS International Journal of Geo-Information, 8(4), 165. https://doi.org/10.3390/ijgi8040165