Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big Data
"> Figure 1
<p>Workflow of the LUCC analysis.</p> "> Figure 2
<p>Administrative level decomposition in China (The numbers in these areas are unique identifiers).</p> "> Figure 3
<p>Graph representation of the computational loads over administrative districts (The value in each grid is the corresponding load).</p> "> Figure 4
<p>Master-slave architecture for distributed workstations.</p> "> Figure 5
<p>Stream scheduling of asynchronous compute units (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub> and P<sub>4</sub> are four different procedures; P<sub>1</sub> is data moving, P<sub>2</sub> is data clipping, P<sub>3</sub> is overlay operation, and P<sub>4</sub> is area calculation).</p> "> Figure 6
<p>Linear regression of P<sub>1</sub> (This is the relation between the number of polygons and the time usage in data movement, where <span class="html-italic">F</span> is the number of polygons).</p> "> Figure 7
<p>Second-order regression of P<sub>2</sub> (This is the relation between <span class="html-italic">N</span> × <span class="html-italic">log</span>(<span class="html-italic">N</span>) and the time usage in data clipping, where <span class="html-italic">N</span> is the number of vertices).</p> "> Figure 8
<p>Linear order regression of P<sub>3</sub> (This is the relation between <span class="html-italic">N</span> × <span class="html-italic">log</span>(<span class="html-italic">N</span>) and the time usage in polygon overlay, where <span class="html-italic">N</span> is the number of vertices).</p> "> Figure 9
<p>Linear regression of P<sub>4</sub> (This is the relation between <span class="html-italic">N</span> and the time usage in area calculation, where <span class="html-italic">N</span> is the number of vertices).</p> "> Figure 10
<p>Estimated time usage in the 2858 counties in China.</p> "> Figure 11
<p>Estimated time density for the counties in China.</p> "> Figure 12
<p>Performance improvement in different numbers of processes.</p> "> Figure 13
<p>Partitioning of the LUCC analysis graph (the graph was partitioned into 15 parts, each of which was labeled with a single color).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures of LUCC Analysis Based on Multi-Temporal Vector Objects
2.2. Graph-Based Spatial Decomposition
2.2.1. Administrative Level Decomposition
2.2.2. Computational Load Evaluation and Representation
2.2.3. Graph Partitioning of the LUCC Analysis Graph
2.3. Architecture and Scheduling
2.3.1. Master-Slave Architecture for Distributed Computers
2.3.2. Stream Scheduling of Tasks
2.3.3. Implementation
3. Performance Evaluation
3.1. Testing Environment
3.2. Determination of the Factors in Estimation
3.3. Experimental Results
3.3.1. Testing data
3.3.2. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reid, R.S.; Kruska, R.L.; Muthui, N.; Taye, A.; Wotton, S.; Wilson, C.J.; Mulatu, W. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: The case of Southwestern Ethiopia. Landsc. Ecol. 2000, 15, 339–355. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change-current and new directions. Landsc. Ecol. 2005, 19, 857–868. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. Remote sensing research issues of the national land use change program of China. ISPRS J. Photogramm. Remote Sens. 2007, 62, 461–472. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.; Izaurralde, R.C.; Lambin, E.; Li, S. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef]
- Eakin, H.; Defries, R.; Kerr, S.; Lambin, E.F.; Liu, J.; Marcotullio, P.J.; Messerli, P.; Reenberg, A.; Rueda, X.; Swaffield, S.R. Significance of telecoupling for exploration of land-use change. In Rethinking Global Land Use in an Urban Era; Seto, K.C., Reenberg, A., Eds.; MIT Press: Cambridge, MA, USA, 2014; pp. 141–162. [Google Scholar]
- Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 2014, 1, 230–250. [Google Scholar] [CrossRef]
- Friis, C.; Nielsen, J.O. Exploring the potential of the telecoupling framework for understanding land change. IRI THESys Discuss. Pap. 2014, 1, 1–32. [Google Scholar]
- Liu, J.; Hull, V.; Luo, J.; Yang, W.; Liu, W.; Viña, A.; Vogt, C.; Xu, Z.; Yang, H.; Zhang, J. Multiple telecouplings and their complex interrelationships. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Deng, X. Progress of the research methodologies on the temporal and spatial process of LUCC. Chin. Sci. Bull. 2010, 55, 1354–1362. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal modis ndvi data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing cloud computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2016, 61, 120–128. [Google Scholar] [CrossRef]
- Liu, J.; Dou, Y.; Batistella, M.; Challies, E.; Connor, T.; Friis, C.; Millington, J.D.; Parish, E.; Romulo, C.L.; Silva, R.F.B. Spillover systems in a telecoupled anthropocene: Typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 2018, 33, 58–69. [Google Scholar] [CrossRef]
- Li, X. A review of the international researches on land use/land cover change. Acta Geogr. Sin. 1996, 51, 553–558. [Google Scholar]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using gis and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and gis for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Gibon, A.; Sheeren, D.; Monteil, C.; Ladet, S.; Balent, G. Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework. Landsc. Ecol. 2010, 25, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Ralha, C.G.; Abreu, C.G.; Coelho, C.G.; Zaghetto, A.; Macchiavello, B.; Machado, R.B. A multi-agent model system for land-use change simulation. Environ. Model. Softw. 2013, 42, 30–46. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (flus) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Walker, R.; Solecki, W. Theorizing land-cover and land-use change: The case of the Florida everglades and its degradation. Ann. Assoc. Am. Geogr. 2004, 94, 311–328. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Entwisle, B.; Walsh, S.J.; Mena, C.F.; Erlien, C.M.; Gray, C.L. Frontier land use change: Synthesis, challenges, and next steps. Ann. Assoc. Am. Geogr. 2007, 97, 739–754. [Google Scholar] [CrossRef]
- Dong, L.; Wang, W.; Ma, M.; Kong, J.; Veroustraete, F. The change of land cover and land use and its impact factors in upriver key regions of the yellow river. Int. J. Remote Sens. 2009, 30, 1251–1265. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Q.; Chen, Y.D.; Singh, V.P. Effects of land-use/cover change on hydrological processes using a GIS/RS-based integrated hydrological model: Case study of the east river, China. Hydrol. Sci. J. 2015, 60, 1724–1738. [Google Scholar] [CrossRef]
- Meneses, B.; Reis, R.; Vale, M.; Saraiva, R. Land use and land cover changes in zêzere watershed (portugal)—Water quality implications. Sci. Total Environ. 2015, 527, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zang, S.; Wu, C.; Liu, W.; Na, X. Analyzing and modeling land use land cover change (LUCC) in the daqing city, China. Appl. Geogr. 2011, 31, 600–608. [Google Scholar] [CrossRef]
- Turner, B.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio Stockholm. 1994, 23, 91–95. [Google Scholar]
- Bartholomé, E.; Belward, A.S. Glc2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, B.; Augusto, L.; Monod, H.; Apeldoorn, D.; Bouwman, L.; Yang, X.; Achat, D.L.; Chini, L.P.; Van Oost, K.; Guenet, B. Phosphorus in agricultural soils: Drivers of its distribution at the global scale. Glob. Chang. Biol. 2017, 23, 3418–3432. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Ann. Assoc. Am. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Munroe, D.K.; Müller, D. Issues in spatially explicit statistical land-use/cover change (LUCC) models: Examples from western honduras and the central highlands of Vietnam. Land Use Policy 2007, 24, 521–530. [Google Scholar] [CrossRef]
- Defries, R.S.; Chan, J.C.W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503–515. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Lu, D.; Batistella, M.; Moran, E. Multitemporal spectral mixture analysis for amazonian land-cover change detection. Can. J. Remote Sens. 2004, 30, 87–100. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review articledigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Mas, J.-F. Change estimates by map comparison: A method to reduce erroneous changes due to positional error. Trans. GIS 2005, 9, 619–629. [Google Scholar] [CrossRef]
- Zhang, H.; Shu, N. Land use/cover change detection using feature database based on vector-image data conflation. In Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, 25–27 June 2008; pp. 255–262. [Google Scholar]
- Lu, Y.; Cao, M.; Zhang, L. A vector-based cellular automata model for simulating urban land use change. Chin. Geogr. Sci. 2015, 25, 74–84. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Han, J.; Guo, L.; Liu, Z.; Bu, S.; Ren, J. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4238–4249. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Zhang, L. A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 90, 36–48. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ahlqvist, O. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 us national land cover database changes. Remote Sens. Environ. 2008, 112, 1226–1241. [Google Scholar] [CrossRef]
- Tiede, D. A new geospatial overlay method for the analysis and visualization of spatial change patterns using object-oriented data modeling concepts. Cartogr. Geogr. Inf. Sci. 2014, 41, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X. Satellite monitoring of urban spatial growth in the atlanta metropolitan area. Photogramm. Eng. Remote Sens. 2002, 68, 725–734. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the twin cities (minnesota) metropolitan area by multitemporal landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.; Tullis, J. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769–1777. [Google Scholar] [CrossRef]
- Dingle Robertson, L.; King, D.J. Comparison of pixel- and object-based classification in land cover change mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. Object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Chrisman, N.R. Exploring Geographic Information Systems; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Deren, D.L.; Shao, Z. Reflections on issues in national geographical conditions monitoring. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 143–147. [Google Scholar]
- Openshaw, S.; Alvanides, S. Applying geocomputation to the analysis of spatial distributions. In Geographic Information Systems: Principles and Technical Issues; Longley, P.A., Michael, M., Maguire, D.J., Rhind, D.W., Eds.; John Wiley and Sons Inc.: New York, NY, USA, 1999; Volume 1, pp. 267–282. [Google Scholar]
- Wang, S.; Liu, Y. Teragrid giscience gateway: Bridging cyberinfrastructure and giscience. Int. J. Geogr. Inf. Sci. 2009, 23, 631–656. [Google Scholar] [CrossRef]
- Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial cyberinfrastructure: Past, present and future. Comput. Environ. Urban Syst. 2010, 34, 264–277. [Google Scholar] [CrossRef]
- Zhang, J. Towards personal high-performance geospatial computing (HPC-G): Perspectives and a case study. In Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and Distributed Geographic Information Systems, San Jose, CA, USA, 2 November 2010; ACM: New York, NY, USA, 2010; pp. 3–10. [Google Scholar]
- Lee, C.A.; Gasster, S.D.; Plaza, A.; Chang, C.I.; Huang, B. Recent developments in high performance computing for remote sensing: A review. IEEE J. STARS 2011, 4, 508–527. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Sieber, R.E. A land use/land cover change geospatial cyberinfrastructure to integrate big data and temporal topology. Int. J. Geogr. Inf. Sci. 2016, 30, 573–593. [Google Scholar]
- Pijanowski, B.C.; Tayyebi, A.; Doucette, J.; Pekin, B.K.; Braun, D.; Plourde, J. A big data urban growth simulation at a national scale: Configuring the gis and neural network based land transformation model to run in a high performance computing (HPC) environment. Environ. Model. Softw. 2014, 51, 250–268. [Google Scholar] [CrossRef]
- Wang, S.; Armstrong, M.P. A Theory of the Spatial Computational Domain. In Proceedings of the 8th International Conference on GeoComputation University of Michigan, Ann Arbor, MI, USA, 31 July–3 August 2005. [Google Scholar]
- Wang, S.; Armstrong, M.P. A theoretical approach to the use of cyberinfrastructure in geographical analysis. Int. J. Geogr. Inf. Sci. 2009, 23, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.; Giesen, A.; Hinrichs, K.H.; Vahrenhold, J. Algorithms for performing polygonal map overlay and spatial join on massive data sets. In Proceedings of the International Symposium on Spatial Databases, Hong Kong, China, 20–23 July 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 270–285. [Google Scholar]
- Agarwal, D.; Puri, S.; He, X.; Prasad, S.K. A system for GIS polygonal overlay computation on linux cluster —An experience and performance report. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, Shanghai, China, 21–25 May 2012; pp. 1433–1439. [Google Scholar]
- Zhou, C.; Chen, Z.; Liu, Y.; Li, F.; Cheng, L.; Zhu, A.-X.; Li, M. Data decomposition method for parallel polygon rasterization considering load balancing. Comput. Geosci. 2015, 85, 196–209. [Google Scholar] [CrossRef]
- Liu, J.; Kang, X.; Dong, C.; Xu, S. A stream tilling approach to surface area estimation for large scale spatial data in a shared memory system. Open Geosci. 2017, 9, 622–634. [Google Scholar] [CrossRef]
- Dorier, M.; Antoniu, G.; Cappello, F.; Snir, M.; Orf, L. Damaris: How to efficiently leverage multicore parallelism to achieve scalable, jitter-free I/O. In Proceedings of the 2012 IEEE International Conference on Cluster Computing (CLUSTER), Beijing, China, 24–28 September 2012; IEEE: New York, NY, USA, 2012; pp. 155–163. [Google Scholar]
- Kang, X.; Liu, J.; Lin, X. Streaming progressive tin densification filter for airborne lidar point clouds using multi-core architectures. Remote Sens. 2014, 6, 7212–7232. [Google Scholar] [CrossRef]
- Kang, X.; Lin, X. Graph-based divide and conquer method for parallelizing spatial operations on vector data. Remote Sens. 2014, 6, 10107–10130. [Google Scholar] [CrossRef]
- Hendrickson, B.; Kolda, T.G. Graph partitioning models for parallel computing. Parallel Comput. 2000, 26, 1519–1534. [Google Scholar] [CrossRef] [Green Version]
- Lipton, R.J.; Tarjan, R.E. A separator theorem for planar graphs. SIAM J. Appl. Math. 1979, 36, 177–189. [Google Scholar] [CrossRef]
- Skiena, S. The Algorithm Design Manual, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Karypis, G.; Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 1998, 20, 359–392. [Google Scholar] [CrossRef]
- Andreev, K. Balanced graph partitioning. Theor. Comput. Syst 2006, 39, 929–939. [Google Scholar] [CrossRef]
- Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Bambacus, M.; Fay, D. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Yuan, M.; Cova, T.J. Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci. 2007, 21, 239–260. [Google Scholar] [CrossRef] [Green Version]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software tools, 2nd ed.; Troubador: Leicester, UK, 2008. [Google Scholar]
- Yang, C.; Wu, H.; Huang, Q.; Li, Z.; Li, J. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proc. Natl. Acad. Sci. USA 2011, 108, 5498–5503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrickson, B.; Leland, R. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 1995, 16, 452–469. [Google Scholar] [CrossRef]
- Nour-Omid, B.; Raefsky, A.; Lyzenga, G. Solving finite element equations on concurrent computers. In Proceedings of the 1986 Symposium on Parallel Computations and Their Impact on Mechanics, Boston, MA, USA, 13–18 December 1987; pp. 209–227. [Google Scholar]
- Miller, G.L.; Teng, S.H.; Vavasis, S.A. A unified geometric approach to graph separators. In Proceedings of the 1991 Symposium on Foundations of Computer Science, San Juan, PR, USA, 1–4 October 1991; pp. 538–547. [Google Scholar]
- Miller, G.L.; Teng, S.; Thurston, W.; Vavasis, S.A. Automatic Mesh Partitioning; Springer: New York, NY, USA, 1993; pp. 57–84. [Google Scholar]
- Garbers, J.; Promel, H.J.; Steger, A. Finding clusters in vlsi circuits. In Proceedings of the 1990 IEEE International Conference on Digest of Technical Papers, Santa Clara, CA, USA, 11–15 November 1990; pp. 520–523. [Google Scholar]
- Cheng, C.K.; Wei, Y.C.A. An improved two-way partitioning algorithm with stable performance [VLSI]. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1991, 10, 1502–1511. [Google Scholar] [CrossRef]
- Bui, T.N.; Jones, C. A heuristic for reducing fill-in in sparse matrix factorization. Proc. Parallel Process. Sci. Comput. 1993, 1, 445–452. [Google Scholar]
- Hendrickson, B.; Leland, R. A multi-level algorithm for partitioning graphs. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, New York, NY, USA, 4–8 December 1995; pp. 28–41. [Google Scholar]
No. | Field Name | Notes |
---|---|---|
1 | Region Code | Spatial identifier of each land parcel after intersection |
2 | Polygon ID | Unique identifier of each land parcel after intersection |
3 | Land Cover Class (from) | Land cover class before change |
4 | Land Cover Class (to) | Land cover class after change |
5 | Area | Spherical area of the land parcel after overlay operation |
6 | Other | A spare field |
Type | Vertex ID | Weights |
---|---|---|
Vertex | A | WA = 2 + 5 + 2 + 6 + 3 + 5 + 6 + 5 + 4 + 3 + 5 + 6 + 6 + 4 + 2 + 4 + 5 + 5 + 5 + 5 + 3 + 4 + 4 = 99 |
B | WB = 3 + 3 + 5 + 6 + 3 + 6 + 5 + 3 + 2 + 4 + 4 + 4 + 5 + 1 + 6 + 6 + 4 + 5 + 6 + 6 = 87 | |
C | WC = 6 + 5 + 5 + 2 + 5 + 3 + 5 + 5 + 6 + 5 + 6 + 5 + 6 + 5 + 6 = 75 | |
D | WD = 3 + 5 + 4 + 6 + 5 + 6 + 5 + 5 + 6 + 1 + 6 = 52 | |
E | WE = 5 + 5 + 5 + 3 + 4 + 4 + 5 + 4 + 5 + 6 + 6 + 2 + 4 + 2 + 2 + 3 + 6 + 5 + 5 + 6 + 6 + 2 + 6 + 6 + 5 + 2 + 6 + 5 = 125 | |
F | WF = 2 + 4 + 2 + 1 + 2 + 6 + 6 + 2 + 5 + 3 + 6 + 2 + 5 + 2 = 48 | |
G | WG = 5 + 6 + 4 + 6 + 1 + 6 + 5 + 2 + 5 + 4 + 1 + 4 + 3 + 5 + 3 + 2 + 3 + 5 + 5 + 2 + 2 + 5 = 84 | |
Edges | A | WAB = WBA = 3 + 3 + 2 + 5= 13; WAE = WEA = 3 + 4 + 4 + 5 + 5 + 5 = 26 |
B | WBC = WCB = 6 + 3 = 9; WBD = WDB = 3 + 4 + 6 + 6 = 19; WBE = WEB = 5 + 4 + 5 + 6 + 6 = 26 | |
C | WCD = WDC = 3 + 6 + 5 + 5 = 19; WCG = WGC = 5 + 6 = 11 | |
D | WDE = WED = 6; WDG = WGD = 6 + 1 + 6 + 5 = 18 | |
E | WEF = WFE = 2 + 4 + 2 + 6 + 6 + 2 + 2 = 24; WEG = WGE = 6 + 5 + 5 + 5 = 21 |
Factors\Time | TP1 | TP2 | TP3 | TP4 | T |
---|---|---|---|---|---|
F | 0.969167 | 0.530038 | 0.568205 | 0.740030 | 0.582032 |
N | 0.718055 | 0.973142 | 0.994402 | 0.964224 | 0.990629 |
A | 0.513562 | 0.790036 | 0.825275 | 0.779288 | 0.809465 |
N × log(N) | 0.706571 | 0.976781 | 0.994454 | 0.960296 | 0.991878 |
Order | Name | Number of Counties | Time Usage (s) | Difference | ||
---|---|---|---|---|---|---|
Observed | Estimated | Absolute | Ratio | |||
1 | Shanxi | 117 | 54,158.173 | 51,664.532 | 2493.640 | 4.6% |
2 | Heilongjiang | 128 | 39,550.255 | 37,914.468 | 1635.787 | 4.1% |
3 | Shanghai | 16 | 2743.127 | 2529.132 | 213.995 | 7.8% |
4 | Zhejiang | 90 | 28,432.039 | 21,489.041 | 6942.998 | 24.4% |
5 | Shandong | 137 | 35,075.643 | 27,635.252 | 7440.391 | 21.2% |
6 | Xizang | 74 | 74,659.131 | 77,058.161 | 2399.029 | 3.2% |
7 | Qinghai | 46 | 32,129.256 | 34,644.451 | 2515.195 | 7.8% |
- | Total/Avg | - | 266,747.624 | 252,935.037 | 23,641.035 | 8.9% |
Order | Name | Time (s) | Speedup | ||||
---|---|---|---|---|---|---|---|
P = 1 | P = 2 | P = 4 | P = 6 | P = 12 | |||
1 | Shanxi | 54,158.173 | 29,733.984 | 18,042.815 | 12,955.973 | 8994.652 | 6.021 |
2 | Heilongjiang | 39,550.255 | 27,368.083 | 19,710.915 | 13,951.313 | 10,218.074 | 3.871 |
3 | Shanghai | 2743.127 | 1658.247 | 1083.171 | 877.641 | 681.561 | 4.025 |
4 | Zhejiang | 28,432.039 | 15,515.316 | 8185.116 | 6340.825 | 4595.972 | 6.186 |
5 | Shandong | 35,075.643 | 19,257.271 | 10,199.049 | 7279.027 | 5601.673 | 6.262 |
6 | Xizang | 74,659.131 | 43,597.761 | 26,888.392 | 18,922.136 | 15,557.339 | 4.799 |
7 | Qinghai | 32,129.256 | 18,202.262 | 12,600.972 | 9032.178 | 6538.687 | 4.914 |
- | Total/Avg | 266,747.624 | 155,332.924 | 96,710.430 | 69,359.093 | 52,187.958 | 5.111 |
Computer ID | Graph Loads (s) | Cutting Loads (s) | Costs Ratio | Task Loads (s) | Balance |
---|---|---|---|---|---|
192.168.3.1 | 78,737.800 | 7834.684 | 9.95% | 86,572.484 | 6.52% |
192.168.3.2 | 78,945.698 | 2513.631 | 3.18% | 81,459.329 | 6.13% |
192.168.3.3 | 78,444.883 | 6984.443 | 8.90% | 85,429.326 | 6.43% |
192.168.3.4 | 83,135.226 | 13,525.892 | 16.27% | 96,661.118 | 7.28% |
192.168.3.5 | 82,848.954 | 8524.572 | 10.29% | 91,373.526 | 6.88% |
192.168.3.6 | 80,668.012 | 7148.928 | 8.86% | 87,816.940 | 6.61% |
192.168.3.7 | 83,146.467 | 6905.600 | 8.31% | 90,052.067 | 6.78% |
192.168.3.8 | 83,042.980 | 6721.402 | 8.09% | 89,764.382 | 6.76% |
192.168.3.9 | 82,401.041 | 11,897.392 | 14.44% | 94,298.433 | 7.10% |
192.168.3.10 | 80,064.289 | 11,565.392 | 14.45% | 91,629.681 | 6.90% |
192.168.3.11 | 79,672.611 | 12,012.495 | 15.08% | 91,685.106 | 6.90% |
192.168.3.12 | 78,525.364 | 2017.754 | 2.57% | 80,543.118 | 6.06% |
192.168.3.13 | 78,805.905 | 3550.061 | 4.50% | 82,355.966 | 6.20% |
192.168.3.14 | 80,616.409 | 5116.888 | 6.35% | 85,733.297 | 6.45% |
192.168.3.15 | 82,511.703 | 10,519.652 | 12.75% | 93,031.355 | 7.00% |
Slave ID | Counties | Task Loads (s) | Observed Time (s) | Speedup |
---|---|---|---|---|
192.168.3.1 | 176 | 86,572.484 | 16,713.703 | 5.180 |
192.168.3.2 | 212 | 81,459.329 | 21,245.131 | 3.834 |
192.168.3.3 | 189 | 85,429.326 | 18,003.370 | 4.745 |
192.168.3.4 | 327 | 96,661.118 | 18,944.093 | 5.102 |
192.168.3.5 | 294 | 91,373.526 | 17,064.811 | 5.354 |
192.168.3.6 | 333 | 87,816.940 | 18,688.152 | 4.699 |
192.168.3.7 | 207 | 90,052.067 | 17,794.495 | 5.061 |
192.168.3.8 | 268 | 89,764.382 | 18,774.252 | 4.781 |
192.168.3.9 | 197 | 94,298.433 | 19,458.336 | 4.846 |
192.168.3.10 | 106 | 91,629.681 | 16,454.875 | 5.569 |
192.168.3.11 | 88 | 91,685.106 | 18,048.192 | 5.080 |
192.168.3.12 | 137 | 80,543.118 | 17,363.678 | 4.639 |
192.168.3.13 | 71 | 82,355.966 | 18,177.326 | 4.531 |
192.168.3.14 | 111 | 85,733.297 | 19,216.351 | 4.461 |
192.168.3.15 | 142 | 93,031.355 | 16,692.415 | 5.573 |
Avg | 190.5 | 88,560.409 | 18,175.945 | 4.872 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Liu, J.; Dong, C.; Xu, S. Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big Data. ISPRS Int. J. Geo-Inf. 2018, 7, 273. https://doi.org/10.3390/ijgi7070273
Kang X, Liu J, Dong C, Xu S. Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big Data. ISPRS International Journal of Geo-Information. 2018; 7(7):273. https://doi.org/10.3390/ijgi7070273
Chicago/Turabian StyleKang, Xiaochen, Jiping Liu, Chun Dong, and Shenghua Xu. 2018. "Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big Data" ISPRS International Journal of Geo-Information 7, no. 7: 273. https://doi.org/10.3390/ijgi7070273
APA StyleKang, X., Liu, J., Dong, C., & Xu, S. (2018). Using High-Performance Computing to Address the Challenge of Land Use/Land Cover Change Analysis on Spatial Big Data. ISPRS International Journal of Geo-Information, 7(7), 273. https://doi.org/10.3390/ijgi7070273