Edge and Cloud Computing in Smart Cities
Abstract
:1. Introduction
- Provides an in-depth examination of multi-tier, fully distributed, FL-enhanced, and hybrid digital twin-enabled architectures, highlighting their scalability, resilience, and efficiency trade-offs.
- Explores the role of AI-driven resource allocation, 5G/6G networking, blockchain security, and federated intelligence in enhancing the performance, security, and privacy of edge–cloud infrastructures.
- Systematically assesses the impact of edge–cloud computing in smart transportation, healthcare, industrial automation, smart cities, energy management, AR/VR, disaster response, and cybersecurity, demonstrating its transformative potential.
- Highlights critical challenges outlining future research directions to address existing limitations.
2. Architectural Models for Edge and Cloud Computing in Smart Cities
2.1. Multi-Tier Hierarchical Architecture
2.2. Fully Distributed Edge–Cloud Architecture
2.3. Clustered Edge–Cloud Architecture with Federated Learning
2.4. Hybrid Digital Twin-Enabled Edge–Cloud Architecture
2.5. Comparative Analysis of Architectures
3. Enabling Technologies
3.1. Advanced Communication Networks
3.2. Artificial Intelligence and Machine Learning
3.3. Blockchain and Secure Data Transmission
3.4. Edge Virtualization and Resource Management
3.5. Comparative Analysis of Enabling Technologies
4. Application Domains
4.1. Smart Transportation Systems
4.2. Smart Healthcare Systems
4.3. Industrial Automation and Smart Manufacturing
4.4. Smart Cities and IoT-Based Urban Management
4.5. Smart Energy and Power Systems
4.6. Edge-Assisted Augmented and Virtual Reality
4.7. Disaster Management and Emergency Response
4.8. Cybersecurity and Threat Detection
5. Challenges, Open Issues, and Future Research Directions
5.1. Architectural Complexity and System Integration
5.2. Resource Allocation in Edge-Cloud Environments
5.3. Task Offloading Strategies
5.4. Data Caching and Content Distribution
5.5. Network Scalability and Latency Optimization
5.6. Security, Privacy, and Trust Management
5.7. Resource Management
5.8. Energy Efficiency
5.9. Standardization and Interoperability Constraints
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
Variable/Parameter | Definition |
Cloud node m | |
P | Processing power |
S | Available storage |
L | Inherent processing latency |
Total execution latency at the cloud | |
Time required to transmit data from device or edge to the cloud | |
Response time for sending processed results back to the device | |
E | Set of K edge nodes |
Edge node k | |
Edge node i at cluster q | |
D | Set of N IoT devices in the system |
n-th IoT device | |
Execution ratio determining task execution at an edge node | |
Computational demand of a task | |
Computational capacity at edge node | |
Computational capacity at the cloud | |
Processing delay at edge node | |
Decision function determining execution location of task | |
Dataset at edge node i for training AI models | |
Updated model at edge node i in training round t | |
Learning rate for model updates | |
Total system latency in a fully distributed edge–cloud network | |
Distance between two edge nodes | |
Available bandwidth for communication between two edge nodes | |
Failure probability of a task execution | |
Power consumed for data transmission from devices to edge | |
Power consumed when processing at the edge | |
Power consumed when idle at the edge | |
Power consumed for cloud communication |
References
- Sathupadi, K.; Achar, S.; Bhaskaran, S.V.; Faruqui, N.; Abdullah-Al-Wadud, M.; Uddin, J. Edge-cloud synergy for AI-enhanced sensor network data: A real-time predictive maintenance framework. Sensors 2024, 24, 7918. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, H.; Tang, H.; Luo, Y. Adaptive resource allocation based on the billing granularity in edge-cloud architecture. Comput. Commun. 2019, 145, 29–42. [Google Scholar] [CrossRef]
- Wang, K.; Jin, J.; Yang, Y.; Zhang, T.; Nallanathan, A.; Tellambura, C.; Jabbari, B. Task offloading with multi-tier computing resources in next generation wireless networks. IEEE J. Sel. Areas Commun. 2022, 41, 306–319. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef]
- Truong, N.; Lee, G.M.; Sun, K.; Guitton, F.; Guo, Y. A blockchain-based trust system for decentralised applications: When trustless needs trust. Future Gener. Comput. Syst. 2021, 124, 68–79. [Google Scholar] [CrossRef]
- Badidi, E. Edge AI and blockchain for smart sustainable cities: Promise and potential. Sustainability 2022, 14, 7609. [Google Scholar] [CrossRef]
- Singh, A.; Satapathy, S.C.; Roy, A.; Gutub, A. Ai-based mobile edge computing for iot: Applications, challenges, and future scope. Arab. J. Sci. Eng. 2022, 47, 9801–9831. [Google Scholar] [CrossRef]
- Tong, Z.; Ye, F.; Yan, M.; Liu, H.; Basodi, S. A survey on algorithms for intelligent computing and smart city applications. Big Data Min. Anal. 2021, 4, 155–172. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.A.; Dang, T.N.; Hong, C.S. Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet Things J. 2020, 7, 10200–10232. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, J.; Yang, J.; Li, Y.; Sha, D.; Xu, M.; Shams, I.; Yu, M.; Yang, C. Cloud, edge, and mobile computing for smart cities. In Urban Informatics; Springer: Singapore, 2021; pp. 757–795. [Google Scholar]
- Dave, R.; Seliya, N.; Siddiqui, N. The benefits of edge computing in healthcare, smart cities, and IoT. arXiv 2021, arXiv:2112.01250. [Google Scholar] [CrossRef]
- Tufail, A.; Namoun, A.; Alrehaili, A.; Ali, A. A survey on 5G enabled multi-access edge computing for smart cities: Issues and future prospects. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 107–118. [Google Scholar]
- Tahirkheli, A.I.; Shiraz, M.; Hayat, B.; Idrees, M.; Sajid, A.; Ullah, R.; Ayub, N.; Kim, K.I. A survey on modern cloud computing security over smart city networks: Threats, vulnerabilities, consequences, countermeasures, and challenges. Electronics 2021, 10, 1811. [Google Scholar] [CrossRef]
- Li, X.; Abdallah, M.; Lou, Y.Y.; Chiang, M.; Kim, K.T.; Bagchi, S. Dynamic DAG-application scheduling for multi-tier edge computing in heterogeneous networks. arXiv 2024, arXiv:2409.10839. [Google Scholar]
- Tao, M.; Zuo, J.; Liu, Z.; Castiglione, A.; Palmieri, F. Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes. Future Gener. Comput. Syst. 2018, 78, 1040–1051. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, S.; Yao, Y.; Wang, F.; Ma, J.; Zhang, J.; Chu, Y.; Ji, L.; Jia, K.; Shen, T.; et al. Edge-cloud polarization and collaboration: A comprehensive survey for ai. IEEE Trans. Knowl. Data Eng. 2022, 35, 6866–6886. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, H.; Li, Y.; Xi, L. 5G network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation. Comput. Commun. 2020, 164, 88–99. [Google Scholar] [CrossRef]
- Chen, C.H.; Liu, C.T. A 3.5-tier container-based edge computing architecture. Comput. Electr. Eng. 2021, 93, 107227. [Google Scholar] [CrossRef]
- Shyam, G.K.; Chandrakar, I. Resource allocation in cloud computing using optimization techniques. In Cloud Computing for Optimization: Foundations, Applications, and Challenges; Springer: Cham, Switzerland, 2018; pp. 27–50. [Google Scholar]
- Sankaranarayanan, S.; Rodrigues, J.J.; Sugumaran, V.; Kozlov, S. Data flow and distributed deep neural network based low latency IoT-edge computation model for big data environment. Eng. Appl. Artif. Intell. 2020, 94, 103785. [Google Scholar]
- Bozorgchenani, A.; Tarchi, D.; Corazza, G.E. Centralized and distributed architectures for energy and delay efficient fog network-based edge computing services. IEEE Trans. Green Commun. Netw. 2018, 3, 250–263. [Google Scholar] [CrossRef]
- Deng, X.; Yin, J.; Guan, P.; Xiong, N.N.; Zhang, L.; Mumtaz, S. Intelligent delay-aware partial computing task offloading for multiuser industrial Internet of Things through edge computing. IEEE Internet Things J. 2021, 10, 2954–2966. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Huang, W.; Song, Y.; Qin, X. A survey and taxonomy on task offloading for edge-cloud computing. IEEE Access 2020, 8, 186080–186101. [Google Scholar] [CrossRef]
- Chakraborty, C.; Mishra, K.; Majhi, S.K.; Bhuyan, H.K. Intelligent Latency-aware tasks prioritization and offloading strategy in Distributed Fog-Cloud of Things. IEEE Trans. Ind. Inform. 2022, 19, 2099–2106. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, G.; Cao, Y. Cooperative mobile edge computing-cloud computing in Internet of vehicle: Architecture and energy-efficient workload allocation. Trans. Emerg. Telecommun. Technol. 2021, 32, e4095. [Google Scholar] [CrossRef]
- Aslanpour, M.S.; Toosi, A.N.; Cheema, M.A.; Gaire, R. Energy-aware resource scheduling for serverless edge computing. In Proceedings of the 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina (Messina), Italy, 16–19 May 2022; pp. 190–199. [Google Scholar]
- Gill, S.S.; Golec, M.; Hu, J.; Xu, M.; Du, J.; Wu, H.; Walia, G.K.; Murugesan, S.S.; Ali, B.; Kumar, M.; et al. Edge AI: A taxonomy, systematic review and future directions. Clust. Comput. 2025, 28, 18. [Google Scholar] [CrossRef]
- Bukhsh, M.; Abdullah, S.; Bajwa, I.S. A decentralized edge computing latency-aware task management method with high availability for IoT applications. IEEE Access 2021, 9, 138994–139008. [Google Scholar] [CrossRef]
- Wang, C.; Gill, C.; Lu, C. Frame: Fault tolerant and real-time messaging for edge computing. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 976–985. [Google Scholar]
- Zeng, L.; Ye, S.; Chen, X.; Zhang, X.; Ren, J.; Tang, J.; Yang, Y.; Shen, X.S. Edge Graph Intelligence: Reciprocally Empowering Edge Networks with Graph Intelligence. IEEE Commun. Surv. Tutor. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, X.; Ren, J.; Cai, L. Efficient computing resource sharing for mobile edge-cloud computing networks. IEEE/ACM Trans. Netw. 2020, 28, 1227–1240. [Google Scholar] [CrossRef]
- Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A novel framework for mobile-edge computing by optimizing task offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [Google Scholar] [CrossRef]
- Sun, M.; Quan, S.; Wang, X.; Huang, Z. Latency-aware scheduling for data-oriented service requests in collaborative IoT-edge-cloud networks. Future Gener. Comput. Syst. 2025, 163, 107538. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A. Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. 2022, 22, 4000–4015. [Google Scholar] [CrossRef]
- Yang, S. A joint optimization scheme for task offloading and resource allocation based on edge computing in 5G communication networks. Comput. Commun. 2020, 160, 759–768. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, F.; Lu, Y.; Chen, X. Dynamic task offloading for mobile edge computing with hybrid energy supply. Tsinghua Sci. Technol. 2022, 28, 421–432. [Google Scholar] [CrossRef]
- Kapsalis, A.; Kasnesis, P.; Venieris, I.S.; Kaklamani, D.I.; Patrikakis, C.Z. A cooperative fog approach for effective workload balancing. IEEE Cloud Comput. 2017, 4, 36–45. [Google Scholar] [CrossRef]
- Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 2019, 68, 5031–5044. [Google Scholar] [CrossRef]
- Van Huynh, D.; Nguyen, V.D.; Chatzinotas, S.; Khosravirad, S.R.; Poor, H.V.; Duong, T.Q. Joint communication and computation offloading for ultra-reliable and low-latency with multi-tier computing. IEEE J. Sel. Areas Commun. 2022, 41, 521–537. [Google Scholar] [CrossRef]
- Aral, A.; Brandić, I. Learning spatiotemporal failure dependencies for resilient edge computing services. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1578–1590. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, C.; Xia, Y.; Ma, Y.; Wang, X.; Jiang, N. DoSRA: A decentralized approach to online edge task scheduling and resource allocation. IEEE Internet Things J. 2021, 9, 4677–4692. [Google Scholar] [CrossRef]
- Li, S.; Huang, J. Energy efficient resource management and task scheduling for IoT services in edge computing paradigm. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December 2017; pp. 846–851. [Google Scholar]
- Xu, J.; Xu, Z.; Shi, B. Deep reinforcement learning based resource allocation strategy in cloud-edge computing system. Front. Bioeng. Biotechnol. 2022, 10, 908056. [Google Scholar]
- Habak, K.; Zegura, E.W.; Ammar, M.; Harras, K.A. Workload management for dynamic mobile device clusters in edge femtoclouds. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–14. [Google Scholar]
- Queralta, J.P.; Westerlund, T. Blockchain for mobile edge computing: Consensus mechanisms and scalability. In Mobile Edge Computing; Springer: Cham, Swizterland, 2021; pp. 333–357. [Google Scholar]
- Li, C.; Yang, H.; Sun, Z.; Yao, Q.; Zhang, J.; Yu, A.; Vasilakos, A.V.; Liu, S.; Li, Y. High-precision cluster federated learning for smart home: An edge-cloud collaboration approach. IEEE Access 2023, 11, 102157–102168. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Ng, J.S.; Xiong, Z.; Jin, J.; Zhang, Y.; Niyato, D.; Leung, C.; Miao, C. Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 536–550. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, L.; Ozcelebi, T.; Murphy, J.; Lukkien, J. Deep reinforcement learning for IoT network dynamic clustering in edge computing. In Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 14–17 May 2019; pp. 600–603. [Google Scholar]
- Zhou, Y.; Pang, X.; Wang, Z.; Hu, J.; Sun, P.; Ren, K. Towards efficient asynchronous federated learning in heterogeneous edge environments. In Proceedings of the IEEE INFOCOM 2024-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 20–23 May 2024; pp. 2448–2457. [Google Scholar]
- Zhang, T.; Liu, C.; Tian, Q.; Cheng, B. Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network. Int. J. Satell. Commun. Netw. 2025, 43, 40–60. [Google Scholar] [CrossRef]
- Wu, B.; Zeng, J.; Ge, L.; Su, X.; Tang, Y. Energy-latency aware offloading for hierarchical mobile edge computing. IEEE Access 2019, 7, 121982–121997. [Google Scholar] [CrossRef]
- Li, C.; Bai, J.; Tang, J. Joint optimization of data placement and scheduling for improving user experience in edge computing. J. Parallel Distrib. Comput. 2019, 125, 93–105. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Li, D.; Qi, L.; Dai, F.; Dou, W.; Ni, Q. Privacy preservation for federated learning with robust aggregation in edge computing. IEEE Internet Things J. 2022, 10, 7343–7355. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Client-edge-cloud hierarchical federated learning. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Lin, F.P.C.; Brinton, C.G.; Michelusi, N. Federated learning with communication delay in edge networks. In Proceedings of the GLOBECOM. IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Javed, A.; Heljanko, K.; Buda, A.; Främling, K. CEFIoT: A fault-tolerant IoT architecture for edge and cloud. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 813–818. [Google Scholar]
- Mughal, F.R.; He, J.; Das, B.; Dharejo, F.A.; Zhu, N.; Khan, S.B.; Alzahrani, S. Adaptive federated learning for resource-constrained IoT devices through edge intelligence and multi-edge clustering. Sci. Rep. 2024, 14, 28746. [Google Scholar] [CrossRef]
- Márquez-Sánchez, S.; Calvo-Gallego, J.; Erbad, A.; Ibrar, M.; Fernandez, J.H.; Houchati, M.; Corchado, J.M. Enhancing building energy management: Adaptive edge computing for optimized efficiency and inhabitant comfort. Electronics 2023, 12, 4179. [Google Scholar] [CrossRef]
- Crespo-Aguado, M.; Lozano, R.; Hernandez-Gobertti, F.; Molner, N.; Gomez-Barquero, D. Flexible Hyper-Distributed IoT–Edge–Cloud Platform for Real-Time Digital Twin Applications on 6G-Intended Testbeds for Logistics and Industry. Future Internet 2024, 16, 431. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y. Adaptive digital twin for vehicular edge computing and networks. J. Commun. Inf. Networks 2022, 7, 48–59. [Google Scholar] [CrossRef]
- Savaglio, C.; Barbuto, V.; Awan, F.M.; Minerva, R.; Crespi, N.; Fortino, G. Opportunistic digital twin: An edge intelligence enabler for smart city. In ACM Transactions on Sensor Networks; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar]
- Tan, A. Predictive Analytics and Simulation for Digital Twin-enabled Decision Support in Smart Cities. J. Comput. Soc. Dyn. 2023, 8, 52–62. [Google Scholar]
- Leng, J.; Zhang, H.; Yan, D.; Liu, Q.; Chen, X.; Zhang, D. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1155–1166. [Google Scholar] [CrossRef]
- Shin, H.; Kwak, Y. Enhancing digital twin efficiency in indoor environments: Virtual sensor-driven optimization of physical sensor combinations. Autom. Constr. 2024, 161, 105326. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Min, G. Digital twin-driven intelligent task offloading for collaborative mobile edge computing. IEEE J. Sel. Areas Commun. 2023, 40, 3034–3045. [Google Scholar] [CrossRef]
- Younis, A.; Qiu, B.; Pompili, D. Latency-aware hybrid edge cloud framework for mobile augmented reality applications. In Proceedings of the 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Como, Italy, 22–25 June 2020; pp. 1–9. [Google Scholar]
- Pan, Y.; Qu, T.; Wu, N.; Khalgui, M.; Huang, G. Digital twin based real-time production logistics synchronization system in a multi-level computing architecture. J. Manuf. Syst. 2021, 58, 246–260. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Li, M.; Liu, X.; Zhong, R.Y.; Pan, W.; Huang, G.Q. Digital twin-enabled real-time synchronization for planning, scheduling, and execution in precast on-site assembly. Autom. Constr. 2022, 141, 104397. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; Abd El-Latif, A.A. Secure and optimized load balancing for multitier IoT and edge-cloud computing systems. IEEE Internet Things J. 2020, 8, 8119–8132. [Google Scholar] [CrossRef]
- Ullah, I.; Lim, H.K.; Seok, Y.J.; Han, Y.H. Optimizing task offloading and resource allocation in edge-cloud networks: A DRL approach. J. Cloud Comput. 2023, 12, 112. [Google Scholar] [CrossRef]
- Feng, H.; Qiao, L.; Lv, Z. Innovative soft computing-enabled cloud optimization for next-generation IoT in digital twins. Appl. Soft Comput. 2023, 136, 110082. [Google Scholar] [CrossRef]
- Bousnina, D.; Guerassimoff, G. Optimal energy management in smart energy systems: A deep reinforcement learning approach and a digital twin case-study. Smart Energy 2024, 16, 100163. [Google Scholar] [CrossRef]
- Qu, Y.; Yu, S.; Gao, L.; Sood, K.; Xiang, Y. Blockchained Dual-Asynchronous Federated Learning Services for Digital Twin Empowered Edge-Cloud Continuum. IEEE Trans. Serv. Comput. 2024, 17, 836–849. [Google Scholar] [CrossRef]
- Alghamdi, W.; Albassam, E. Synchronization Patterns for Digital Twin Systems. J. Appl. Data Sci. 2024, 5, 1026–1037. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.; Jeong, J.; Kim, H.; Lee, H.; Youn, B.D. Digital twin approach for on-load tap changers using data-driven dynamic model updating and optimization-based operating condition estimation. Mech. Syst. Signal Process. 2022, 181, 109471. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Y.; Xia, Y.; Dai, M.; Chen, P.; Long, T.; Shao, S.; Li, F.; Li, Y.; Zeng, F. A novel fault-tolerant approach for dynamic redundant path selection service migration in vehicular edge computing. Appl. Sci. 2022, 12, 9987. [Google Scholar] [CrossRef]
- Sodin, D.; Rudež, U.; Mihelin, M.; Smolnikar, M.; Čampa, A. Advanced edge-cloud computing framework for automated pmu-based fault localization in distribution networks. Appl. Sci. 2021, 11, 3100. [Google Scholar] [CrossRef]
- Jiang, K.; Zhou, H.; Chen, X.; Zhang, H. Mobile edge computing for ultra-reliable and low-latency communications. IEEE Commun. Stand. Mag. 2021, 5, 68–75. [Google Scholar] [CrossRef]
- Gilly, K.; Bernad, C.; Roig, P.J.; Alcaraz, S.; Filiposka, S. End-to-end simulation environment for mobile edge computing. Simul. Model. Pract. Theory 2022, 121, 102657. [Google Scholar] [CrossRef]
- Xia, B.; Kong, F.; Zhou, J.; Tang, X.; Gong, H. A delay-tolerant data transmission scheme for internet of vehicles based on software defined cloud-fog networks. IEEE Access 2020, 8, 65911–65922. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Chu, Z. Three major operating scenarios of 5G: EMBB, mMTC, URLLC. Intell. Sens. Commun. Internet Everything 2022, 1, 15–76. [Google Scholar]
- Choi, Y.; Aziz, M.R.K.; Cho, K.; Choi, D. Latency-optimal network intelligence services in SDN/NFV-based energy Internet cyberinfrastructure. IEEE Access 2019, 8, 4485–4499. [Google Scholar]
- Hutton, W.J.; McKinnon, A.D.; Hadley, M.D. Software-defined networking traffic engineering process for operational technology networks. J. Inf. Warf. 2019, 18, 167–181. [Google Scholar]
- Gouareb, R.; Friderikos, V.; Aghvami, A.H. Virtual network functions routing and placement for edge cloud latency minimization. IEEE J. Sel. Areas Commun. 2018, 36, 2346–2357. [Google Scholar] [CrossRef]
- Schelstraete, S.; Vázquez, M.M. Signal-to-Interference plus Noise Ratio (Sinr)-Aware Spatial Reuse. U.S. Patent 18/506,949, 16 May 2024. [Google Scholar]
- Hu, X.; Wang, L.; Wong, K.K.; Tao, M.; Zhang, Y.; Zheng, Z. Edge and central cloud computing: A perfect pairing for high energy efficiency and low-latency. IEEE Trans. Wirel. Commun. 2019, 19, 1070–1083. [Google Scholar] [CrossRef]
- Fang, C.; Meng, X.; Hu, Z.; Xu, F.; Zeng, D.; Dong, M.; Ni, W. AI-driven energy-efficient content task offloading in cloud-edge-end cooperation networks. IEEE Open J. Comput. Soc. 2022, 3, 162–171. [Google Scholar] [CrossRef]
- Sonmez, C.; Tunca, C.; Ozgovde, A.; Ersoy, C. Machine learning-based workload orchestrator for vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2239–2251. [Google Scholar] [CrossRef]
- Sada, A.B.; Khelloufi, A.; Naouri, A.; Ning, H.; Dhelim, S. Energy-Aware Selective Inference Task Offloading for Real-Time Edge Computing Applications. IEEE Access 2024, 12, 72924–72937. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Xu, H.; Chen, M.; Huang, L. Accelerating decentralized federated learning in heterogeneous edge computing. IEEE Trans. Mob. Comput. 2022, 22, 5001–5016. [Google Scholar] [CrossRef]
- Song, J.; Wang, W.; Gadekallu, T.R.; Cao, J.; Liu, Y. Eppda: An efficient privacy-preserving data aggregation federated learning scheme. IEEE Trans. Netw. Sci. Eng. 2022, 10, 3047–3057. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Q.; Li, J.; Li, Z. Resource allocation using deep deterministic policy gradient-based federated learning for multi-access edge computing. J. Grid Comput. 2024, 22, 59. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J. Blockchain based data integrity verification for large-scale IoT data. IEEE Access 2019, 7, 164996–165006. [Google Scholar] [CrossRef]
- Halgamuge, M.N. Estimation of the success probability of a malicious attacker on blockchain-based edge network. Comput. Netw. 2022, 219, 109402. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, F.; Lin, J.; Liu, Z.; Xiao, F.; Fan, G. Ec-ecc: Accelerating elliptic curve cryptography for edge computing on embedded gpu tx2. ACM Trans. Embed. Comput. Syst. (TECS) 2022, 21, 1–25. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, P.; Sun, K.; Xiao, F.; Zheng, F.; Lin, J. EG-Four: An Embedded GPU-Based Efficient ECC Cryptography Accelerator for Edge Computing. IEEE Trans. Ind. Inform. 2022, 19, 7291–7300. [Google Scholar] [CrossRef]
- Alappat, M.R. Multifactor Authentication Using Zero Trust; Rochester Institute of Technology: Rochester, NY, USA, 2023. [Google Scholar]
- Naoko, K. Distributed System Access Control for Fuzzy Mathematics and Probability Theory. Distrib. Process. Syst. 2022, 3, 72–81. [Google Scholar]
- Liu, Y.; Lan, D.; Pang, Z.; Karlsson, M.; Gong, S. Performance evaluation of containerization in edge-cloud computing stacks for industrial applications: A client perspective. IEEE Open J. Ind. Electron. Soc. 2021, 2, 153–168. [Google Scholar] [CrossRef]
- Pal, S.; Pattnaik, P.K. A Simulation-based Approach to Optimize the Execution Time and Minimization of Average Waiting Time Using Queuing Model in Cloud Computing Environment. Int. J. Electr. Comput. Eng. 2016, 6, 743–750. [Google Scholar]
- Ma, X.; Zhou, A.; Zhang, S.; Li, Q.; Liu, A.X.; Wang, S. Dynamic task scheduling in cloud-assisted mobile edge computing. IEEE Trans. Mob. Comput. 2021, 22, 2116–2130. [Google Scholar] [CrossRef]
- Liu, B.; Foroozannejad, M.H.; Ghiasi, S.; Baas, B.M. Optimizing power of many-core systems by exploiting dynamic voltage, frequency and core scaling. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4. [Google Scholar]
- Zhang, Z.; Zhao, Y.; Li, H.; Lin, C.; Liu, J. DVFO: Learning-Based DVFS for Energy-Efficient Edge-Cloud Collaborative Inference. IEEE Trans. Mob. Comput. 2024, 23, 9042–9059. [Google Scholar] [CrossRef]
- Van Dinh, D.; Yoon, B.N.; Le, H.N.; Nguyen, U.Q.; Phan, K.D.; Pham, L.D. ICT enabling technologies for smart cities. In Proceedings of the 2020 22nd International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea, 11–14 February 2020; pp. 1180–1192. [Google Scholar]
- Arora, S.; Tewari, A. AI-driven resilience: Enhancing critical infrastructure with edge computing. Int. J. Curr. Eng. Technol. 2022, 12, 151–157. [Google Scholar]
- Kishk, A.M.; Badawy, M.; Ali, H.A.; Saleh, A.I. A new traffic congestion prediction strategy (TCPS) based on edge computing. Clust. Comput. 2022, 25, 49–75. [Google Scholar] [CrossRef]
- Liu, C.; Ke, L. Cloud assisted Internet of things intelligent transportation system and the traffic control system in the smart city. J. Control Decis. 2023, 10, 174–187. [Google Scholar] [CrossRef]
- Jung, C.; Lee, D.; Lee, S.; Shim, D.H. V2X-communication-aided autonomous driving: System design and experimental validation. Sensors 2020, 20, 2903. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, J.; Xu, K.; Wang, G. AI-driven data processing and decision optimization in IoT through edge computing and cloud architecture. J. AI-Powered Med. Innov. 2024, 2, 64–92. [Google Scholar] [CrossRef]
- He, Y.; Wu, B.; Dong, Z.; Wan, J.; Shi, W. Towards C-V2X enabled collaborative autonomous driving. IEEE Trans. Veh. Technol. 2023, 72, 15450–15462. [Google Scholar] [CrossRef]
- Munir, A.; Blasch, E.; Kwon, J.; Kong, J.; Aved, A. Artificial intelligence and data fusion at the edge. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 62–78. [Google Scholar] [CrossRef]
- Qu, Z.; Tang, Y.; Muhammad, G.; Tiwari, P. Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion. Inf. Fusion 2023, 98, 101824. [Google Scholar] [CrossRef]
- Park, J.; Samarakoon, S.; Shiri, H.; Abdel-Aziz, M.K.; Nishio, T.; Elgabli, A.; Bennis, M. Extreme ultra-reliable and low-latency communication. Nat. Electron. 2022, 5, 133–141. [Google Scholar] [CrossRef]
- Verma, P.; Fatima, S. Smart healthcare applications and real-time analytics through edge computing. In Internet of Things Use Cases for the Healthcare Industry; Springer: Cham, Switzerland, 2020; pp. 241–270. [Google Scholar]
- Junaid, S.B.; Imam, A.A.; Abdulkarim, M.; Surakat, Y.A.; Balogun, A.O.; Kumar, G.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; Mohammed, A.; et al. Recent advances in artificial intelligence and wearable sensors in healthcare delivery. Appl. Sci. 2022, 12, 10271. [Google Scholar] [CrossRef]
- Guan, H.; Yap, P.T.; Bozoki, A.; Liu, M. Federated learning for medical image analysis: A survey. Pattern Recognit. 2024, 151, 110424. [Google Scholar] [CrossRef]
- Haq, S.; Verma, P. Edge-Cloud-Assisted Multivariate Time Series Data-Based VAR and Sequential Encoder–Decoder Framework for Multi-Disease Prediction. Arab. J. Sci. Eng. 2025, 1–21. [Google Scholar] [CrossRef]
- Khalid, N.; Qayyum, A.; Bilal, M.; Al-Fuqaha, A.; Qadir, J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023, 158, 106848. [Google Scholar] [CrossRef]
- El-Rashidy, N.; Sedik, A.; Siam, A.I.; Ali, Z.H. An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models. Neural Comput. Appl. 2023, 35, 10695–10716. [Google Scholar] [CrossRef]
- Abiri, S.; Taheri, L.; Kakhki, B.R.; Shahabian, M.; Ziyaei, M.; Shafa, S.; Hakemi, A. Artificial Intelligence In Emergency Medicine And It Impact On Patient Related Factors. Int. J. Med Investig. 2024, 13, 1–11. [Google Scholar]
- Talaat, F.M. Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system. Multimed. Tools Appl. 2022, 81, 8235–8258. [Google Scholar] [CrossRef]
- Kim, H.; Shon, T. Industrial network-based behavioral anomaly detection in AI-enabled smart manufacturing. J. Supercomput. 2022, 78, 13554–13563. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Miao, Y.; Wu, G.; Hassan, M.M.; Humar, I. iRobot-Factory: An intelligent robot factory based on cognitive manufacturing and edge computing. Future Gener. Comput. Syst. 2019, 90, 569–577. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, C.; Wang, T.; Zheng, H.; Gao, Y.; Fan, W. Quality control system of automobile bearing production based on edge cloud collaboration. In Proceedings of the 2020 International Conference on Advanced Mechatronic Systems (ICAMechS), Hanoi, Vietnam, 10–13 December 2020; pp. 319–322. [Google Scholar]
- Okuyelu, O.; Adaji, O. AI-Driven Real-time Quality Monitoring and Process Optimization for Enhanced Manufacturing Performance. J. Adv. Math. Comput. Sci. 2024, 39, 81–89. [Google Scholar] [CrossRef]
- Cociorva, A.; Onofrei, N.; Vîlcea, A.L. Tool Integrations for Monitoring Solutions and Associated Performance Analysis. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 20–22 March 2023; Volume 17, pp. 1929–1943. [Google Scholar]
- Sharma, N.; Cupek, R. Real-time control and optimization of internal logistics systems with collaborative robots. Procedia Comput. Sci. 2023, 225, 248–258. [Google Scholar] [CrossRef]
- Singh, K.D.; Singh, P.D. Fog-based Edge AI for Robotics: Cutting-edge Research and Future Directions. EAI Endorsed Trans. AI Robot. 2023, 2. [Google Scholar] [CrossRef]
- Gheisari, M.; Pham, Q.V.; Alazab, M.; Zhang, X.; Fernández-Campusano, C.; Srivastava, G. ECA: An edge computing architecture for privacy-preserving in IoT-based smart city. IEEE Access 2019, 7, 155779–155786. [Google Scholar] [CrossRef]
- Barthélemy, J.; Verstaevel, N.; Forehead, H.; Perez, P. Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors 2019, 19, 2048. [Google Scholar] [CrossRef]
- Belcastro, L.; Marozzo, F.; Orsino, A.; Talia, D.; Trunfio, P. Edge-cloud continuum solutions for urban mobility prediction and planning. IEEE Access 2023, 11, 38864–38874. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Yi, B.; Wang, J.; Chen, C.M.; Shi, C. Edge-Cloud Framework for Vehicle-Road Cooperative Traffic Signal Control in Augmented Internet of Things. IEEE Internet Things J. 2024, 12, 5488–5499. [Google Scholar] [CrossRef]
- Chen, X.; Wen, H.; Ni, W.; Zhang, S.; Wang, X.; Xu, S.; Pei, Q. Distributed online optimization of edge computing with mixed power supply of renewable energy and smart grid. IEEE Trans. Commun. 2021, 70, 389–403. [Google Scholar] [CrossRef]
- Deshpande, V. Smart Grids Integration with AI-Powered Demand Response. Res. J. Comput. Syst. Eng. 2024, 5, 45–58. [Google Scholar]
- Shah, J.; Mishra, B. IoT enabled environmental monitoring system for smart cities. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; pp. 383–388. [Google Scholar]
- Alorf, A. Edge-Cloud Computing for Scheduling the Energy Consumption in Smart Grid. Comput. Syst. Sci. Eng. 2023, 46, 273–286. [Google Scholar] [CrossRef]
- Mofreh, E.; Nguyen, P.; Kok, K. Secure and Efficient Peer-to-Peer Energy Trading: A Case Study on Edge Computing Simulation Platform for Decentralized Decision Making. In Proceedings of the 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Rome, Italy, 17–20 June 2024; pp. 1–6. [Google Scholar]
- Zhang, L.; Shi, Y.; Wang, D. A Real-Time Lightweight Perceptron for Cloud–Edge Collaborative Predictive Maintenance of Online Service Systems. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, N.; Ullah, F.U.M.; Kim, M.J.; Lee, M.Y.; Baik, S.W. Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting. Energy Build. 2023, 279, 112705. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Zheng, X.; Li, J.; Yang, W.; Vasilakos, A.V. Cloud-edge orchestrated power dispatching for smart grid with distributed energy resources. IEEE Trans. Cloud Comput. 2022, 11, 1194–1203. [Google Scholar] [CrossRef]
- Wongthongtham, P.; Marrable, D.; Abu-Salih, B.; Liu, X.; Morrison, G. Blockchain-enabled Peer-to-Peer energy trading. Comput. Electr. Eng. 2021, 94, 107299. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, B.; Dong, M.; Ota, K. Secure and efficient vehicle-to-grid energy trading in cyber physical systems: Integration of blockchain and edge computing. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 43–57. [Google Scholar] [CrossRef]
- Ganesan, V.; Padmini, V.S.A.; Devi, V.A.; Chowdhury, S.; Srivastava, G.; Amesho, K.T. AR/VR Data Prediction and a Slicing Model for 5G Edge Computing. In Machine Learning for Mobile Communications; CRC Press: Boca Raton, FL, USA, 2024; pp. 171–184. [Google Scholar]
- Hazarika, A.; Rahmati, M. Towards an evolved immersive experience: Exploring 5G-and beyond-enabled ultra-low-latency communications for augmented and virtual reality. Sensors 2023, 23, 3682. [Google Scholar] [CrossRef]
- Chen, X.; Gao, W.; Chu, Y.; Song, Y. Enhancing interaction in virtual-real architectural environments: A comparative analysis of generative AI-driven reality approaches. Build. Environ. 2024, 266, 112113. [Google Scholar] [CrossRef]
- Srivastava, A.; Jawaid, S.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Khan, B. Imperative role of technology intervention and implementation for automation in the construction industry. Adv. Civ. Eng. 2022, 2022, 6716987. [Google Scholar] [CrossRef]
- Liang, Y.; Li, G.; Zhang, G.; Guo, J.; Liu, Q.; Zheng, J.; Wang, T. Latency Reduction in Immersive Systems through Request Scheduling with Digital Twin Networks in Collaborative Edge Computing. In ACM Transactions on Sensor Networks; Association for Computing Machinery: New York, NY, USA, 2024. [Google Scholar]
- Madduru, P. Artificial Intelligence as a service in distributed multi access edge computing on 5G extracting data using IoT and including AR/VR for real-time reporting. Inf. Technol. Ind. 2021, 9, 912–931. [Google Scholar] [CrossRef]
- Rohit, T.; Athrij, S.; Gopalan, S. Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality. In Proceedings of the International Conference on Computational Intelligence in Communications and Business Analytics, Kalyani, India, 27–28 January 2023; pp. 118–129. [Google Scholar]
- Yang, S.; Yang, P.; Chen, J.; Ye, Q.; Zhang, N.; Shen, X. Delay-optimized multi-user VR streaming via end-edge collaborative neural frame interpolation. IEEE Trans. Netw. Sci. Eng. 2023, 11, 284–298. [Google Scholar] [CrossRef]
- d’Oro, E.C.; Colombo, S.; Gribaudo, M.; Iacono, M.; Manca, D.; Piazzolla, P. Modeling and evaluating a complex edge computing based systems: An emergency management support system case study. Internet Things 2019, 6, 100054. [Google Scholar] [CrossRef]
- Khan, A.; Gupta, S.; Gupta, S.K. Emerging UAV technology for disaster detection, mitigation, response, and preparedness. J. Field Robot. 2022, 39, 905–955. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, S.; Shil, S.K. Enhancing disaster management through AI-driven predictive analytics: Improving preparedness and response. Int. J. Adv. Eng. Technol. Innov. 2023, 1, 533–562. [Google Scholar]
- Zou, Q.; Li, G.; Yu, W. Cloud computing based on computational characteristics for disaster monitoring. Appl. Sci. 2020, 10, 6676. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y. Assessing disaster impact in real time: Data-driven system integrating humans, hazards, and the built environment. J. Comput. Civ. Eng. 2021, 35, 04021010. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Shvetsova, S.V.; Alhartomi, M.A.; Hawbani, A.; Rajput, N.S.; Srivastava, S.; Saif, A.; Nyangaresi, V.O. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones 2022, 6, 154. [Google Scholar] [CrossRef]
- Jain, N.; Gambhir, A.; Pandey, M. Unmanned Aerial Networks—UAVs and AI. In Recent Trends in Artificial Intelligence Towards a Smart World: Applications in Industries and Sectors; Springer: Berlin/Heidelberg, Germany, 2024; pp. 321–351. [Google Scholar]
- Segar, M.; Zolkipli, M.F. A Study On AI-Driven Solutions for Cloud Security Platform. INTI J. 2024, 2024. [Google Scholar] [CrossRef]
- Sabella, D.; Maloor, K.; Smith, N.; Vanderveen, M.; Kourtis, A. Edge Computing Cybersecurity standards: Protecting infrastructure and applications. IEEE Access 2024, 12, 185328–185335. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, S.; Yu, W.; Nguyen, J.H.; Hatcher, W.G. A cloud/edge computing streaming system for network traffic monitoring and threat detection. Int. J. Secur. Netw. 2018, 13, 169–186. [Google Scholar]
- Ghimire, B.; Rawat, D.B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things. IEEE Internet Things J. 2022, 9, 8229–8249. [Google Scholar] [CrossRef]
- Kouicem, D.E.; Imine, Y.; Bouabdallah, A.; Lakhlef, H. Decentralized blockchain-based trust management protocol for the Internet of Things. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1292–1306. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [Google Scholar] [CrossRef]
- Almuseelem, W. Continuous and Mutual Lightweight Authentication for Zero-Trust Architecture-Based Security Framework in Cloud-Edge Computing-Based Healthcare 4.0. J. Theor. Appl. Inf. Technol. 2024, 102, 66–83. [Google Scholar]
- Wang, J.; Ni, M.; Wu, F.; Liu, S.; Qin, J.; Zhu, R. Electromagnetic radiation based continuous authentication in edge computing enabled internet of things. J. Syst. Archit. 2019, 96, 53–61. [Google Scholar] [CrossRef]
- Li, J.; Gu, C.; Xiang, Y.; Li, F. Edge-cloud computing systems for smart grid: State-of-the-art, architecture, and applications. J. Mod. Power Syst. Clean Energy 2022, 10, 805–817. [Google Scholar] [CrossRef]
- Kennedy, J.; Sharma, V.; Varghese, B.; Reaño, C. Multi-tier GPU virtualization for deep learning in cloud-edge systems. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2107–2123. [Google Scholar] [CrossRef]
- Belcastro, L.; Marozzo, F.; Orsino, A.; Presta, A.; Vinci, A. Developing Cross-Platform and Fast-Responsive Applications on the Edge-Cloud Continuum. In Proceedings of the 2024 15th IFIP Wireless and Mobile Networking Conference (WMNC), Venice, Italy, 11–12 November 2024; pp. 88–93. [Google Scholar]
- Ganguli, M.; Ranganath, S.; Ravisundar, S.; Layek, A.; Ilangovan, D.; Verplanke, E. Challenges and opportunities in performance benchmarking of service mesh for the edge. In Proceedings of the 2021 IEEE International Conference on Edge Computing (EDGE), Chicago, IL, USA, 5–10 September 2021; pp. 78–85. [Google Scholar]
- Arzo, S.T.; Scotece, D.; Bassoli, R.; Devetsikiotis, M.; Foschini, L.; Fitzek, F.H. Softwarized and containerized microservices-based network management analysis with MSN. Comput. Netw. 2024, 254, 110750. [Google Scholar] [CrossRef]
- Ramamoorthi, V. Real-Time Adaptive Orchestration of AI Microservices in Dynamic Edge Computing. J. Adv. Comput. Syst. 2023, 3, 1–9. [Google Scholar] [CrossRef]
- Ahat, B.; Baktır, A.C.; Aras, N.; Altınel, İ.K.; Özgövde, A.; Ersoy, C. Optimal server and service deployment for multi-tier edge cloud computing. Comput. Netw. 2021, 199, 108393. [Google Scholar] [CrossRef]
- Pendyala, S.K. Edge-Cloud Continuum for Ai-Driven remote Patient Monitoring: A Scalable Framework. J. Data Sci. Inf. Technol. 2025, 2, 66–74. [Google Scholar]
- Uddin, R.S.; Manifa, N.Z.; Chakma, L.; Islam, M.M. Cross-Layer Architecture for Energy Optimization of Edge Computing. In Proceedings of the International Conference on Machine Intelligence and Emerging Technologies, Noakhali, Bangladesh, 23–25 September 2022; pp. 687–701. [Google Scholar]
- Huang, X.; Yu, R.; Ye, D.; Shu, L.; Xie, S. Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing. IEEE Trans. Veh. Technol. 2021, 70, 3773–3787. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, L.; Wu, W.; Du, D. Cloud/edge computing resource allocation and pricing for mobile blockchain: An iterative greedy and search approach. IEEE Trans. Comput. Soc. Syst. 2021, 8, 451–463. [Google Scholar] [CrossRef]
- Lai, Y.C.; Sudyana, D.; Lin, Y.D.; Verkerken, M.; D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Task assignment and capacity allocation for ML-based intrusion detection as a service in a multi-tier architecture. IEEE Trans. Netw. Serv. Manag. 2022, 20, 672–683. [Google Scholar] [CrossRef]
- Cui, T.; Yang, R.; Fang, C.; Yu, S. Deep reinforcement learning-based resource allocation for content distribution in IoT-edge-cloud computing environments. Symmetry 2023, 15, 217. [Google Scholar] [CrossRef]
- Lin, H.; Xiao, B.; Zhou, X.; Zhang, Y.; Liu, X. A Multi-Tier Offloading Optimization Strategy for Consumer Electronics in Vehicular Edge Computing. IEEE Trans. Consum. Electron. 2025. [Google Scholar] [CrossRef]
- Hu, S.; Li, G.; Shi, W. Lars: A latency-aware and real-time scheduling framework for edge-enabled internet of vehicles. IEEE Trans. Serv. Comput. 2021, 16, 398–411. [Google Scholar] [CrossRef]
- Yarkina, N.; Correia, L.M.; Moltchanov, D.; Gaidamaka, Y.; Samouylov, K. Multi-tenant resource sharing with equitable-priority-based performance isolation of slices for 5G cellular systems. Comput. Commun. 2022, 188, 39–51. [Google Scholar] [CrossRef]
- Yang, W.; Cai, L.; Shu, S.; Pan, J. Mobility-aware congestion control for multipath QUIC in integrated terrestrial satellite networks. IEEE Trans. Mob. Comput. 2024, 23, 11620–11634. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zhang, Y.; Wu, Y.; Chen, X.; Zhao, L. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform. 2020, 17, 4925–4934. [Google Scholar] [CrossRef]
- Choudhary, A.; Kang, S.S.; Singla, S. A Comprehensive Analysis on Load Balancing of Software Defined Networking using Resource Optimization on AI-Based Applications. In Proceedings of the 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 21–22 March 2024; pp. 1–8. [Google Scholar]
- Zhang, J.; Liu, Y.; Qin, X.; Xu, X.; Zhang, P. Adaptive resource allocation for blockchain-based federated learning in Internet of Things. IEEE Internet Things J. 2023, 10, 10621–10635. [Google Scholar] [CrossRef]
- Di Lorenzo, P.; Battiloro, C.; Merluzzi, M.; Barbarossa, S. Dynamic resource optimization for adaptive federated learning at the wireless network edge. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4910–4914. [Google Scholar]
- Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [Google Scholar] [CrossRef]
- Tang, J.; Jalalzai, M.M.; Feng, C.; Xiong, Z.; Zhang, Y. Latency-aware task scheduling in software-defined edge and cloud computing with erasure-coded storage systems. IEEE Trans. Cloud Comput. 2022, 11, 1575–1590. [Google Scholar] [CrossRef]
- Xie, B.; Cui, H. Deep Reinforcement Learning for Task Offloading in Edge Computing. In Proceedings of the 2024 4th International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), Zhuhai, China, 28–30 June 2024; pp. 250–254. [Google Scholar]
- Hu, Z.; Niu, J.; Ren, T.; Guizani, M. Achieving fast environment adaptation of drl-based computation offloading in mobile edge computing. IEEE Trans. Mob. Comput. 2023, 23, 6347–6362. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, H.; Chi, K.; Huang, L.; Yu, K.; Mumtaz, S. DRL-based partial offloading for maximizing sum computation rate of wireless powered mobile edge computing network. IEEE Trans. Wirel. Commun. 2022, 21, 10934–10948. [Google Scholar] [CrossRef]
- Ben Ammar, M.; Ben Dhaou, I.; El Houssaini, D.; Sahnoun, S.; Fakhfakh, A.; Kanoun, O. Requirements for energy-harvesting-driven edge devices using task-offloading approaches. Electronics 2022, 11, 383. [Google Scholar] [CrossRef]
- Chen, H.; Qin, W.; Wang, L. Task partitioning and offloading in IoT cloud-edge collaborative computing framework: A survey. J. Cloud Comput. 2022, 11, 86. [Google Scholar] [CrossRef]
- Suganya, B.; Gopi, R.; Kumar, A.R.; Singh, G. Dynamic task offloading edge-aware optimization framework for enhanced UAV operations on edge computing platform. Sci. Rep. 2024, 14, 16383. [Google Scholar] [CrossRef]
- Farahbakhsh, F.; Shahidinejad, A.; Ghobaei-Arani, M. Context-aware computation offloading for mobile edge computing. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5123–5135. [Google Scholar] [CrossRef]
- Zhang, Q.; Gui, L.; Zhu, S.; Lang, X. Task offloading and resource scheduling in hybrid edge-cloud networks. IEEE Access 2021, 9, 85350–85366. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Sun, C.; Fang, F.; Fan, Q.; Wang, X.; Leung, V.C. Intelligent content caching and user association in mobile edge computing networks for smart cities. IEEE Trans. Netw. Sci. Eng. 2023, 11, 994–1007. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, M.S.; St-Hilaire, M.; Faisal, M.; Kim, J.; Kim, S.M. Task Priority-Based Cached-Data Prefetching and Eviction Mechanisms for Performance Optimization of Edge Computing Clusters. Secur. Commun. Netw. 2021, 2021, 5541974. [Google Scholar] [CrossRef]
- Yang, Z.; Fu, Y.; Liu, Y.; Chen, Y.; Zhang, J. A new look at AI-driven NOMA-F-RANs: Features extraction, cooperative caching, and cache-aided computing. IEEE Wirel. Commun. 2022, 29, 123–130. [Google Scholar] [CrossRef]
- Maher, S.M.; Ebrahim, G.A.; Hosny, S.; Salah, M.M. A cache-enabled device-to-device approach based on deep learning. IEEE Access 2023, 11, 76953–76963. [Google Scholar] [CrossRef]
- Weerasinghe, S.; Zaslavsky, A.; Loke, S.W.; Hassani, A.; Abken, A.; Medvedev, A. From traditional adaptive data caching to adaptive context caching: A survey. arXiv 2022, arXiv:2211.11259. [Google Scholar]
- Tolba, B.; Abo-Zahhad, M.; Elsabrouty, M.; Uchiyama, A.; Abd El-Malek, A.H. Joint user association, service caching, and task offloading in multi-tier communication/multi-tier edge computing heterogeneous networks. Ad Hoc Netw. 2024, 160, 103500. [Google Scholar] [CrossRef]
- Babou, C.S.M.; Fall, D.; Kashihara, S.; Taenaka, Y.; Bhuyan, M.H.; Niang, I.; Kadobayashi, Y. Hierarchical load balancing and clustering technique for home edge computing. IEEE Access 2020, 8, 127593–127607. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J. Burst load scheduling latency optimization through collaborative content caching in edge-cloud computing. Clust. Comput. 2025, 28, 166. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Q.; Wu, H. Cooperative Edge Caching with Multi-Agent Reinforcement Learning Using Consensus Updates. In Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing China, 20–22 September 2024; Volume 7, pp. 1804–1809. [Google Scholar]
- Liang, Q.; Hanafy, W.A.; Ali-Eldin, A.; Shenoy, P. Model-driven cluster resource management for ai workloads in edge clouds. ACM Trans. Auton. Adapt. Syst. 2023, 18, 1–26. [Google Scholar] [CrossRef]
- Xia, Q.; Ren, W.; Xu, Z.; Wang, X.; Liang, W. When edge caching meets a budget: Near optimal service delivery in multi-tiered edge clouds. IEEE Trans. Serv. Comput. 2021, 15, 3634–3648. [Google Scholar] [CrossRef]
- Xing, H.; Ding, Y.; Huang, H.; Chen, Z.; Liu, S.; Guo, Z.; Al-Hasan, M.; Serhani, M.A.; Xu, Y. Hierarchical Sketch: An Efficient, Scalable and Latency-aware Content Caching Design for Content Delivery Networks. In Proceedings of the 2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS), Guangzhou, China, 19–21 June 2024; pp. 1–6. [Google Scholar]
- Maheshwari, S.; Raychaudhuri, D.; Seskar, I.; Bronzino, F. Scalability and performance evaluation of edge cloud systems for latency constrained applications. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018; pp. 286–299. [Google Scholar]
- Popovski, P.; Stefanović, Č.; Nielsen, J.J.; De Carvalho, E.; Angjelichinoski, M.; Trillingsgaard, K.F.; Bana, A.S. Wireless access in ultra-reliable low-latency communication (URLLC). IEEE Trans. Commun. 2019, 67, 5783–5801. [Google Scholar] [CrossRef]
- He, Q.; Dong, Z.; Chen, F.; Deng, S.; Liang, W.; Yang, Y. Pyramid: Enabling hierarchical neural networks with edge computing. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 1860–1870. [Google Scholar]
- Zhao, Y.; Liu, X.; Tu, L.; Tian, C.; Qiao, C. Dynamic service entity placement for latency sensitive applications in transportation systems. IEEE Trans. Mob. Comput. 2019, 20, 460–472. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [Google Scholar] [CrossRef]
- Anwar, M.R.; Wang, S.; Akram, M.F.; Raza, S.; Mahmood, S. 5G-enabled MEC: A distributed traffic steering for seamless service migration of internet of vehicles. IEEE Internet Things J. 2021, 9, 648–661. [Google Scholar] [CrossRef]
- Gür, G.; Kalla, A.; De Alwis, C.; Pham, Q.V.; Ngo, K.H.; Liyanage, M.; Porambage, P. Integration of ICN and MEC in 5G and beyond networks: Mutual benefits, use cases, challenges, standardization, and future research. IEEE Open J. Commun. Soc. 2022, 3, 1382–1412. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Li, H.; Yang, W.; Qi, Q. Dynamic resource provisioning for cyber-physical systems in cloud-fog-edge computing. J. Cloud Comput. 2020, 9, 32. [Google Scholar] [CrossRef]
- Rasheed, Z.; Ma, Y.K.; Ullah, I.; Tao, Y.; Khan, I.; Khan, H.; Shafiq, M. Edge Computing in the Digital Era: The Nexus of 5G, IoT and a Seamless Digital Future. In Future Communication Systems Using Artificial Intelligence, Internet of Things and Data Science; CRC Press: Boca Raton, FL, USA, 2024; pp. 213–234. [Google Scholar]
- Jararweh, Y. Enabling efficient and secure energy cloud using edge computing and 5G. J. Parallel Distrib. Comput. 2020, 145, 42–49. [Google Scholar] [CrossRef]
- Darwich, M.; Khalil, K.; Bayoumi, M. Adaptive Multi-Path Video Streaming Using AI-Driven Edge Computing for Enhanced Quality of Experience (QoE). In Proceedings of the 2024 2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings), Mt Pleasant, MI, USA, 7–8 September 2024; pp. 1–6. [Google Scholar]
- Bulej, L.; Bureš, T.; Filandr, A.; Hnětynka, P.; Hnětynková, I.; Pacovskỳ, J.; Sandor, G.; Gerostathopoulos, I. Managing latency in edge–cloud environment. J. Syst. Softw. 2021, 172, 110872. [Google Scholar] [CrossRef]
- Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. Edge computing security: State of the art and challenges. Proc. IEEE 2019, 107, 1608–1631. [Google Scholar] [CrossRef]
- Bonnah, E.; Shiguang, J. DecChain: A decentralized security approach in Edge Computing based on Blockchain. Future Gener. Comput. Syst. 2020, 113, 363–379. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, L.; Liu, Z.; Li, F.; Xie, Q.; Chen, K.; Lv, C.; He, Y.; Li, F. A Survey of DDoS Attack and Defense Technologies in Multi-Access Edge Computing. IEEE Internet Things J. 2024, 12, 1428–1452. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, G.; Dai, H.; Liu, G. PFLF: Privacy-preserving federated learning framework for edge computing. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1905–1918. [Google Scholar] [CrossRef]
- Alluhaidan, A.S.D.; Prabu, P. End-to-end encryption in resource-constrained IoT device. IEEE Access 2023, 11, 70040–70051. [Google Scholar] [CrossRef]
- Kolevski, D.; Michael, K. Edge Computing and IoT Data Breaches: Security, Privacy, Trust, and Regulation. IEEE Technol. Soc. Mag. 2024, 43, 22–32. [Google Scholar] [CrossRef]
- Ruan, L.; Guo, S.; Qiu, X.; Meng, L.; Wu, S.; Buyya, R. Edge in-network computing meets blockchain: A multi-domain heterogeneous resource trust management architecture. IEEE Netw. 2021, 35, 50–57. [Google Scholar] [CrossRef]
- Li, C.; Liang, S.; Zhang, J.; Wang, Q.-E.; Luo, Y. Blockchain-based data trading in edge-cloud computing environment. Inf. Process. Manag. 2022, 59, 102786. [Google Scholar] [CrossRef]
- Haque, E.U.; Shah, A.; Iqbal, J.; Ullah, S.S.; Alroobaea, R.; Hussain, S. A scalable blockchain based framework for efficient IoT data management using lightweight consensus. Sci. Rep. 2024, 14, 7841. [Google Scholar]
- Zhong, J.; Wu, C.; Liu, D.; Shen, Z.; Wang, X. Intelligent IoT Device Abnormal Traffic Detection Method Based on Secure Multi-Party Computation. In Proceedings of the 2024 3rd Asian Conference on Frontiers of Power and Energy (ACFPE), Chengdu, China, 25–27 October 2024; pp. 331–335. [Google Scholar]
- Liu, S.; Wang, X.; Hui, L.; Wu, W. Blockchain-based decentralized federated learning method in edge computing environment. Appl. Sci. 2023, 13, 1677. [Google Scholar] [CrossRef]
- Yang, Q. Toward responsible ai: An overview of federated learning for user-centered privacy-preserving computing. ACM Trans. Interact. Intell. Syst. (TiiS) 2021, 11, 1–22. [Google Scholar] [CrossRef]
- Shahidinejad, A.; Ghobaei-Arani, M.; Souri, A.; Shojafar, M.; Kumari, S. Light-edge: A lightweight authentication protocol for IoT devices in an edge-cloud environment. IEEE Consum. Electron. Mag. 2021, 11, 57–63. [Google Scholar] [CrossRef]
- Shen, S.; Ren, Y.; Ju, Y.; Wang, X.; Wang, W.; Leung, V.C. Edgematrix: A resource-redefined scheduling framework for sla-guaranteed multi-tier edge-cloud computing systems. IEEE J. Sel. Areas Commun. 2022, 41, 820–834. [Google Scholar] [CrossRef]
- Guim, F.; Metsch, T.; Moustafa, H.; Verrall, T.; Carrera, D.; Cadenelli, N.; Chen, J.; Doria, D.; Ghadie, C.; Prats, R.G. Autonomous lifecycle management for resource-efficient workload orchestration for green edge computing. IEEE Trans. Green Commun. Netw. 2021, 6, 571–582. [Google Scholar] [CrossRef]
- Huang, M.; Li, Z.; Xiao, F.; Long, S.; Liu, A. Trust mechanism-based multi-tier computing system for service-oriented edge-cloud networks. IEEE Trans. Dependable Secur. Comput. 2023, 21, 1639–1651. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, W.; Zhou, X.; Yang, W.; You, Y. Representation and reinforcement learning for task scheduling in edge computing. IEEE Trans. Big Data 2020, 8, 795–808. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, N.; Xu, G.; Kumar, N.; Barnawi, A.; Guizani, M.; Duan, Y.; Yu, K. Multi-target-aware dynamic resource scheduling for cloud-fog-edge multi-tier computing network. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3885–3897. [Google Scholar] [CrossRef]
- Qadeer, A.; Lee, M.J. Deep-deterministic policy gradient based multi-resource allocation in edge-cloud system: A distributed approach. IEEE Access 2023, 11, 20381–20398. [Google Scholar] [CrossRef]
- Dreibholz, T.; Mazumdar, S. Towards a lightweight task scheduling framework for cloud and edge platform. Internet Things 2023, 21, 100651. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Wang, C.; Liu, X.; Xie, X.; Shi, G. Mobility-aware MEC planning with a GNN-based graph partitioning framework. IEEE Trans. Netw. Serv. Manag. 2024, 21, 4383–4395. [Google Scholar] [CrossRef]
- Wu, C.L.; Chiu, T.C.; Wang, C.Y.; Pang, A.C. Mobility-aware deep reinforcement learning with seq2seq mobility prediction for offloading and allocation in edge computing. IEEE Trans. Mob. Comput. 2023, 23, 6803–6819. [Google Scholar] [CrossRef]
- Lan, D.; Taherkordi, A.; Eliassen, F.; Chen, Z.; Liu, L. Deep reinforcement learning for intelligent migration of fog services in smart cities. In Proceedings of the Algorithms and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020, New York, NY, USA, 2–4 October 2020; Proceedings, Part II 20. Springer: Berlin/Heidelberg, Germany, 2020; pp. 230–244. [Google Scholar]
- Le, T.H.T.; Tran, N.H.; LeAnh, T.; Oo, T.Z.; Kim, K.; Ren, S.; Hong, C.S. Auction mechanism for dynamic bandwidth allocation in multi-tenant edge computing. IEEE Trans. Veh. Technol. 2020, 69, 15162–15176. [Google Scholar] [CrossRef]
- Tang, J.; Nie, J.; Xiong, Z.; Zhao, J.; Zhang, Y.; Niyato, D. Slicing-based reliable resource orchestration for secure software-defined edge-cloud computing systems. IEEE Internet Things J. 2021, 9, 2637–2648. [Google Scholar] [CrossRef]
- Wu, Y. Cloud-edge orchestration for the Internet of Things: Architecture and AI-powered data processing. IEEE Internet Things J. 2020, 8, 12792–12805. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, H.; Wang, J.; Wu, D.; Zhang, N.; Yu, F.R. Decentralized edge intelligence-driven network resource orchestration mechanism. IEEE Netw. 2022, 37, 270–276. [Google Scholar] [CrossRef]
- Fu, K.; Zhang, W.; Chen, Q.; Zeng, D.; Guo, M. Adaptive resource efficient microservice deployment in cloud-edge continuum. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 1825–1840. [Google Scholar] [CrossRef]
- Shen, X.; Yu, H.; Liu, X.; Bin, Q.; Luhach, A.K.; Saravanan, V. The optimized energy-efficient sensible edge processing model for the internet of vehicles in smart cities. Sustain. Energy Technol. Assessments 2021, 47, 101477. [Google Scholar] [CrossRef]
- Cao, K.; Hu, S.; Shi, Y.; Colombo, A.W.; Karnouskos, S.; Li, X. A survey on edge and edge-cloud computing assisted cyber-physical systems. IEEE Trans. Ind. Inform. 2021, 17, 7806–7819. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, N.; Zhao, Y.; Zhu, Z. A secure and flexible edge computing scheme for AI-driven industrial IoT. Clust. Comput. 2023, 26, 283–301. [Google Scholar] [CrossRef]
- Zhiwei, Q.; Juan, L.; Xiao, L.; Mengyuan, Z. Energy-aware workflow real-time scheduling strategy for device-edge-cloud collaborative computing. Comput. Integr. Manuf. Syst. 2022, 28, 3122. [Google Scholar]
- Bellal, Z.; Lahlou, L.; Kara, N.; El Khayat, I. Gas: Dvfs-driven energy efficiency approach for latency-guaranteed edge computing microservices. IEEE Trans. Green Commun. Netw. 2024, 9, 108–124. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Hao, M.; Wang, Z. Online power management for multi-cores: A reinforcement learning based approach. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 751–764. [Google Scholar] [CrossRef]
- Patra, S.S.; Govindaraj, R.; Chowdhury, S.; Shah, M.A.; Patro, R.; Rout, S. Energy efficient end device aware solution through SDN in edge-cloud platform. IEEE Access 2022, 10, 115192–115204. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Ding, H.; Yuan, D. Delay and energy minimization for adaptive video streaming: A joint edge caching, computing and power allocation approach. IEEE Trans. Veh. Technol. 2022, 71, 9602–9612. [Google Scholar] [CrossRef]
- Wang, R.; Friderikos, V.; Aghvami, A.H. Energy-aware design policy for network slicing using deep reinforcement learning. IEEE Trans. Serv. Comput. 2024, 17, 2378–2391. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Zou, C.; Chen, Q.; Yan, X.; Chen, Y.; Cai, C. Collaborative edge computing with FPGA-based CNN accelerators for energy-efficient and time-aware face tracking system. IEEE Trans. Comput. Soc. Syst. 2021, 9, 252–266. [Google Scholar] [CrossRef]
- Danopoulos, D. Hardware-Software Co-Design of Deep Learning Accelerators: From Custom to Automated Design Methodologies. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2024. [Google Scholar]
- Silva, J.; Marques, E.R.; Lopes, L.M.; Silva, F. Energy-aware adaptive offloading of soft real-time jobs in mobile edge clouds. J. Cloud Comput. 2021, 10, 38. [Google Scholar] [CrossRef]
- Luo, T.; Wong, W.F.; Goh, R.S.M.; Do, A.T.; Chen, Z.; Li, H.; Jiang, W.; Yau, W. Achieving green ai with energy-efficient deep learning using neuromorphic computing. Commun. ACM 2023, 66, 52–57. [Google Scholar] [CrossRef]
- Abbasi, M.H.A.; Arshed, J.U.; Ahmad, I.; Afzal, M.; Ali, H.; Hussain, G. A Mobility Prediction Based Adaptive Task Migration in Mobile Edge Computing. VFAST Trans. Softw. Eng. 2024, 12, 46–55. [Google Scholar]
- Tuli, S.; Casale, G.; Jennings, N.R. Pregan: Preemptive migration prediction network for proactive fault-tolerant edge computing. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 670–679. [Google Scholar]
- Shahzadi, S.; Iqbal, M.; Dagiuklas, T.; Qayyum, Z.U. Multi-access edge computing: Open issues, challenges and future perspectives. J. Cloud Comput. 2017, 6, 30. [Google Scholar] [CrossRef]
- Aly, M.; Khomh, F.; Guéhéneuc, Y.G.; Washizaki, H.; Yacout, S. Is Fragmentation a Threat to the Success of the Internet of Things? IEEE Internet Things J. 2018, 6, 472–487. [Google Scholar] [CrossRef]
- Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener. Comput. Syst. 2020, 106, 67–76. [Google Scholar] [CrossRef]
- Gupta, R.; Nair, A.; Tanwar, S.; Kumar, N. Blockchain-assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET Commun. 2021, 15, 1352–1367. [Google Scholar] [CrossRef]
- Vankayalapati, R.K. Unifying Edge and Cloud Computing: A Framework for Distributed AI and Real-Time Processing. SSRN 2023. [Google Scholar] [CrossRef]
- Salako, A.; Fabuyi, J.; Aideyan, N.T.; Selesi-Aina, O.; Dapo-Oyewole, D.L.; Olaniyi, O.O. Advancing Information Governance in AI-Driven Cloud Ecosystem: Strategies for Enhancing Data Security and Meeting Regulatory Compliance. SSRN 2024. [Google Scholar] [CrossRef]
- Ullah, R.; Rehman, M.A.U.; Kim, B.S. Design and implementation of an open source framework and prototype for named data networking-based edge cloud computing system. IEEE Access 2019, 7, 57741–57759. [Google Scholar] [CrossRef]
- Filip, I.D.; Postoaca, A.V.; Stochitoiu, R.D.; Neatu, D.F.; Negru, C.; Pop, F. Data capsule: Representation of heterogeneous data in cloud-edge computing. IEEE Access 2019, 7, 49558–49567. [Google Scholar] [CrossRef]
- Merlino, G.; Dautov, R.; Distefano, S.; Bruneo, D. Enabling workload engineering in edge, fog, and cloud computing through OpenStack-based middleware. ACM Trans. Internet Technol. (TOIT) 2019, 19, 1–22. [Google Scholar] [CrossRef]
- Kreković, D.; Krivić, P.; Žarko, I.P.; Kušek, M.; Le-Phuoc, D. Reducing Communication Overhead in the IoT-Edge-Cloud Continuum: A Survey on Protocols and Data Reduction Strategies. arXiv 2024, arXiv:2404.19492. [Google Scholar] [CrossRef]
- Veeramachaneni, V. Edge Computing: Architecture, Applications, and Future Challenges in a Decentralized Era. Recent Trends Comput. Graph. Multimed. Technol. 2025, 7, 8–23. [Google Scholar]
- Ahmed, A.; Azizi, S.; Zeebaree, S.R. ECQ: An energy-efficient, cost-effective and qos-aware method for dynamic service migration in mobile edge computing systems. Wirel. Pers. Commun. 2023, 133, 2467–2501. [Google Scholar] [CrossRef]
Reference | Description | Focused Points | Limitations |
---|---|---|---|
[8] | Examines the development and implementation of smart cities, analyzing intelligent computing algorithms and their applications in urban environments. It provides insights into smart-city frameworks and various optimization techniques. | Covers smart-city frameworks and various optimization techniques. | Lacks deep insights into resource allocation strategies and AI-driven orchestration. |
[9] | An overview of edge computing’s role in smart cities, covering applications, classifications, and challenges. The paper also presents a taxonomy of edge computing applications for latency-sensitive smart-city services. | Focuses on latency-sensitive smart-city services. | Does not address integration challenges between edge and cloud computing. |
[10] | Notes how cloud, mobile, and edge computing enhance smart cities by improving urban systems like health, energy, and planning. It highlights their role in addressing urban heat island effects and future integration challenges. | Explores the role of computing in urban planning, health, and energy management. | Limited discussion on real-time processing and AI-driven automation. |
[11] | Discusses the advantages of edge computing in healthcare, the Internet of Things (IoT), and smart-city applications. Highlights edge computing’s ability to enhance data security, reduce latency, and improve computational efficiency in real-time environments. | Emphasizes security, latency reduction, and computational efficiency. | Does not extensively discuss cloud–edge synergy. |
[12] | Surveys the role of 5G-enabled multi-access edge computing (MEC) in smart cities. It highlights the potential of MEC to enhance smart-city infrastructure through reduced latency and distributed computing resources. | Focuses on how MEC improves smart-city infrastructure. | Does not compare MEC with other edge–cloud models. |
[13] | Analyzes cloud computing security within smart-city networks, addressing threats, vulnerabilities, and countermeasures. The survey also discusses privacy concerns and the role of edge computing in mitigating security risks. | Focuses on security risks and privacy issues. | Limited focus on performance trade-offs and resource allocation. |
This survey | Provides a comprehensive analysis of edge–cloud computing in smart cities, including architectures, resource allocation, AI integration, and security strategies. |
- Offers a multi-tier architectural perspective. - Analyzes AI-driven resource allocation. - Compares security and privacy considerations. - Evaluates domain-specific applications (transportation, healthcare, etc.). - Outlines future research directions (6G, quantum, sustainable computing). | No major limitations compared to existing surveys, but future work may explore more real-world deployments and experimental results. |
Architecture | Latency | Scalability | Fault Tolerance | Energy Efficiency | Computational Complexity |
---|---|---|---|---|---|
Hierarchical [14,15,16,17,18,19,20,21,22,23,24,25,26,27] | Moderate. Multi-layer processing increases latency but improves structured workload allocation. | Moderate–High. It can scale by adding cloud resources but is constrained by layer dependencies. | Low. Cloud dependency creates a single point of failure, reducing reliability. | Moderate. Edge reduces energy consumption, but inter-layer communication overhead remains. | Low. Task allocation follows predefined deterministic execution models. |
Fully distributed [28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] | Low. Decentralized execution reduces transmission delays, improving responsiveness. | High. Adaptive task allocation enables horizontal scalability without reliance on the cloud. | High. Redundant nodes allow task redistribution, ensuring minimal service disruption. | High. Execution at the edge reduces data transmission energy costs. | High. Requires real-time synchronization and decentralized scheduling strategies. |
Clustered edge–cloud [46,47,48,49,50,51,52,53,54,55,56,57,58] | Low–Moderate. Clusters handle local processing, but cloud involvement adds minimal delay. | High. Cluster controllers optimize workload balancing across multiple nodes. | Moderate–High. Node failures are managed within clusters, but controller failures impact performance. | Moderate–High. Local execution is efficient, but cloud synchronization increases overhead. | Moderate. Cluster-level processing improves efficiency while reducing global complexity. |
Hybrid digital twin-enabled [59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] | Moderate–High. Digital-twin synchronization introduces additional processing delay. | High. Supports predictive analytics for proactive system scaling. | High. Digital twins maintain a system state even when physical components fail. | Moderate. Frequent updates impact power efficiency; reducing synchronization frequency mitigates this. | High. Requires continuous real-time data processing and AI-driven analytics. |
Technology | Functionality | Benefits | Limitations | Influence on Edge-Cloud Computing |
---|---|---|---|---|
Advanced communication networks [78,79,80,81,82,83,84,85,86] | High-speed data transmission, low-latency networking, real-time routing. | Enhances responsiveness, minimizes delays, maximizes throughput. | High deployment costs, spectrum allocation complexity, interference management. | Ensures fast and reliable connectivity between edge and cloud layers. |
AI and ML [87,88,89,90,91,92] | Intelligent workload distribution, predictive analytics, real-time optimizations. | Enhances efficiency, automates decision-making, and reduces task execution time. | Computational overhead, real-time inference complexity, data privacy concerns. | Reduces latency, optimizes task execution, and improves adaptability in dynamic environments. |
Blockchain and secure transmission [93,94,95,96,97,98] | Decentralized security, cryptographic authentication, integrity verification. | Ensures tamper-proof data transactions and eliminates reliance on centralized authorities. | High computational power demand, increased verification latency, and scalability challenges. | Strengthens trust and reliability in multi-node environments but introduces verification delays. |
Edge virtualization and resource optimization [99,100,101,102,103,104,105] | Dynamic workload allocation, multi-tenant computing, containerized execution. | Improves system elasticity, enhances load balancing, and minimizes operational costs. | Complexity in orchestration, potential security vulnerabilities, resource contention. | Enables adaptive workload migration, optimizes resource distribution, and balances processing loads. |
Application Domain | Primary Objective | Computational Challenges | Key Performance Metrics | Edge-Cloud Dependency | Critical Constraints |
---|---|---|---|---|---|
Smart transportation [106,107,108,109,110,111,112,113] | Real-time traffic management, autonomous mobility, and safety enhancement. | High-speed vehicular data processing, low-latency V2X communication. | Route optimization time, accident avoidance rate, latency minimization. | Edge for real-time vehicle control and cloud for long-term traffic analytics. | Stringent safety requirements, dynamic network conditions. |
Smart healthcare [114,115,116,117,118,119,120,121] | Remote patient monitoring, medical diagnostics, and emergency response. | AI-based anomaly detection, real-time alerting, and privacy preservation. | Detection accuracy, emergency response time, and medical resource availability. | Edge for immediate health data processing, cloud for historical medical trends. | Regulatory compliance, data security, reliability of edge health models. |
Industrial automation [122,123,124,125,126,127,128] | Predictive maintenance, robotic automation, and process optimization. | Machine status monitoring, robotic coordination, AI-driven analytics. | Fault prediction accuracy, production efficiency, robotic synchronization. | Edge for real-time factory automation, cloud for predictive maintenance. | Synchronization issues in automated systems, cybersecurity risks. |
Smart cities [129,130,131,132,133,134,135] | Environmental monitoring, traffic regulation, and automated governance. | Distributed sensor fusion, IoT-based analytics, energy optimization. | Data processing efficiency, service availability, energy consumption control. | Edge for localized city services, cloud for policy planning and large-scale governance. | Scalability of IoT networks, energy efficiency, infrastructure costs. |
Smart energy [136,137,138,139,140,141,142] | Energy grid optimization, decentralized trading, and renewable integration. | Smart contract-based trading, load balancing, fault-tolerant forecasting. | Grid stability, fault tolerance, power efficiency. | Edge for dynamic demand balancing, cloud for predictive analytics. | Renewable energy fluctuations, cybersecurity in decentralized trading. |
AR/VR [143,144,145,146,147,148,149,150] | Immersive real-time experiences, interactive collaboration. | Low-latency rendering, AI-assisted prediction, network congestion management. | Frame rate, response delay, and quality of service (QoS) in interactive sessions. | Edge for real-time frame processing and cloud for complex graphics rendering. | Network latency, power constraints of mobile devices, user experience consistency. |
Disaster management [151,152,153,154,155,156,157] | Early warning, emergency coordination, and rescue optimization. | AI-based threat detection, UAV-assisted search, large-scale event aggregation. | Mission response time, victim detection rate, disaster resilience. | Edge for UAV-based reconnaissance, cloud for large-scale coordination. | Real-time data reliability and communication stability in crisis environments. |
Cybersecurity [158,159,160,161,162,163,164,165] | Real-time threat detection, secure authentication, and data integrity. | FL for intrusion detection and blockchain-based identity verification. | Detection rate, false alarm reduction, access trustworthiness. | Edge for decentralized threat detection, cloud for federated cybersecurity intelligence. | Computational cost of security measures, attack resilience, real-time response speed. |
Challenge | Key Issues | Impact on Edge-Cloud | Potential Solutions | Future Directions |
---|---|---|---|---|
Architectural complexity and system integration [166,167,168,169,170,171,172] | Heterogeneous hardware and software platforms, inefficient workload distribution, cross-layer dependency management. | Increased complexity in system deployment, suboptimal resource utilization, and reduced adaptability in real-time applications. | Standardized orchestration frameworks, intelligent workload balancing, and cross-layer optimization strategies. | Developing AI-driven self-adaptive orchestration for real-time workload distribution and cross-platform interoperability using GNNs. [173,174,175] |
Resource allocation in edge–cloud environments [176,177,178,179,180,181,182] | Dynamic workload distribution, inefficient resource provisioning, unpredictable demand fluctuations. | Service degradation, increased response times, excessive energy consumption in high-load scenarios. | RL-based resource management, predictive workload balancing, decentralized task scheduling. | Hybrid learning models for dynamic resource allocation, integrating FL to enhance distributed decision-making. [183,184,185,186] |
Task offloading strategies [187,188,189,190,191,192,193] | Suboptimal decision-making in offloading strategies, high communication overhead, network variability effects. | Increased latency, excessive energy drain in mobile edge devices, inefficient execution of real-time applications. | AI-based offloading policies, adaptive learning techniques, edge-to-cloud migration frameworks. | Exploring multi-agent RL for intelligent cooperative offloading in dynamic network conditions. [194,195,196] |
Data caching and content distribution [197,198,199,200,201,202,203,204,205] | Redundant data transmissions, inefficient caching policies, limited storage in edge nodes. | Increased bandwidth consumption, high data retrieval delays, inconsistent caching effectiveness. | AI-driven cache management, collaborative caching schemes, hierarchical caching frameworks. | Using edge-aware predictive caching mechanisms with DL to improve data retrieval efficiency. [206,207,208] |
Network scalability and latency optimization [209,210,211,212,213,214,215,216,217] | Scalability limitations, high latency in dynamic environments, network congestion, suboptimal routing protocols. | Inability to handle large-scale data processing, reduced QoS for latency-sensitive applications, inconsistent service delivery. | 5G and beyond networks, AI-driven adaptive routing, MEC integration. | Leveraging 6G networks and quantum-assisted computing to optimize ultra-low-latency communications. [218,219,220] |
Security, privacy, and trust management [221,222,223,224,225,226,227,228,229,230] | Exposure to cyberthreats, data privacy concerns, decentralized trust enforcement, security overhead in edge nodes. | High risk of data breaches, increased computational costs for security enforcement, reduced user trust in distributed systems. | Blockchain-based security models, FL for privacy-preserving analytics, lightweight encryption schemes. | Integrating homomorphic encryption and zero-trust architectures to ensure secure decentralized processing. [231,232,233] |
Resource management [234,235,236,237,238,239,240,241,242,243,244,245] | Inefficient resource allocation, lack of adaptive scaling mechanisms, poor cross-domain resource sharing. | Suboptimal resource utilization, service bottlenecks, and reduced performance in dynamic environments. | Decentralized resource scheduling, multi-agent resource optimization techniques. | Developing AI-driven intent-based resource allocation frameworks that autonomously adjust to workload shifts. [246,247,248] |
Energy efficiency [249,250,251,252,253,254,255,256,257,258,259] | High energy consumption in constrained environments, inefficient power allocation, unpredictable workload energy demands. | Increased operational costs, sustainability concerns, performance bottlenecks in mobile and IoT-based applications. | AI-powered workload scheduling, dynamic energy scaling techniques, predictive task migration mechanisms. | Exploring neuromorphic computing and energy-aware AI models to minimize power consumption in edge–cloud infrastructures. [260,261,262,263] |
Standardization and interoperability constraints [264,265,266,267,268,269,270,271,272] | Lack of unified standards, interoperability issues across different platforms, regulatory compliance challenges. | Fragmentation in edge–cloud deployments, difficulty in achieving seamless integration, increased operational overhead. | Development of universal communication protocols, industry-wide collaboration for standardization, adaptive compliance frameworks. | Creating a globally accepted edge–cloud standardization framework with cross-industry collaboration. [273,274,275] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigka, M.; Dritsas, E. Edge and Cloud Computing in Smart Cities. Future Internet 2025, 17, 118. https://doi.org/10.3390/fi17030118
Trigka M, Dritsas E. Edge and Cloud Computing in Smart Cities. Future Internet. 2025; 17(3):118. https://doi.org/10.3390/fi17030118
Chicago/Turabian StyleTrigka, Maria, and Elias Dritsas. 2025. "Edge and Cloud Computing in Smart Cities" Future Internet 17, no. 3: 118. https://doi.org/10.3390/fi17030118
APA StyleTrigka, M., & Dritsas, E. (2025). Edge and Cloud Computing in Smart Cities. Future Internet, 17(3), 118. https://doi.org/10.3390/fi17030118