Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 2
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 10
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 12
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 13
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 14
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 15
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 16
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>36</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>20</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 17
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 18
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>7.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 19
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 20
<p>Time series plots of [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 21
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>39</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>29</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 22
<p>Numerical simulation for [<a href="#B1-fractalfract-08-00709" class="html-bibr">1</a>] with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mn>39</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>29</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Preliminaries
3. Numerical Scheme Using ABC Operator
3.1. Dynamics Behaviors
3.2. Numerical Solutions
4. Laplace New Iterative Method (LNIM)
Numerical Analysis
5. Numerical Method Accuracy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X. General Fractional Derivatives: Theory, Methods and Applications; Chapman: New York, NY, USA, 2019. [Google Scholar]
- Bhargava, A.; Suthar, D.; Jain, D. A New Solution approach to Proportion Delayed and Heat Like Fractional Partial Differential Equations. Partial. Differ. Equ. Appl. Math. 2024, 12, 100948. [Google Scholar] [CrossRef]
- Matlob, M.; Jamali, Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer. In Critical Reviews™ in Biomedical Engineering; Begell: Danbury, CT, USA, 2019; Volume 47. [Google Scholar]
- Kumar, S.; Kumar, R.; Cattani, C.; Samet, B. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020, 135, 109811. [Google Scholar] [CrossRef]
- Toufik, M.; Atangana, A. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. Eur. Phys. J. Plus 2017, 132, 444. [Google Scholar] [CrossRef]
- Bingi, K.; Rajanarayan Prusty, B.; Pal Singh, A. A Review on Fractional-Order Modelling and Control of Robotic Manipulators. Fractal Fract. 2023, 7, 77. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; International Centre for Mechanical Sciences; Springer: Vienna, Austria, 1997; Volume 378. [Google Scholar]
- Rafeiro, H.; Samko, S. Fractional integrals and derivatives: Mapping properties. Fract. Calc. Appl. Anal. 2016, 19, 580–607. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Xu, G.; Shekofteh, Y.; Akgül, A.; Li, C.; Panahi, S. A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy 2018, 20, 86. [Google Scholar] [CrossRef]
- Lei, T.; Mao, B.; Zhou, X.; Fu, H. Dynamics Analysis and Synchronous Control of Fractional-Order Entanglement Symmetrical Chaotic Systems. Symmetry 2021, 13, 1996. [Google Scholar] [CrossRef]
- Rahman, Z.-A.S.A.; Jasim, B.H.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A. High-Security Image Encryption Based on a Novel Simple Fractional-Order Memristive Chaotic System with a Single Unstable Equilibrium Point. Electronics 2021, 10, 3130. [Google Scholar] [CrossRef]
- Ahmed, E.; Elgazzar, A.S. On fractional order differential equations model for nonlocal epidemics. Physica A 2007, 379, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Matouk, A.E.; Abdelhameed, T.N.; Almutairi, D.K.; Abdelkawy, M.A.; Herzallah, M.A.E. Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems. Mathematics 2023, 11, 591. [Google Scholar] [CrossRef]
- Alzahrani, A.B.M.; Abdoon, M.A.; Elbadri, M.; Berir, M.; Elgezouli, D.E. A Comparative Numerical Study of the Symmetry Chaotic Jerk System with a Hyperbolic Sine Function via Two Different Methods. Symmetry 2023, 15, 1991. [Google Scholar] [CrossRef]
- Khan, M.J.; Nawaz, R.; Farid, S.; Iqbal, J. New Iterative Method for the Solution of Fractional Damped 212 Burger and Fractional Sharma-Tasso-Olver Equations. Complexity 2018, 2018, 3249720. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Elzaki, T.M.; Chamekh, M. New transform iterative method for solving some Klein-Gordon equations. Results Phys. 2018, 10, 655–659. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- ELbadri, M. A New Homotopy Perturbation Method for Solving Laplace Equation. Adv. Theor. Appl. Math. 2013, 8, 237–242. [Google Scholar]
- Elbadri, M. Comparison between the Homotopy Perturbation Method and Homotopy Perturbation Transform Method. Appl. Math. 2018, 9, 130–137. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Elbadri, M.; Hassan, A.A.; Hdidi, W. Numerical Solutions of Time-Fractional Whitham–Broer–Kaup Equations via Sumudu Decomposition Method. J. Math. 2023, 2023, 4664866. [Google Scholar] [CrossRef]
- Elbadri, M. Initial Value Problems with Generalized Fractional Derivatives and Their Solutions via Generalized Laplace Decomposition Method. Adv. Math. Phys. 2022, 2022, 3586802. [Google Scholar] [CrossRef]
- Petráš, I. A note on the fractional-order Chua’s system. Chaos Solitons Fractals 2008, 38, 140–147. [Google Scholar] [CrossRef]
- Danca, M.-F.; Kuznetsov, N.V. Matlab Code for Lyapunov Exponents of Fractional-Order Systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2018, 28, 1850067. [Google Scholar] [CrossRef]
- Rajagopal, K.; Vaidyanathan, S.; Karthikeyan, A.; Duraisamy, P. Dynamic analysis and chaos suppression in a fractional order brushless DC motor. Electr. Eng. 2016, 99, 721–733. [Google Scholar] [CrossRef]
- Rajagopal, K.; Karthikeyan, A.; Duraisamy, P. Hyperchaotic Chameleon: Fractional Order FPGA Implementation. Complexity 2017, 2017, 8979408. [Google Scholar] [CrossRef]
- Diouf, M.D.; Sene, N. Analysis of the Financial Chaotic Model with the Fractional Derivative Operator. Complexity 2020, 2020, 9845031. [Google Scholar] [CrossRef]
- Chen, W.-C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 2008, 36, 1305–1314. [Google Scholar] [CrossRef]
- Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Cavusoglu, U.; Kacar, S. An exponential jerk system, its fractional-order form with dynamical analysis and engineering application. Soft Comput. 2019, 24, 7469–7479. [Google Scholar] [CrossRef]
- Sene, N. Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. J. King Saud Univ. Sci. 2021, 33, 101275. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Gómez-Aguilar, J.F.; Fernández-Anaya, G.; Lavín-Delgado, J.E.; Hernández-Castillo, E. Modelling of Chaotic Processes with Caputo Fractional Order Derivative. Entropy 2020, 22, 1027. [Google Scholar] [CrossRef]
- Sene, N. Mathematical views of the fractional Chua’s electrical circuit described by the Caputo-Liouville derivative. Rev. Mex. FíSica 2021, 67, 91–99. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Odibat, Z.; Baleanu, D. Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 2020, 156, 94–105. [Google Scholar] [CrossRef]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Berrut, J.-P.; Trefethen, L.N. Barycentric Lagrange interpolation. SIAM Rev. 2004, 46, 501–517. [Google Scholar] [CrossRef]
h | x | y | z |
---|---|---|---|
1/320 | |||
1/640 | |||
1/1280 | |||
1/2560 | |||
1/5120 | |||
1/10,240 | |||
RK4 |
h | x | y | z |
---|---|---|---|
1/320 | |||
1/640 | |||
1/1280 | |||
1/2560 | |||
1/5120 | |||
1/10,240 |
t | x | y | z |
---|---|---|---|
0.00 | |||
0.01 | |||
0.02 | |||
0.03 | |||
0.04 | |||
0.05 | |||
0.06 | |||
0.07 | |||
0.08 | |||
0.09 | |||
0.10 |
t | x | y | z |
---|---|---|---|
0.00 | |||
0.01 | |||
0.02 | |||
0.03 | |||
0.04 | |||
0.05 | |||
0.06 | |||
0.07 | |||
0.08 | |||
0.09 | |||
0.10 |
t | x | y | z |
---|---|---|---|
0.00 | |||
0.01 | |||
0.02 | |||
0.03 | |||
0.04 | |||
0.05 | |||
0.06 | |||
0.07 | |||
0.08 | |||
0.09 | |||
0.10 |
t | ||||||
---|---|---|---|---|---|---|
0.10 | 1.39 × | 1.33 × | 2.58 × | 1.37 × | 1.30 × | 2.55 × |
0.15 | 1.00 × | 7.07 × | 1.91 × | 9.75 × | 6.72 × | 1.87 × |
0.20 | 7.07 × | 1.02 × | 1.50 × | 6.81 × | 7.06 × | 1.46 × |
0.25 | 0.10 × | 7.07 × | 1.91 × | 4.62 × | 4.92 × | 1.20 × |
0.30 | 3.13 × | 0.10 × | 1.10 × | 2.93 × | 0.10 × | 1.06 × |
t | ||||||
---|---|---|---|---|---|---|
0.10 | 1.48 × | 6.06 × | 6.38 × | 1.54 × | 8.36 × | 2.89 × |
0.15 | 1.13 × | 4.71 × | 6.65 × | 2.21 × | 4.64 × | 8.73 × |
0.20 | 2.40 × | 1.01 × | 1.73 × | 2.48 × | 1.01 × | 1.75 × |
0.25 | 2.53 × | 1.08 × | 2.11 × | 2.53 × | 1.08 × | 2.11 × |
0.30 | 1.71 × | 7.35 × | 1.60 × | 1.71 × | 7.35 × | 1.60 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbadri, M.; Abdoon, M.A.; Almutairi, D.K.; Almutairi, D.M.; Berir, M. Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods. Fractal Fract. 2024, 8, 709. https://doi.org/10.3390/fractalfract8120709
Elbadri M, Abdoon MA, Almutairi DK, Almutairi DM, Berir M. Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods. Fractal and Fractional. 2024; 8(12):709. https://doi.org/10.3390/fractalfract8120709
Chicago/Turabian StyleElbadri, Mohamed, Mohamed A. Abdoon, D. K. Almutairi, Dalal M. Almutairi, and Mohammed Berir. 2024. "Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods" Fractal and Fractional 8, no. 12: 709. https://doi.org/10.3390/fractalfract8120709
APA StyleElbadri, M., Abdoon, M. A., Almutairi, D. K., Almutairi, D. M., & Berir, M. (2024). Numerical Simulation and Solutions for the Fractional Chen System via Newly Proposed Methods. Fractal and Fractional, 8(12), 709. https://doi.org/10.3390/fractalfract8120709