Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting
<p>(<b>Left</b>) Experimental vehicle FASCar<sup>®</sup>-II. (<b>Right</b>) Technical trunk installation.</p> "> Figure 2
<p>DLR automation software stack (CSA).</p> "> Figure 3
<p>LED light band at base luminosity.</p> "> Figure 4
<p>Test track in X–Y-coordinates (<b>upper</b>), velocity of AV (<b>middle left</b>), steering angle rate (<b>middle right</b>), steering angle (<b>lower left</b>), and lateral acceleration (<b>lower right</b>).</p> "> Figure 5
<p>Schematic sketch of the AV’s trajectory on the test track for illustration (adapted from Google Maps; German metrics).</p> "> Figure 6
<p>Increase of motion sickness (MS): ∆SSQ of the baseline and HMI conditions for subsample High.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Motion Sickness in Automated Vehicles
2.1.1. Motion Sickness
2.1.2. Impact of High MS Susceptibility for AV Users
2.1.3. Pathogenesis of MS: Sensory Rearrangement Theory and Postural Instability Theory
2.2. Effect of Anticipation on Motion Sickness
Anticipation as Motion Sickness Prevention
2.3. Development of an HMI for MS Mitigation
2.3.1. Requirements for HMI Acceptance
2.3.2. HMIs Utilizing Anticipation of Vehicle Dynamics
2.4. Prototype of an HMI for MS Mitigation in This Study
3. Research Question and Hypotheses
4. Materials and Methods
4.1. Design
4.2. Dependent Variables
4.2.1. Motion Sickness
4.2.2. User Experience, Predictability, and Perceived Safety
4.3. Control Variables
4.4. Sample
4.5. Setting
4.6. Apparatus
4.6.1. Automated Experimental Vehicle
4.6.2. Automation Software
- ENV—classes and functions for environment representation.
- VIEW—different views of the environment data for different purposes.
- FUN—a library of classes and functions for autonomous driving functions.
- MAD—a library of mathematical functions and representations used by the other libraries.
- Ifmiddleware—an interface specific to an IPC middleware to decouple the automation framework from the middleware in use.
- The IPC middleware used is named Dominion [74], also developed at DLR. The logical functions are ordered into different modules and are called apps in Dominion.
- StaticTrajectoryManager: Thus reads an offline generated trajectory file (Section 4.7) and translates the information to Dominion data structure for vehicle control. Furthermore, the app generates and sends the trigger signal for the LED light band to the input port of the Arduino (Section 4.6.3).
- HighlevelController: This generates motion commands based on the current vehicle position to follow the offline generated trajectory.
4.6.3. HMI—LED Light Band
4.7. Automation Scenario
4.8. Stimulus
4.8.1. Communication Strategy: Anticipatory Ambient Light Cues
4.9. Operationalization of NDRT
4.10. Procedure
5. Results
5.1. Descriptive Analysis
5.2. Sample Selection for Inferential Statistics
5.3. Inferential Statistics
5.3.1. Effect of MS Mitigation
5.3.2. User Experience
5.3.3. Perceived Safety and Predictability
6. Discussion and Future Research
6.1. Limitations
6.2. Implications for Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- On-Road Automated Driving (ORAD) committee Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE Int. 2018. [CrossRef]
- Diels, C. Will autonomous vehicles make us sick? In Proceedings of the Contemporary Ergonomics and Human Factors, Boca Raton, FL, USA, 7–10 April 2014; pp. 301–307. [Google Scholar]
- Sivak, M.; Schoettle, B. Motion Sickness in Self-Driving Vehicles; UMTRI-2015-12; University of Michigan Library, Transporation Research Institute, University of Michigan: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Naujoks, F.; Hergeth, S.; Keinath, A.; Schömig, N.; Wiedemann, K. Editorial for Special Issue: Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles. Information 2020, 11, 403. [Google Scholar] [CrossRef]
- Bae, I.; Moon, J.; Seo, J. Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus. Electronics 2019, 8, 943. [Google Scholar] [CrossRef] [Green Version]
- Diels, C.; Bos, J.E. Self-driving carsickness. Appl. Ergon. 2016, 53, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Lackner, J.R. Motion sickness: More than nausea and vomiting. Exp. Brain Res. 2014, 232, 2493–2510. [Google Scholar] [CrossRef] [Green Version]
- Yates, B.J.; Miller, A.D.; Lucot, J.B. Physiological basis and pharmacology of motion sickness: An update. Brain Res. Bull. 1998, 47, 395–406. [Google Scholar] [CrossRef]
- Griffin, M.J. Motion Sickness. In Handbook of Human Vibartion; Griffin, M.J., Ed.; Academic Press: London, UK, 1990; pp. 271–332. [Google Scholar]
- Diels, C.; Bos, J.E.; Hottelart, K.; Reilhac, P. Motion Sickness in Automated Vehicles: The Elephant in the Room. In Road Vehicle Automation 3; Meyer, G., Beiker, S., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 121–129. [Google Scholar]
- Lawther, A.; Griffin, M.J. The motion of a ship at sea and the consequent motion sickness amongst passengers. Ergonomics 1986, 29, 535–552. [Google Scholar] [CrossRef]
- Turner, M.; Griffin, M.J.; Holland, I. Airsickness and aircraft motion during short-haul flights. Aviat. Space Environ. Med. 2000, 71, 1181–1189. [Google Scholar]
- Schoettle, B.; Sivak, M. In-Vehicle Video and Motion Sickness; UMTRI-2009-6; Transportation Research Institute: Ann Arbor, MI, USA; University of Michigan Library: Ann Arbor, MI, USA, 2009. [Google Scholar]
- McCauley, M.E.; Royal, J.W.; Wylie, C.D.; O’Hanlon, J.F.; Mackie, R.R. Motion Sickness Incidence: Exploratory Studies of Habituation, Pitch and Roll, and the Refinement of a Mathematical Model; Canyon Research Group Inc Goleta Ca Human Factors Research Div: Goleta, CA, USA, 1976. [Google Scholar]
- Vogel, H.; Kohlhaas, R.; Von Baumgarten, R.J. Dependence of motion sickness in automobiles on the direction of linear acceleration. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 48, 399–405. [Google Scholar] [CrossRef]
- Grüsser, O.J.; Grüsser-Cornehls, U. Interaction of Vestibular and Visual Inputs in the Visual System. In Progress in Brain Research; Brodal, A., Pompeiano, O., Eds.; Elsevier: Amsterdam, The Netherlands, 1972; Volume 37, pp. 573–583. [Google Scholar]
- Shupak, A.; Gordon, C.R. Motion sickness: Advances in pathogenesis, prediction, prevention, and treatment. Aviat. Space Environ. Med. 2006, 77, 1213–1223. [Google Scholar]
- Graybiel, A. Susceptibility to acute motion sickness in blind persons. Aerosp. Med. 1970, 41, 650–653. [Google Scholar]
- Tal, D.; Gonen, A.; Wiener, G.; Bar, R.; Gil, A.; Nachum, Z.; Shupak, A. Artificial Horizon Effects on Motion Sickness and Performance. Otol. Neurotol. 2012, 33, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Kitazaki, S. A Study for Understanding Carsickness Based on the Sensory Conflict Theory. SAE Tech. Pap. 2006, 9, 2006–01-0096. [Google Scholar] [CrossRef]
- Kuiper, O.X.; Bos, J.E.; Diels, C. Looking forward: In-vehicle auxiliary display positioning affects carsickness. Appl. Ergon. 2018, 68, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Reason, J.T.; Brand, J.J. Motion Sickness; Academic Press: Oxford, UK, 1975; p. vii 310. [Google Scholar]
- Lentz, J.; Collins, W.E. Motion sickness susceptibility and related behavioral characteristics in men and women. Aviat. Space Environ. Med. 1977, 48, 316–322. [Google Scholar] [PubMed]
- Finley, J.C., Jr.; O’Leary, M.; Wester, D.; MacKenzie, S.; Shepard, N.; Farrow, S.; Lockette, W. A genetic polymorphism of the α2-adrenergic receptor increases autonomic responses to stress. J. Appl. Physiol. 2004, 96, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Golding, J.F. Motion sickness susceptibility. Auton. Neurosci. 2006, 129, 67–76. [Google Scholar] [CrossRef]
- Lawther, A.; Griffin, M.J. Motion sickness and motion characteristics of vessels at sea. Ergonomics 1988, 31, 1373–1394. [Google Scholar] [CrossRef]
- Golding, J.F. Predicting individual differences in motion sickness susceptibility by questionnaire. Pers. Individ. Differ. 2006, 41, 237–248. [Google Scholar] [CrossRef]
- Turner, M.; Griffin, M. Motion sickness in public road transport: The relative importance of motion, vision and individual differences. Br. J. Psychol. 1999, 90, 519–530. [Google Scholar] [CrossRef]
- Schmäl, F. Neuronal Mechanisms and the Treatment of Motion Sickness. Pharmacology 2013, 91, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Rine, R.M.; Schubert, M.C.; Balkany, T.J. Visual-Vestibular Habituation and Balance Training for Motion Sickness. Phys. Ther. 1999, 79, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Brainard, A.; Gresham, C. Prevention and treatment of motion sickness. Am. Fam. Phys. 2014, 90, 41–46. [Google Scholar]
- Riccio, G.E.; Stoffregen, T.A. An ecological Theory of Motion Sickness and Postural Instability. Ecol. Psychol. 1991, 3, 195–240. [Google Scholar] [CrossRef]
- Reason, J.T. Motion Sickness Adaptation: A Neural Mismatch Model. J. R. Soc. Med. 1978, 71, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.D.; Stewart, J.J.; Wood, M.J.; Struve, F.A.; Straumanis, J.J.; Mims, M.E.; Patrick, G.Y. Habituation and Motion Sickness. J. Clin. Pharmacol. 1994, 34, 628–634. [Google Scholar] [CrossRef]
- Dai, M.; Raphan, T.; Cohen, B. Labyrinthine lesions and motion sickness susceptibility. Exp. Brain Res. 2007, 178, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Stoffregen, T.A.; Faugloire, E.; Yoshida, K.; Flanagan, M.B.; Merhi, O. Motion sickness and postural sway in console video games. Hum. Factors: J. Hum. Factors Ergon. Soc. 2008, 50, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Stoffregen, T.A.; Smart, L.J., Jr. Postural instability precedes motion sickness. Brain Res. Bull. 1998, 47, 437–448. [Google Scholar] [CrossRef]
- Lee, D.N.; Lishman, J.R. Visual proprioceptive control of stance. J. Hum. Mov. Stud. 1975, 1, 87–95. [Google Scholar]
- Fregly, A.R. Vestibular Ataxia and its Measurement in Man. In Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations; Kornhuber, H.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 321–360. [Google Scholar]
- Stahl, P.; Donmez, B.; Jamieson, G.A. Anticipation in Driving: The Role of Experience in the Efficacy of Pre-event Conflict Cues. IEEE Trans. Hum. Mach. Syst. 2014, 44, 603–613. [Google Scholar] [CrossRef]
- Rolnick, A.; Lubow, R.E. Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 1991, 34, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Stern, R.M.; Koch, K.L. Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. Exp. Brain Res. 2014, 232, 2675–2684. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, O.X.; Bos, J.E.; Schmidt, E.A.; Diels, C.; Wolter, S. Knowing What’s Coming: Unpredictable Motion Causes More Motion Sickness. Hum. Factors 2020, 62, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Bles, W.; Bos, J.E.; de Graaf, B.; Groen, E.; Wertheim, A.H. Motion sickness: Only one provocative conflict? Brain Res. Bull. 1998, 47, 481–487. [Google Scholar] [CrossRef]
- Oman, C.M. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Oto-Laryngol. 1982, 94 (Suppl. 392), 44. [Google Scholar] [CrossRef]
- Otten, E.W. Effect of Predictability of Imposed Visual Motion on the Occurrence of Motion Sickness. Ph.D. Thesis, Miami University, Oxford, OH, USA, 2005. [Google Scholar]
- ISO. Ergonomics of Human-System Interaction Part 110: Interaction Principles; ISO 9241-110:2020; International Organization for Standardization: London, UK, 2020; p. 32. [Google Scholar]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. [Google Scholar]
- Nielsen, J. Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994; pp. 152–158. [Google Scholar]
- Masoumi, H.E.; Fastenmeier, W. Perceptions of security in public transport systems of Germany: Prospects for future research. J. Transp. Secur. 2016, 9, 105–116. [Google Scholar] [CrossRef]
- European Commission. Quattro Final Report: Synthesis and Recommendations. Project Funded by the European Commission under the Transport RTD Programme of the EU’s 4th Framework Programme. 1998. Available online: https://trimis.ec.europa.eu/sites/default/files/project/documents/quattro.pdf (accessed on 21 March 2021).
- Muir, B.M. Trust between humans and machines, and the design of decision aids. Int. J. Man Mach. Stud. 1987, 27, 527–539. [Google Scholar] [CrossRef]
- Feenstra, P.J.; Bos, J.E.; Van Gent, R.N. A visual display enhancing comfort by counteracting airsickness. Displays 2011, 32, 194–200. [Google Scholar] [CrossRef]
- Bloch, M. Alleviating Motion Sickness through Presentations on Interior Panels of Autonomous Vehicles. Master’s Thesis, Universiteit Twente, Enschede, The Netherlands, 2018. [Google Scholar]
- Karjanto, J.B.; Yusof, N.M.; Wang, C.; Delbressine, F.; Rauterberg, M.; Terken, J.; Martini, A. Situation Awareness and Motion Sickness in Automated Vehicle Driving Experience: A Preliminary Study of Peripheral Visual Information. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct; AutomotiveUI ’17; Association for Computing Machinery: New York, NY, USA, 2017; pp. 57–61. [Google Scholar]
- Kuiper, O.X.; Bos, J.E.; Diels, C.; Schmidt, E.A. Knowing what’s coming: Anticipatory audio cues can mitigate motion sickness. Appl. Ergon. 2020, 85, 103068. [Google Scholar] [CrossRef]
- Yusof, N.M.; Karjanto, J.; Kapoor, S.; Terken, J.; Delbressine, F.; Rauterberg, M. Experimental Setup of Motion Sickness and Situation Awareness in Automated Vehicle Riding Experience. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct; Association for Computing Machinery: Oldenburg, Germany, 2017; pp. 104–110. [Google Scholar]
- Grace Gaerlan, M.; Alpert, P.T.; Cross, C.; Louis, M.; Kowalski, S. Postural balance in young adults: The role of visual, vestibular and somatosensory systems. J. Am. Acad. Nurse Pract. 2012, 24, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hainich, R. Designing an on-Board Human-Machine-Interface Using Ambient Light Cues for Motion Sickness Mitigation in Highly Automated Vehicles—A Human-Centered Design Approach. Bachelor’s Thesis, Julius-Maximilians-University, Würzburg, Germany, 2020. [Google Scholar]
- Dziennus, M.; Kelsch, J.; Schieben, A. Ambient light based interaction concept for an integrative driver assistance system—A driving simulator study. In Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2015 Annual Conference, Groningen, The Netherlands, 14–16 October 2015. [Google Scholar]
- Wilbrink, M.; Schieben, A.; Oehl, M. Reflecting the automated vehicle’s perception and intention: Light-based interaction approaches for on-board HMI in highly automated vehicles. In Proceedings of the 25th International Conference on Intelligent User Interfaces Companion, Cagliari, Italy, 17–20 March 2020; pp. 105–107. [Google Scholar]
- Diels, C.; Bos, J. Design guidelines to minimise self-driving carsickness. In Proceedings of the Automated Vehicles Symposium 2015, Ann Arbor, MI, USA, 21–23 July 2015. [Google Scholar]
- Dey, D.; Habibovic, A.; Pfleging, B.; Martens, M.; Terken, J. Color and Animation Preferences for a Light Band eHMI in Interactions between Automated Vehicles and Pedestrians. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25 April 2020; pp. 1–13. [Google Scholar]
- Bergholz, M.; Wilbrink, M.; Drewitz, U.; Oehl, M. Kinetosis mitigation via light-based HMI motion cues in automated vehicles. In Proceedings of the Confernce of Experimental Psychologists (TeaP), Jena, Germany, 22–25 March 2020. [Google Scholar]
- Adell, E. Acceptance of driver support systems. In Proceedings of the European Conference on Human Centred Design for Intelligent Transport Systems, Berlin, Germany, 29–30 April 2009. [Google Scholar]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Smyth, J.; Jennings, P.; Mouzakitis, A.; Birrell, S. Too Sick to Drive: How Motion Sickness Severity Impacts Human Performance. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 1787–1793. [Google Scholar]
- Kennedy, R.C.; Graybiel, A. The Dial Test: The Dial Test: A Standardized Procedure for the Experimental Production of Canal Sickness Symptomatology in a Rotating Environment; Naval School of Aviation Medicine: Pensacola, FL, USA, 1965; pp. 1–11. [Google Scholar]
- Mühlbacher, D.; Tomzig, M.; Reinmüller, K.; Rittger, L. Methodological Considerations Concerning Motion Sickness Investigations during Automated Driving. Information 2020, 11, 265. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Hum. Comput. Interact. 2018, 35, 456–467. [Google Scholar] [CrossRef]
- Golding, J.F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 1998, 47, 507–516. [Google Scholar] [CrossRef]
- dSPACE GmbH. MicroAutoBox II—Kompaktes, robustes Prototyping-System für den Fahrzeugeinstatz [MicroAutoBox II—A Compact, Robust Prototyping System for Vehicles]. Available online: https://www.dspace.com/de/gmb/home/products/hw/micautob/microautobox2.cfm#179_23665 (accessed on 15 March 2021).
- Heß, D.; Lapoehn, S.; Utesch, F.; Fischer, M.; Schindler, J.; Hesse, T.; Köster, F. Contributions of the EU Projects UnCoVerCPS and Enable-S3 to Highly Automated Driving in Conflict Situations. In Proceedings of the AAET 2019, Braunschweig, Germany, 25–27 April 2019. [Google Scholar]
- Hendriks, B.; Harms, C.; Kürschner, M. Dominion—A Realtime Middleware for Connecting Functions in Highly Automated Vehicles. Int. Verk. 2019, 71, 29–33. [Google Scholar]
- Griffin, M.J.; Newman, M.M. Visual field effects on motion sickness in cars. Aviat. Space Environ. Med. 2004, 75, 739–748. [Google Scholar]
- Cohan, J. Statistical Power Analysis for Behavioral Sciences, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1988; p. 567. [Google Scholar]
- Müller, A.I.; Weinbeer, V.; Bengler, K. Using the wizard of Oz paradigm to prototype automated vehicles: Methodological challenges. In Proceedings of the 11th International Conference on Automotive User Interfaces and Inter-active Vehicular Applications (Adjunct Proceedings), Utrecht, The Netherlands, 21–25 September 2019; pp. 181–186. [Google Scholar]
- Barthel, M.; Thomschke, S.; Koether, G.; Neumann, C. Ambiente Innenraumbeleuchtung und Aufmerksamkeitslenkung in Fahrzeugen [Ambient interior lighting and attention attraction inside vehicles]. In Proceedings of the 7. VDI Fachtagung Optische Technologien in der Fahrzeugtechnik, Karlsruhe, Germany, 11–12 May 2016; pp. 127–146. [Google Scholar]
- Hecht, T.; Kratzert, S.; Bengler, K. The Effects of a Predictive HMI and Different Transition Frequencies on Acceptance, Workload, Usability, and Gaze Behavior during Urban Automated Driving. Information 2020, 11, 73. [Google Scholar] [CrossRef] [Green Version]
UEQ | HMI | Baseline | ||||
---|---|---|---|---|---|---|
Subscale | M (SD) | M (SD) | W | Mean Difference | p | r |
Attractiveness | 0.92 (0.86) | −0.29 (1.05) | 116.50 | 1.17 | 0.013 | 0.713 |
Efficiency | 1.61 (0.65) | 0.31 (1.02) | 117.50 | 1.37 | 0.001 | 0.958 |
Perspicuity | 2.53 (0.69) | 1.33 (1.57) | 89.50 | 1.25 | 0.002 | 0.967 |
Dependability | 1.89 (0.70) | 0.42 (1.28) | 115.50 | 1.50 | 0.002 | 0.925 |
Stimulation | 0.66 (1.04) | −1.30 (0.96) | 128.50 | 2.12 | 0.002 | 0.890 |
Novelty | 0.80 (1.07) | −0.20 (1.11) | 110.00 | 1.00 | 0.005 | 0.834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hainich, R.; Drewitz, U.; Ihme, K.; Lauermann, J.; Niedling, M.; Oehl, M. Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting. Information 2021, 12, 176. https://doi.org/10.3390/info12040176
Hainich R, Drewitz U, Ihme K, Lauermann J, Niedling M, Oehl M. Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting. Information. 2021; 12(4):176. https://doi.org/10.3390/info12040176
Chicago/Turabian StyleHainich, Rebecca, Uwe Drewitz, Klas Ihme, Jan Lauermann, Mathias Niedling, and Michael Oehl. 2021. "Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting" Information 12, no. 4: 176. https://doi.org/10.3390/info12040176
APA StyleHainich, R., Drewitz, U., Ihme, K., Lauermann, J., Niedling, M., & Oehl, M. (2021). Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting. Information, 12(4), 176. https://doi.org/10.3390/info12040176