Finding Central Vertices and Community Structure via Extended Density Peaks-Based Clustering
<p>Example of an undirected network.</p> "> Figure 2
<p>Example of another undirected network.</p> "> Figure 3
<p>Decision diagrams for the example network. (<b>a</b>) Decision diagram for the vertices. (<b>b</b>) <math display="inline"><semantics> <mi>γ</mi> </semantics></math> distribution.</p> "> Figure 4
<p>The community structure of Football network. (<b>a</b>) The real community structure. (<b>b</b>) The community structure detected by EDPC.</p> "> Figure 5
<p>Comparison of NMI and ARI.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Preliminaries
3.1. Adamic–Adar Index
3.2. Density Peaks-Based Clustering
4. The Proposed Algorithm
4.1. Connection Strength
4.2. Relative Connection Coefficient
4.3. Community Centers
4.4. Division of Remaining Vertices
4.5. EDPC Method
Algorithm 1 EDPC Algorithm. |
Require: Adjacency matrix A of a network G Ensure: The allocation for all date vertices
|
5. Experiments and Result Analysis
5.1. Datasets
5.2. Experiments on Datasets and Results Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernighan, B.W.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst. Tech. J. 1972, 49, 291–307. [Google Scholar] [CrossRef]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pothen, A.; Simon, H.; Liou, K. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM J. Matrix Anal. Appl. 1990, 11, 430–452. [Google Scholar] [CrossRef]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tian, X.; Li, Y.; Song, C. Label propagation algorithm based on edge clustering coefficient for community detection in complex networks. Int. J. Mod. Phys. B 2014, 28, 1450216. [Google Scholar] [CrossRef]
- Guerreroa, M.; Montoya, F.G.; Baños, R.; Alcayde, A.; Gil, C. Adaptive community detection in complex networks using genetic algorithms. Neurocomputing 2017, 266, 101–113. [Google Scholar] [CrossRef]
- Dao, V.L.; Bothorel, C.; Lenca, P. Community structure: A comparative evaluation of community detection methods. Netw. Sci. 2020, 8, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Elemy, M.B. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Arenas, A.; Fernández, A.; Gómez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 2008, 10, 1–15. [Google Scholar] [CrossRef]
- Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005, 9, 219–228. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Dhelim, S.; Ning, H.; Aung, N. ComPath: User Interest Mining in Heterogeneous Signed Social Networks for Internet of People. IEEE Internet Things J. 2021, 8, 7024–7035. [Google Scholar] [CrossRef]
- Dhelim, S.; Ning, H.; Aung, N.; Huang, R.; Ma, J. Personality-Aware Product Recommendation System Based on User Interests Mining and Metapath Discovery. IEEE Trans. Comput. Soc. Syst. 2021, 8, 86–98. [Google Scholar] [CrossRef]
- Cauteruccio, F.; Cinelli, L.; Fortino, G.; Savaglio, C.; Terracina, G.; Ursino, D.; Virgili, L. An approach to compute the scope of a social object in a Multi-IoT scenario. Pervasive Mob. Comput. 2020, 67, 101223. [Google Scholar] [CrossRef]
- Coscia, M.; Giannotti, F.; Pedreschi, D. A classification for community discovery methods in complex networks. Stat. Anal. Data Min. 2011, 4, 512–546. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in Social Media. Data Min. Knowl. Disc. 2012, 24, 515–554. [Google Scholar] [CrossRef]
- Harenberg, S.; Bello, G.; Gjeltema, L.; Ranshous, S.; Harlalka, J.; Seay, R.; Padmanabhan, K.; Samatova, N. Community detection in large-scale networks: A survey and empirical evaluation. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yin, L.; Wang, X. A community detection method based on local similarity and degree clustering information. Phys. A Stat. Mech. Appl. 2018, 490, 1344–1354. [Google Scholar] [CrossRef]
- Deng, Z.; Qiao, H.; Gao, M.; Song, Q.; Gao, L. Complex network community detection method by improved density peaks model. Phys. A Stat. Mech. Appl. 2019, 526, 121070. [Google Scholar] [CrossRef]
- Pan, X.; Xu, G.; Wang, B.; Zhang, T. A Novel Community Detection Algorithm Based on Local Similarity of Clustering Coefficient in Social Networks. IEEE Access 2019, 7, 121586–121598. [Google Scholar] [CrossRef]
- Hoffman, M.; Steinley, D.; Gates, K.M.; Prinstein, M.J.; Brusco, M.J. Detecting Clusters/Communities in Social Networks. Multivar. Behav. Res. 2018, 53, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xia, Z. A two-stage BFS local community detection algorithm based on node transfer similarity and Local Clustering Coefficient. Phys. A Stat. Mech. Appl. 2020, 537, 122717. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, Y.; Chang, X.; Wang, Q.; Yan, X.; Pan, Z.; Li, Z. Community detection based on the Matthew effect. Knowl. Based Syst. 2020, 205, 106256. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Z.; Liu, C.; Su, Y.; Zhang, X. Community detection in complex networks with an ambiguous structure using central node based link prediction. Knowl. Based Syst. 2020, 195, 105626. [Google Scholar] [CrossRef]
- Agrawal, S.; Patel, A. SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks. Phys. A Stat. Mech. Appl. 2021, 563, 125459. [Google Scholar] [CrossRef]
- Lorrain, F.; White, H.C. Structural equivalence of individuals in social networks. J. Math. Sociol. 1971, 1, 49–80. [Google Scholar] [CrossRef]
- Hamers, L.; Hemeryck, Y.; Herweyers, G.; Janssen, M.; Keters, H.; Rousseau, R.; Vanhoutte, A. Similarity measures in scientometric research: The Jaccard index versus Salton’s cosine formula. Inf. Process. Manag. 1989, 25, 315–318. [Google Scholar] [CrossRef]
- Adamic, L.A.; Adar, E. Friends and neighbors on the Web. Soc. Netw. 2003, 25, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Lü, L.; Zhang, Y. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Chen, B.; Zeng, Y. Community detection based on modularity and k-plexes. Inf. Sci. 2020, 513, 127–142. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, P10008. [Google Scholar] [CrossRef] [Green Version]
- Pons, P.; Latapy, M. Computing communities in large networks using random walks. In Proceedings of the International Symposium on Computer and Information Sciences, Istanbul, Turkey, 26–28 October 2005. [Google Scholar]
- Gong, M.; Fu, B.; Jiao, L.; Du, H. Memetic algorithm for community detection in networks. Phys. Rev. E 2011, 84, 056101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandes, U.; Delling, D.; Gaertler, M.; Orke, R.G.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On Modularity Clustering. IEEE Trans. Knowl. Data Endineering 2008, 20, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 2006, 74, 016110. [Google Scholar]
- Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854. [Google Scholar]
- Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 2008, 78, 046110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Networks | Vertices | Edges | Density | Avg. Path Length | c | ||
---|---|---|---|---|---|---|---|
Karate | 34 | 78 | 0.139 | 4.588 | 0.571 | 2.408 | 2 |
Dolphins | 62 | 159 | 0.084 | 5.129 | 0.259 | 3.357 | 2 |
Football | 115 | 613 | 0.094 | 10.661 | 0.403 | 2.508 | 12 |
Polbooks | 105 | 441 | 0.081 | 8.400 | 0.488 | 3.079 | 3 |
Networks | Vertices | k | ||||
---|---|---|---|---|---|---|
LFR1 | 500 | 10 | 20 | 0.5 | 10 | 50 |
LFR2 | 1000 | 10 | 20 | 0.4 | 30 | 90 |
Karate | Dolphins | Football | Polbooks | LFR1 | LFR2 | |
---|---|---|---|---|---|---|
BGLL | 0.7105 (4) | 0.5716 (5) | 0.8752 (9/10) | 0.5380 (5) | 0.6772 (12) | 0.8846 (15) |
Fastgreedy | 0.8168 (3) | 0.6020 (4) | 0.7081 (6) | 0.5313 (4) | 0.3928 (6) | 0.4789 (6) |
Walktrap | 0.5309 (5) | 0.5652 (4) | 0.8879 (10) | 0.5437 (4) | 0.8104 (16) | 0.9141 (16) |
Meme-net | 0.6790 (3) | 0.5785 (5) | 0.8962 (11) | 0.4812 (5) | 0.6286 (11) | 0.8279 (15) |
OM [38] | 0.6187 (4) | 0.6441 (5) | 0.8910 (10) | - | - | - |
Spinglass | 0.6557 (4) | 0.6400 (5/6) | 0.9019 (10–12) | 0.5091 (6) | 0.9453 (14) | 0.9903 (17/18) |
LPA | 1 (2) | 0.6686 (4/5) | 0.8733 (9–12) | 0.5559 (3/4) | - | 0.8369 (12) |
EDPC | 1 (2) | 1 (2) | 0.9197 (10) | 0.6069 (2) | 0.9579 (15) | 0.9896 (16) |
Karate | Dolphins | Football | Polbooks | LFR1 | LFR2 | |
---|---|---|---|---|---|---|
BGLL | 0.5547 | 0.3475 | 0.7784 | 0.6131 | 0.4432 | 0.7910 |
Fastgreedy | 0.7411 | 0.4509 | 0.4741 | 0.6379 | 0.1576 | 0.2517 |
Walktrap | 0.3207 | 0.4167 | 0.8154 | 0.6534 | 0.6429 | 0.8822 |
Meme-net | 0.4921 | 0.3511 | 0.8043 | 0.4906 | 0.4387 | 0.7782 |
OM [38] | 0.4646 | 0.3735 | 0.8069 | - | - | - |
Spinglass | 0.4884 | 0.3682 | 0.8134 | 0.5068 | 0.8642 | 0.9883 |
LPA | 1 | 0.4351 | 0.7362 | 0.648 | - | 0.4556 |
EDPC | 1 | 1 | 0.8406 | 0.6671 | 0.8969 | 0.9899 |
Vertex | 6 | 2 | 19 | 7 | 89 | 77 | 1 | 8 | 67 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|
6 | 3.040 | - | 0 | 0 | 0 | 0.434 | 0 | 0.872 | 0 | 0 | 0 |
2 | 3.440 | 0 | - | 0 | 0 | 0.417 | 0.417 | 0.518 | 0 | 0 | 0.869 |
19 | 3.176 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0.572 |
7 | 2.905 | 0 | 0 | 0 | - | 0.434 | 0 | 0 | 0.083 | 0 | 0.417 |
89 | 3.408 | 0.434 | 0.417 | 0 | 0.434 | - | 0 | 0 | 0.417 | 0 | 0 |
77 | 2.971 | 0 | 0.417 | 0 | 0 | 0 | - | 0 | 0 | 1.006 | 0 |
1 | 3.061 | 0.872 | 0.518 | 0 | 0 | 0 | 0 | - | 0 | 0.417 | 0.851 |
8 | 3.771 | 0 | 0 | 0 | 0.083 | 0.417 | 0 | 0 | - | 0 | 0 |
67 | 2.954 | 0 | 0 | 0 | 0 | 0 | 1.006 | 0.417 | 0 | - | 0.417 |
20 | 3.045 | 0 | 0.869 | 0.572 | 0.417 | 0 | 0 | 0.851 | 0 | 0.417 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Liu, X. Finding Central Vertices and Community Structure via Extended Density Peaks-Based Clustering. Information 2021, 12, 501. https://doi.org/10.3390/info12120501
Meng Y, Liu X. Finding Central Vertices and Community Structure via Extended Density Peaks-Based Clustering. Information. 2021; 12(12):501. https://doi.org/10.3390/info12120501
Chicago/Turabian StyleMeng, Yuanyuan, and Xiyu Liu. 2021. "Finding Central Vertices and Community Structure via Extended Density Peaks-Based Clustering" Information 12, no. 12: 501. https://doi.org/10.3390/info12120501
APA StyleMeng, Y., & Liu, X. (2021). Finding Central Vertices and Community Structure via Extended Density Peaks-Based Clustering. Information, 12(12), 501. https://doi.org/10.3390/info12120501