Towards Automated Semantic Explainability of Multimedia Feature Graphs
<p>Exemplary <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </semantics></math> and its related representations.</p> "> Figure 2
<p>Production rules for the example “The hat is above the head” visualized as Phrase-Structure tree (PS-tree).</p> "> Figure 3
<p>MMFG overview: (<b>a</b>) formal model of the syntactic MMFG representation; (<b>b</b>) formal syntactic schema of the MMFG representation of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>c</b>) additional starting symbol <math display="inline"><semantics> <msub> <mi>S</mi> <mrow> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>MMFG overview including <span class="html-italic">Annotation Anchors (aa)</span> and <span class="html-italic">Annotation Relationships (ar)</span>: (<b>a</b>) formal model; (<b>b</b>) formal syntactic schema of the MMFG representation <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>SMMFG overview: (<b>a</b>) formal model of the syntactic SMMFG; (<b>b</b>) formal syntactic schema of the SMMFG representation <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>E</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>ESMMFG overview: (<b>a</b>) formal model of the syntactic ESMMFG representation; (<b>b</b>) formal schema of the syntactic ESMMFG representation.</p> "> Figure 7
<p>PS-tree with production rules, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, of, <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, applied to <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>PS-tree with production rules, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, of, <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, applied to <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> including annotation anchors.</p> "> Figure 9
<p>Snippet of the PS-tree with production rules, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, of <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <mi>G</mi> </mrow> </msub> </semantics></math>, applied to <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>M</mi> <mi>M</mi> <mi>F</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>, including semantic feature vocabulary terms.</p> "> Figure 10
<p>Factory implementation to attach external semantic frameworks.</p> "> Figure 11
<p>Querying an external semantic system for unique IDs with SPARQL.</p> "> Figure 12
<p>GMAF-UI displaying image: (<b>a</b>) <span class="html-italic">Graph Codes</span>; (<b>b</b>) the corresponding <span class="html-italic">Semantic Graph Code</span>.</p> "> Figure 13
<p>GMAF-UI displaying a human-readable explanation of an image.</p> ">
Abstract
:1. Introduction and Motivation
2. State-of-the-Art and Related Work
- is the feature term vocabulary, i.e., the set of feature term labels, which represent detected features. Elements of are represented by in the MMFG graph structure.
- is the feature term vocabulary of the collection of MMFGs within a MMIR application.
- the set representing the feature relationship types of an MMFG, where represents the “child” relationship, s represents the “synonym” relationship, and “sr” represents the “spacial” relationship between feature vocabulary terms. Elements of are represented by links between in the MMFG graph structure.
- representing the variables of the grammar.
- is the set of terminal symbols, with .
- The production rules for this grammar can be defined as follows:
- The NP, “The hat”, consists of the determiner “The”, and the noun “hat”.
- The NP, “the head”, is built by the determiner “the”, and the noun “head”.
- The PP, “above the head”, is constructed by the preposition “above”, and the NP “the head”.
- The VP, “is above the head”, consists of the verb “is”, and the PP “above the head”.
- The starting symbol for this sentence is constructed by a NP, “The hat” and the VP, “is above the head”.
3. Modeling and Design
3.1. Formal Representation of an MMFG
- is the set of feature relationship terms and the set of feature vocabulary terms .
- is a set of textual labels for elements in and .
- is the set of production rules, which produce sentences based on, and . In its simplest form, P can be defined as:
- is the root node of an MMFG.
- The initial grammar does not yet represent the syntactic structure of MMFGs.
- The initial grammar is not a context-free PS-grammar.
- The initial grammar for MMFGs does not reflect the structural elements of MMFGs and their corresponding production rules. For example, the structural element (i.e., child node) should be transformed into the grammatical structure, “has a child named”, represented by several textual labels. Another example would be the spacial relationship, , which should be represented by a set of textual labels forming the phrase, “is above of”.
- The initial grammar does not provide a semantic description of the syntactic relationships.
3.2. Enabling Annotation of Formal MMFG Representations
3.3. Semantic Annotation of Formal MMFG Representations
- A Semantic Node Representation (snr) for each MMFG node, and a Semantic Relationship Representation (srr) for each MMFG relationship. These elements are required to represent the meaning of both nodes and relationships semantically.
- A set of Semantic Feature Vocabulary Terms and a set of Semantic Relationship Vocabulary Terms. In previous work [7,43], we already defined the set as the representation of all syntactic MMFG vocabulary terms (i.e., the textual labels of detected features). In an SMMFG, the semantic of each syntactic vocabulary term, , is now represented by a semantic feature vocabulary term . Analogously, the set, , is defined as the set of semantic representations of labels related to syntactic MMFG relationships.
- While in an MMFG, relationships are simply represented by their relationship type (e.g., cn, sr, s), in SMMFGs, these relationship types are modeled by Semantic Relationship Vocabulary Terms (srvt), which represent the semantics of vocabulary terms describing the relationship type.
- In an MMFG, each node and each relation is linked by an Annotation Relationship (ar) to an Annotation Anchor (aa), which now represents a Semantic Node Representation (snr) or a Semantic Relation Representation (srr). An Annotation Anchor (aa) is a URI for the node or relation it represents and used to link these MMFG nodes or relations to semantic node representations and semantic relationship representations.
- In an SMMFG, the hasName relation links Semantic Node Representations with Semantic Feature Vocabulary Terms and Semantic Relation Representations with Semantic Relationship Vocabulary Terms. Each srr is linked via the hasDomainNode and hasRangeNode relations to the corresponding snr’s.
- is the set of semantic representations of descriptions of MMFG nodes and relationships (see also Figure 5).
- is an extension to, , and includes additional textual descriptions of the semantic relationships: “hasName”, “hasDomainNode”, “hasRangeNode”, “describes”.
- extends the production rules, , as follows:
3.4. Explainable SMMFGs
- The variables, are based on the variables, , of the English grammar, , and additionally includes the variables of the previously defined grammars:It thus represents the union of variables defining the English grammar (i.e., ), the syntactic elements of an MMFG (i.e., ), and the semantic enrichment (i.e., ).
- is the set of terminal symbols and represented by the labels , which can be regarded as any English word of type noun, verb, determiner, adjective, or preposition. The production of these words is based on the semantic feature and semantic relationship vocabulary. The order, in which such can be arranged to formulate valid expressions, is given by the following production rules.
- is the set of production rules and defines how the MMFG and SMMFG structures can be formally transformed into valid natural language expressions. also contains the simple production rules previously defined in, and ; however, the phrase structure of, , leads to various additional and refining elements:
- is the starting symbol for any valid expression. This means that any natural language representation of an MMFG or SMMFG starts with the processing of the root-element; however, as the root-node of an MMFG is a node itself, , can also be employed to produce expressions of subgraphs of an MMFG or SMMFG.
3.5. Semantic Graph Codes
3.6. Summary
4. Implementation
4.1. RDF and RDFS Representation of MMFGs
<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> <rdfs:Class rdf:ID="MMFG"> <rdfs:comment>MMFG Root Node Class</rdfs:comment> </rfds:Class> <rdfs:Class rdf:ID="Node"> <rdfs:comment>MMFG Node Class</rdfs:comment> </rfds:Class> <rdfs:Class rdf:ID="Annotation_Anchor"> <rdfs:comment>Annotation Anchor</rdfs:comment> </rfds:Class> <rdfs:Class rdf:ID="Relationship"> <rdfs:comment>Relationship</rdfs:comment> </rfds:Class> <rdf:Property rdf:ID="Feature"> <rdfs:comment>Feature respresenting nodes of a MMFG </rdfs:comment> <rdfs:domain rdf:resource="#MMFG"/> <rdfs:range rdf:resource="#Node"/> </rdf:Property> <rdf:Property rdf:ID="cn"> <rdfs:comment>child relationship representing the level of detail </rdfs:comment> <rdfs:domain rdf:resource="#Node"/> <rdfs:range rdf:resource="#Relationship"/> </rdf:Property> <rdf:Property rdf:ID="sr"> <rdfs:comment>Spacial relationship</rdfs:comment> <rdfs:domain rdf:resource="#Node"/> <rdfs:range rdf:resource="#Relationship"/> </rdf:Property> <rdf:Property rdf:ID="s"> <rdfs:comment>Synonym relationship</rdfs:comment> <rdfs:domain rdf:resource="#Node"/> <rdfs:range rdf:resource="#Relationship"/> </rdf:Property> <rdf:Property rdf:ID="ar"> <rdfs:comment>Semantic relationship</rdfs:comment> <rdfs:domain rdf:resource="#Relationship"/> <rdfs:range rdf:resource="#Annotation Anchor"/> </rdf:Property> <rdf:Property rdf:ID="aa"> <rdfs:comment>Semantic relationship</rdfs:comment> <rdfs:domain rdf:resource="#Node"/> <rdfs:range rdf:resource="#Annotation Anchor"/> </rdf:Property> </rdf:RDF>
<rdf:RDF> <rdf:Statement rdf:about="mmfg:Statement"> <rdf:subject rdf:resource="Node:Hat"/> <rdf:predicate rdf:resource="Relationship:above"/> <rdf:object rdf:resource="Node:Head"/> </rdf:Statement> … </rdf:RDF>
<rdf:RDF xml:lang="en" ⋯ xmlns:mmfg="mmfg.rdf"> … <mmfg:Node rdf:about="Node"> <mmfg:name>Hat</mmfg:name> </mmfg:Node> <mmfg:Hat> <mmfg:sr rdf:resource="mmfg:Head" rdf:about="above"/> <mmfg:ar rdf:resource="mmfg:rel_3"/> </mmfg:Hat> <mmfg:Relationship> <mmfg:name>rel_3</mmfg:name> <mmfg:aa rdf:resource="mmfg:aa_3"/> </mmfg:Relationship> <mmfg:AnnotationAnchor> <mmfg:name>aa_3</mmfg:name> <mmfg:comment> URI of external semantic representation </mmfg:comment> </mmfg:AnnotationAnchor> … </rdf:RDF>
4.2. Semantic Extension of the GMAF
4.3. Semantic Representation
4.4. Explainability
public class Explainer { public static String explain(MMFG mmfg, int levelOfDetail, int languageLevel) { SMMFG smmfg = new SMMFG(mmfg); ESMMFG esmmfg = new ESMMFG(smmfg); LanguageModel model = LanguageModel.getInstance(languageLevel); String text = model.produceText(esmmfg, levelOfDetail); return text; } … } … public abstract class LanguageModel { public static final int SIMPLE = 0; public static final int NORMAL = 1; public static final int COMPLEX = 2; public static LanguageModel getInstance(int languageModel) { if (languageModel == SIMPLE) return new SimpleLanguageModel(); else if (languageModel == COMPLEX) return new ComplexLanguageModel(); else return new DefaultLanguageModel(); } public abstract PSTree producePSTree( ESMMFG esmmfg, int levelOfDetail); public abstract PSTree produceQueryPSTree( ESMMFG esmmfg, int levelOfDetail); public abstract PSTree produceResultPSTree( ESMMFG esmmfg, int levelOfDetail); public abstract PSTree produceComparisonPSTree( ESMMFG esmmfg1, ESMMFG esmmfg2); public final String produceText(ESMMFG esmmfg, int levelOfDetail) { PSTree ps = producePSTree(esmmfg, levelOfDetail); return ps.createSentence(); } }
5. Evaluation
5.1. Semantic Retrieval
- Any semantic enrichment increases the values for precision and recall (summarized by their F1 value) by 18% (see bold in Table 4).
- An additional 4% increase can be achieved, when an external semantic system is connected.
5.2. Text Retrieval and Inference
5.3. Explainability
6. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwasnicka, H.; Jain, L.C. Bridging the Semantic Gap in Image and Video Analysis; Springer: Berlin, Germany, 2018; ISBN 978-3-319-73891-8. [Google Scholar]
- Clement, J. Social Media—Statistics & Facts. 2020. Available online: https://www.statista.com/topics/1164/social-networks/ (accessed on 23 August 2020).
- Sony Electronics Inc. a7R IV 35 mm Full-Frame Camera with 61.0 MP. 2021. Available online: https://www.sony.com/electronics/ interchangeable-lens-cameras/ilce-7rm4 (accessed on 22 November 2021).
- Xiaomi. Redmi Note 10 Pro—The 108MP Voyager. 2021. Available online: https://www.mi.com/global/product/redmi-note-10-pro/overview (accessed on 22 November 2021).
- The Washington Post. Washington Post Archives. 2021. Available online: https://www.washingtonpost.com (accessed on 22 November 2021).
- Domingue, J. Introduction to the Semantic Web Technologies. In Handbook of Semantic Web Technologies; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–41. [Google Scholar]
- Wagenpfeil, S.; Engel, F.; Kevitt, P.M.; Hemmje, M. AI-Based Semantic Multimedia Indexing and Retrieval for Social Media on Smartphones. Information 2021, 12, 43. [Google Scholar] [CrossRef]
- Wagenpfeil, S. GMAF Prototype. 2020. Available online: http://diss.step2e.de:8080/GMAFWeb/ (accessed on 23 August 2020).
- Wagenpfeil, S.; Engel, F.; Kevitt, P.M.; Hemmje, M. Github Repository of GMAF and MMFVG. 2021. Available online: https://github.com/stefanwagenpfeil/GMAF/ (accessed on 28 November 2021).
- Wagenpfeil, S.; Hemmje, M. Towards AI-bases Semantic Multimedia Indexing and Retrieval for Social Media on Smartphones. In Proceedings of the 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization, Zakynthos, Greece, 29–30 October 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Beyerer, J.; Richter, M.; Nagel, M. Pattern Recognition—Introduction; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017; ISBN 978-3-110-53794-9. [Google Scholar]
- Manotumruksa, J.; Macdonald, C.; Ounis, I. A contextual attention recurrent architecture for context-aware venue recommendation. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 555–564. [Google Scholar]
- Leveling, J. Interpretation of coordinations, compound generation, and result fusion for query variants. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 28 July 2013; pp. 805–808. [Google Scholar]
- Bhute, A.N.; Meshram, B.B.; Bhute, H. Multimedia Indexing and Retrieval Techniques: A Review. Int. J. Comput. Appl. 2012, 58, 35–42. [Google Scholar]
- Lew, M.S.; Sebe, N.; Djeraba, C.; Jain, R. Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2006, 2, 1–19. [Google Scholar] [CrossRef]
- Hernández-Gracidas, C.; Juárez, A.; Sucar, L.E.; Montes-y-Gómez, M.; Villaseñor, L. Data Fusion and Label Weighting for Image Retrieval Based on Spatio-Conceptual Information. Adapt. Pers. Fusion Heterog. Inf. 2010, 76–79. [Google Scholar]
- Dufour, R.; Esteve, Y.; Deléglise, P.; Béchet, F. Local and global models for spontaneous speech segment detection and characterization. In Proceedings of the Workshop on Automatic Speech Recognition and Understanding, Merano, Italy, 13–17 December 2009; pp. 130–135. [Google Scholar]
- Subrahmanian, V. Principles of Multimedia Database Systems; Morgan Kaufmann: San Francisco, CA, USA, 1998; ISBN 978-1-558-60466-7. [Google Scholar]
- Chang, S.F.; Sikora, T.; Purl, A. Overview of the MPEG-7 standard. IEEE Trans. Circuits Syst. Video Technol. 2001, 11, 688–695. [Google Scholar] [CrossRef]
- FFMpeg.org. ffmpeg Documentation. 2020. Available online: http://ffmpeg.org (accessed on 23 August 2020).
- Mu, X. Content-based video retrieval: Does video’s semantic visual feature matter? In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, WA, USA, 6–11 August 2006; pp. 679–680. [Google Scholar]
- Wagenpfeil, S.; Engel, F.; McKevitt, P.; Hemmje, M. Graph Codes—2D projections of Multimedia Feature Graphs for Fast and Effective Retrieval. 2021. Available online: http://164.177.153.44/pubs/icivr2021.pdf. (accessed on 26 August 2020).
- yWorks GmbH. yEd Graph Editor. 2020. Available online: https://www.yworks.com/products/yed (accessed on 23 August 2020).
- Wagenpfeil, S.; Engel, F.; McKevitt, P.; Hemmje, M.L. Semantic Query Construction and Result Representation based on Graph Codes. 2021. Available online: http://ceur-ws.org/Vol-2863/paper-06 (accessed on 28 July 2021).
- Kapetanios, E.; Groenewoud, P. Query Construction through Meaningful Suggestions of Terms. In Flexible Query Answering Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2002; pp. 226–239. ISBN 978-3-540-36109-1. [Google Scholar]
- Kapetanios, E.; Baer, D.; Groenewoud, P.; Mueller, P. The design and implementation of a meaning driven data query language. In Proceedings of the 14th International Conference on Scientific and Statistical Database Management, Aalborg, Denmark, 30 June–2 July 2014; pp. 20–23. [Google Scholar]
- Shaik, S.; Kanakam, P.; Hussain, S.M.; Suryanarayana, D. Transforming Natural Language Query to SPARQL for Semantic Information Retrieval. Int. J. Eng. Trends Technol. 2016, 41, 347–350. [Google Scholar] [CrossRef]
- Jung, H.; Kim, W. Automated conversion from natural language query to SPARQL query. J. Intell. Inf. Syst. 2020, 1–20. [Google Scholar] [CrossRef]
- W3C.org. W3C Semantic Web Activity. 2020. Available online: http://w3.org/2001/sw (accessed on 23 August 2020).
- Wong, R.; Leung, C.H. Automatic Semantic Annotation of Real-World Web Images. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1933–1944. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Qian, X.; Li, Q.; Xu, X. Research on Semantic Annotation Based Image Fusion Algorithm. Res. Semant. Annot. Based Image Fusion Algorithm 2017, 945–948. [Google Scholar]
- Asim, M.N.; Wasim, M.; Khan, M.U.G. The Use of Ontology in Retrieval: A Study on Textual. IEEE Access 2019, 7, 21662–21686. [Google Scholar] [CrossRef]
- Beierle, C.; Kern-Isberner, G. Methoden Wissensbasierter Systeme–Grundlagen; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2019; ISBN 978-3-658-27084-1. [Google Scholar]
- Aho, A. Compilerbau; Oldenbourg Wissenschaftsverlag: Munich, Germany, 1999; ISBN 9783486252941. [Google Scholar]
- Hauser, R. Principles of Computer Linguistics; Springer Publishing: Berlin/Heidelberg, Germany, 2010; ISBN 3-540-67187-0. [Google Scholar]
- Evans, J. Thinking and Reasoning: A Very Short Introduction; Oxford University Press: Oxford, UK, 2017; ISBN 0198787251. [Google Scholar]
- W3C. SKOS Simple Knowledge Organisation System. 2021. Available online: https://www.w3.org/2004/02/skos/ (accessed on 28 May 2021).
- Bochman, A. Nonmonotonic Reasoning. 2007. Available online: https://www.sciencedirect.com/science/article/pii/ S1874585707800124 (accessed on 24 October 2021).
- Das, A. Knowledge Representation. 2003. Available online: https://www.sciencedirect.com/science/article/pii/B0122272404001027 (accessed on 28 October 2021).
- Reiter, R. A Logic for Default Reasoning. 1980. Available online: https://www.sciencedirect.com/science/article/pii/ 0004370280900144 (accessed on 20 September 2021).
- Poole, D. A Logical Framework for Default Reasoning. 1988. Available online: https://www.sciencedirect.com/science/article/pii/ 000437028890077X (accessed on 14 July 2021).
- W3C.org. SPARQL Query Language for RDF. 2013. Available online: https://www.w3.org/TR/sparql11-overview/ (accessed on 23 August 2020).
- Wagenpfeil, S.; Vu, B.; Kevitt, P.; Hemmje, M. Fast and Effective Retrieval for Large Multimedia Collections. Big Data Cogn. Comput. 2021, 5, 33. [Google Scholar] [CrossRef]
- LSTM Model. Long Short-Term Memory. 2021. Available online: https://en.wikipedia.org/wiki/Long_short-term_memory (accessed on 28 November 2021).
- Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.; Patterns, D. Design Patterns—Elements of Reusable Object Oriented Software; Addison Wesley: Boston, MA, USA, 1994; ISBN 0-201-63361-2. [Google Scholar]
- Wikidata.com. Wikidata—The Free Knowledgebase. 2021. Available online: https://www.wikidata.org/wiki/Wikidata:Main_Page (accessed on 24 October 2021).
- Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [Google Scholar] [CrossRef]
- Text Retrieval Conference, Datasets. 2021. Available online: https://trec.nist.gov/data.html (accessed on 14 September 2021).
- Young, P.; Lai, A.; Hodosh, M.; Hockenmaier, J. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2014, 2, 67–78. [Google Scholar] [CrossRef]
Restriction | PSG Class | Language Class | Complexity |
---|---|---|---|
type 3 | regular PSG | regular language | linear |
type 2 | context free PSG | context free language | polynomial |
type 1 | context sensitive PSG | context sensitive language | exponential |
type 0 | unrestricted PSG | recursive enumerable language | unsolvable |
Person | 101 |
Head | 102 |
Hat | 103 |
above | 104 |
Individual | - |
Human Being | - |
101 | 102 | 103 | 104 | |
---|---|---|---|---|
101 | 1 | 3 | 0 | 0 |
102 | 0 | 1 | 3 | 0 |
103 | 0 | 0 | 2 | 5 |
104 | 0 | 0 | 0 | 6 |
Dog | Man | Golf | Guitar | Bicycle | Avg | |
---|---|---|---|---|---|---|
Basic Experiment | ||||||
188 | 119 | 5 | 17 | 54 | ||
2 | 85 | 2 | 13 | 24 | ||
0.98 | 0.53 | 0.71 | 0.56 | 0.69 | 0.71 | |
0.91 | 0.25 | 0.45 | 0.89 | 0.94 | 0.69 | |
0.94 | 0.35 | 0.55 | 0.69 | 0.80 | 0.67 | |
Attachment of External Framework | ||||||
188 | 309 | 6 | 26 | 63 | ||
2 | 104 | 2 | 6 | 19 | ||
0.98 | 1.51 | 0.85 | 0.86 | 0.80 | 1.00 | |
0.91 | 0.67 | 0.54 | 1.36 | 1.10 | 0.92 | |
0.94 | 0.92 | 0.66 | 1.06 | 0.93 | 0.90 |
Experiment | ||||||
---|---|---|---|---|---|---|
Bag-Of-Words | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 |
Internal Impl. | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 |
Inferencing | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
External Impl. | 0.7 | 0.8 | 0.7 | 0.5 | 0.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagenpfeil, S.; Mc Kevitt, P.; Hemmje, M. Towards Automated Semantic Explainability of Multimedia Feature Graphs. Information 2021, 12, 502. https://doi.org/10.3390/info12120502
Wagenpfeil S, Mc Kevitt P, Hemmje M. Towards Automated Semantic Explainability of Multimedia Feature Graphs. Information. 2021; 12(12):502. https://doi.org/10.3390/info12120502
Chicago/Turabian StyleWagenpfeil, Stefan, Paul Mc Kevitt, and Matthias Hemmje. 2021. "Towards Automated Semantic Explainability of Multimedia Feature Graphs" Information 12, no. 12: 502. https://doi.org/10.3390/info12120502
APA StyleWagenpfeil, S., Mc Kevitt, P., & Hemmje, M. (2021). Towards Automated Semantic Explainability of Multimedia Feature Graphs. Information, 12(12), 502. https://doi.org/10.3390/info12120502