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Abstract: The evolution of smart cities is intrinsically linked to advancements in computing
paradigms that support real-time data processing, intelligent decision-making, and efficient
resource utilization. Edge and cloud computing have emerged as fundamental pillars that
enable scalable, distributed, and latency-aware services in urban environments. Cloud
computing provides extensive computational capabilities and centralized data storage,
whereas edge computing ensures localized processing to mitigate network congestion and
latency. This survey presents an in-depth analysis of the integration of edge and cloud
computing in smart cities, highlighting architectural frameworks, enabling technologies,
application domains, and key research challenges. The study examines resource allocation
strategies, real-time analytics, and security considerations, emphasizing the synergies
and trade-offs between cloud and edge computing paradigms. The present survey also
notes future directions that address critical challenges, paving the way for sustainable and
intelligent urban development.
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1. Introduction
The rapid expansion of data-intensive applications has necessitated a shift from cloud-

centric architectures to integrated edge–cloud computing, addressing limitations in latency,
bandwidth, and real-time processing. Edge computing decentralizes computation, en-
abling localized processing, while cloud computing provides large-scale analytics and
long-term data storage. Their synergy ensures adaptive resource allocation, dynamic
service provisioning, and intelligent workload migration across diverse applications [1,2].

Architectural advancements, including multi-tier hierarchies, fully distributed models,
federated intelligence, and digital twin-enabled infrastructures, optimize performance for
different operational needs. Hierarchical models enhance structured load balancing, while
federated and distributed approaches prioritize privacy and decentralized intelligence.
Artificial intelligence (AI)-driven automation, 5G/6G networks, and blockchain security
further enable efficient orchestration, ultra-low-latency communication, and decentralized
trust mechanisms [3–5].

The impact spans multiple domains, including smart cities, healthcare, transportation,
industrial automation, and immersive applications. Edge-assisted AI enables real-time
diagnostics, predictive maintenance, autonomous decision-making, and ultra-responsive
Augmented Reality (AR)/Virtual Reality (VR) experiences, enhancing efficiency and sus-
tainability. However, challenges remain in interoperability, workload migration, energy
efficiency, security, and privacy. Heterogeneous edge devices, dynamic mobility, and cy-
berthreats require advanced AI models, security frameworks, and energy-aware computing
strategies to ensure robust performance [6,7].
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The present survey is motivated by the pressing need for advanced computing
paradigms that can efficiently support the growing complexity of smart cities, where
real-time data processing, intelligent decision-making, and dynamic resource optimiza-
tion are critical. As urban environments become increasingly data-driven, traditional
cloud-centric architectures face significant challenges in latency, bandwidth constraints,
and real-time responsiveness. This survey addresses these limitations by exploring the
synergy between edge and cloud computing, demonstrating how their integration can
enhance latency-aware services, security, scalability, and adaptive intelligence in smart
city applications.

A key contribution of this work, reflected in Table 1, is a comparative analysis of
existing surveys, revealing critical gaps and overlooked aspects. Unlike prior studies that
primarily focus on either edge computing or cloud computing in isolation, this survey
provides a multi-tier architectural perspective, integrating AI-driven resource manage-
ment, federated learning (FL), and security mechanisms to enable more efficient and
autonomous smart-city ecosystems. Furthermore, while earlier works have predominantly
reviewed existing frameworks and methodologies, this study distinguishes itself by offer-
ing a forward-looking perspective, examining the implications of emerging technologies
such as 6G networks, quantum computing, and sustainable edge–cloud ecosystems. By
addressing critical challenges in real-time processing, scalability, and cross-domain service
orchestration, this survey establishes itself as a comprehensive and future-ready reference,
reinforcing its novelty and significance in the field. In summary, this survey

• Provides an in-depth examination of multi-tier, fully distributed, FL-enhanced, and
hybrid digital twin-enabled architectures, highlighting their scalability, resilience, and
efficiency trade-offs.

• Explores the role of AI-driven resource allocation, 5G/6G networking, blockchain se-
curity, and federated intelligence in enhancing the performance, security, and privacy
of edge–cloud infrastructures.

• Systematically assesses the impact of edge–cloud computing in smart transportation,
healthcare, industrial automation, smart cities, energy management, AR/VR, disaster
response, and cybersecurity, demonstrating its transformative potential.

• Highlights critical challenges outlining future research directions to address existing
limitations.

Figure 1 presents a comprehensive overview of edge and cloud computing in smart
cities, categorizing architectural models, enabling technologies, application domains, and
emerging challenges. It depicts four key architectural frameworks: multi-tier hierarchical,
fully distributed, clustered edge–cloud architecture with FL, and hybrid digital twin-
enabled models, highlighting their strengths and trade-offs in latency, scalability, fault
tolerance, and energy efficiency. The figure also maps enabling technologies such as 5G/6G
networking, AI-driven resource allocation, blockchain security, and edge virtualization,
illustrating their role in enhancing performance, security, and decentralized intelligence.

Furthermore, it outlines critical application domains, including smart healthcare, trans-
portation, industrial automation, energy management, AR/VR, and cybersecurity, demon-
strating the transformative potential of edge–cloud synergy. Lastly, future research direc-
tions such as AI-driven autonomy, federated intelligence, quantum computing, and sus-
tainable edge–cloud ecosystems are highlighted, providing a roadmap for next-generation
smart-city infrastructures.
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Table 1. Summary of surveys on edge and cloud computing in smart cities.

Reference Description Focused Points Limitations

[8]

Examines the development and
implementation of smart cities, analyzing
intelligent computing algorithms and
their applications in urban environments.
It provides insights into smart-city
frameworks and various optimization
techniques.

Covers smart-city frameworks
and various optimization
techniques.

Lacks deep insights into
resource allocation
strategies and
AI-driven orchestration.

[9]

An overview of edge computing’s role in
smart cities, covering applications,
classifications, and challenges. The paper
also presents a taxonomy of edge
computing applications for
latency-sensitive smart-city services.

Focuses on latency-sensitive
smart-city services.

Does not address
integration challenges
between edge and
cloud computing.

[10]

Notes how cloud, mobile, and edge
computing enhance smart cities by
improving urban systems like health,
energy, and planning. It highlights their
role in addressing urban heat island
effects and future integration challenges.

Explores the role of computing in
urban planning, health, and
energy management.

Limited discussion on
real-time processing
and AI-driven
automation.

[11]

Discusses the advantages of edge
computing in healthcare, the Internet of
Things (IoT), and smart-city applications.
Highlights edge computing’s ability to
enhance data security, reduce latency, and
improve computational efficiency in
real-time environments.

Emphasizes security, latency
reduction, and computational
efficiency.

Does not extensively
discuss cloud–edge
synergy.

[12]

Surveys the role of 5G-enabled
multi-access edge computing (MEC) in
smart cities. It highlights the potential of
MEC to enhance smart-city infrastructure
through reduced latency and distributed
computing resources.

Focuses on how MEC improves
smart-city infrastructure.

Does not compare MEC
with other edge–cloud
models.

[13]

Analyzes cloud computing security within
smart-city networks, addressing threats,
vulnerabilities, and countermeasures. The
survey also discusses privacy concerns
and the role of edge computing in
mitigating security risks.

Focuses on security risks and
privacy issues.

Limited focus on
performance trade-offs
and resource allocation.

This
survey

Provides a comprehensive analysis of
edge–cloud computing in smart cities,
including architectures, resource
allocation, AI integration, and security
strategies.

- Offers a multi-tier architectural
perspective.
- Analyzes AI-driven resource
allocation.
- Compares security and privacy
considerations.
- Evaluates domain-specific
applications (transportation,
healthcare, etc.).
- Outlines future research
directions (6G, quantum,
sustainable computing).

No major limitations
compared to existing
surveys, but future
work may explore more
real-world deployments
and experimental
results.
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Figure 1. An overview of surveyed key topics: edge and cloud computing in smart cities.

More specifically, the remainder of the paper is structured as follows. Section 2 focuses
on architectural models for edge and cloud computing in smart cities. Section 3 explores
enabling technologies. Moreover, Section 4 notes applications domains. Section 5 provides
challenges, open issues, and future research directions. Finally, Section 6 summarizes the
findings of this survey.

2. Architectural Models for Edge and Cloud Computing in Smart Cities
The architectural models governing edge and cloud computing integration in smart

cities define the distribution of computational tasks, data flow, and communication among
various entities. These architectures address the trade-offs between latency, computational
power, bandwidth consumption, and energy efficiency. A well-structured architectural
framework is important to achieving optimal service delivery in applications requiring
real-time decision-making and large-scale data analytics.

2.1. Multi-Tier Hierarchical Architecture

The multi-tier hierarchical architecture structures computational resources across
multiple layers to optimize performance, latency, and resource utilization. This architecture
balances centralized high-performance computing with distributed low-latency processing,
ensuring intelligent service provisioning across urban environments [14,15].

Formally, the architecture is modeled as a layered graph G = (N ,L), where N repre-
sents the set of computing nodes categorized into layers, and L denotes the communication
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links between them. Each node ni ∈ N has a defined computational capacity, storage, and
processing latency. The objective is to minimize cumulative service delay while optimizing
resource allocation [16,17]. The computational hierarchy, shown in Figure 2, consists of
three basic layers unwrapped into “Cloud, Edge, and Device” [18].

Cloud servers

Edge servers

IoT 
devices

Figure 2. Schematic representation of the three-tier architecture.

Cloud layer C consists of M distinct nodes, the cloud servers, where each node
provides centralized data storage, large-scale computational resources for data process-
ing, AI model training, and global analytics. Computational resources at this layer are
represented by

C = {C1, C2, . . . , CM}, Cm = (Pm, Sm, LCm), m = 1, 2, . . . , M, (1)

where Pm denotes the processing power of cloud node Cm, Sm its available storage, and LCm

its inherent processing latency. The term LCm specifically represents the intrinsic processing
delay at cloud node Cm, which depends solely on the node’s computational capacity and
workload. However, tasks offloaded to the cloud experience an additional transmission
delay, leading to the total execution latency at the cloud, denoted as TC. This total delay
includes both network transmission time and processing latency in the cloud

TC = TD→C + LCm + TC→D, (2)

where TD→C is the time required to transmit data from the device or edge to the cloud, LCm

is the actual processing delay at the cloud node, and TC→D is the response time for sending
the processed results back to the device. The primary drawback of the cloud layer is the
high transmission latency, TC, which varies with network conditions and task size [19,20].

Edge layer E serves as an intermediary stratum that minimizes response times by
processing tasks closer to data sources, alleviating network congestion and reducing latency.
It is composed of K distinct nodes, called edge servers, each with its own computational
and storage constraints. The edge layer is formally defined as
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E = {E1, E2, . . . , EK}, Ek = (Pk, Sk, LEk ), k = 1, 2, . . . , K, (3)

where Pk represents the processing power, Sk the storage capacity, and LEk the inherent
latency at edge node Ek. The latency at the edge layer, LEk , is significantly lower than at the
cloud since tasks are processed closer to their sources. However, the edge is constrained by
finite computing resources, which limits its capacity to handle computationally intensive
tasks [21].

The device layer (D) comprises a set of IoT devices and user equipment that continu-
ously generate data streams but possess limited computational and storage capabilities.
These devices, typically operating in dynamic environments, rely on higher layers for
processing-intensive tasks. Assuming N devices, the device layer is formally defined as

D = {D1, D2, . . . , DN}, Dn = (Pn, Sn, Ln), (4)

where each device Dn is characterized by Pn processing capacity, constrained due to
hardware and energy limitations, Sn available storage, primarily used for buffering and
temporary data retention, and Ln inherent latency, influenced by local computation and
network transmission delays. Given these constraints, IoT devices offload computationally
demanding tasks to the Edge and Cloud Layers to optimize performance, reduce energy
consumption, and enable real-time analytics [22].

Assuming a set of tasks T , a task τ ∈ T can be executed either at the edge or the
cloud, with partial execution allowed. The optimization model for balancing task execution
between the edge and cloud layers is formulated as

min
αi

K

∑
i=1

(
αiTEi + (1 − αi)TC

)
, (5)

where αi ∈ [0, 1] (execution ratio) determines how much of task τ is executed at Ei, with
the remaining portion offloaded to the cloud [23]. The term TC used in this equation refers
to the total execution time when the task is processed in the cloud, encompassing both the
network transmission delay and cloud processing latency. In contrast, the edge processing
delay TEi accounts only for the local execution time at edge node Ei, which is generally
lower but subject to resource constraints.

To ensure balanced workload distribution, constraints are imposed on computational
resources at both the edge and cloud layers, which prevent edge nodes from exceeding
their capacity

∑
τ∈T

αiCτ ≤ CEi , ∀Ei ∈ E, (6)

∑
τ∈T

(1 − αi)Cτ ≤ CC. (7)

The term CEi represents the total computational capacity available at edge node Ei, meaning
that the total workload assigned to Ei cannot exceed this limit. This ensures that edge
nodes are not overloaded, maintaining low-latency processing and preventing performance
degradation. Similarly, CC represents the total computational capacity available in the
cloud. Since the cloud has significantly higher processing power, this constraint prevents
excessive offloading that could lead to network congestion or increased response times.
Cτ represents the computational demand of task τ. In these equations, αi determines the
fraction of task τ that is executed at edge node Ei, while (1 − αi) represents the fraction
offloaded to the cloud. If αi = 1, the task is fully executed at the edge, and no workload
is sent to the cloud. Conversely, if αi = 0, the task is completely offloaded to the cloud.
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When 0 < αi < 1, the task is partially executed at the edge, with the remaining part
offloaded to the cloud, ensuring a hybrid execution strategy. These constraints work
together to distribute tasks efficiently, ensuring that edge computing resources are fully
utilized without exceeding their processing limits while preventing the cloud from being
overwhelmed by offloaded tasks.

Additionally, a latency-aware decision function determines the most suitable execution
location

F(τ) =

Ej, if TEj + TD→Ej ≤ TC where Ej ∈ E

C, otherwise.
(8)

This decision function ensures that a task is executed at an edge node Ej if the sum of
the edge execution time TEj and the transmission time from the device to the edge TD→Ej

is lower than the total cloud execution time TC, which includes both network delay and
cloud processing time. Otherwise, the task is offloaded to the cloud. This dynamic decision
mechanism enables the efficient allocation of computational resources based on real-time
network conditions and task execution requirements.

To capture the overall energy consumption at different layers, both active and idle
states are considered

Etotal =
K

∑
i=1

(
PD→Ei TD→Ei + Pactive

Ei
αiTEi + Pidle

Ei
(1 − αi)TEi + PEi→CTEi→C + PCTC

)
, (9)

where PD→Ei is the power consumed for data transmission from devices to the edge, Pactive
Ei

is the power used when processing at the edge, Pidle
Ei

accounts for background energy
usage when idle, and PEi→C and PC represent power usage for cloud communication and
processing. This model ensures that idle energy consumption is accounted for, making it
more realistic for power-constrained edge devices [24–26].

This hierarchical architecture efficiently balances latency, computational demand, and
energy efficiency, enabling real-time smart-city applications. However, challenges such
as network congestion, resource synchronization, and adaptive task migration require
advanced AI-based scheduling techniques to enhance system resilience [27].

2.2. Fully Distributed Edge–Cloud Architecture

The fully distributed edge–cloud architecture eliminates the constraints of hierarchical
computing models by enabling decentralized processing, decision-making, and coordi-
nation among edge nodes and cloud resources. In contrast to traditional architectures
where task execution follows a predefined hierarchy, this model ensures dynamic workload
distribution across edge nodes, reducing bottlenecks and improving scalability and fault
tolerance [28,29].

A fully distributed edge–cloud system can be represented by an undirected graph
G(N ,L) where N = E ∪ C is the set of computational nodes, consisting of edge nodes E
and cloud nodes C. The set L represents bidirectional communication links between these
nodes, enabling distributed decision-making and resource sharing [30,31].

Unlike hierarchical models where cloud resources predominantly determine task
execution, the distributed model allows edge nodes to autonomously decide whether to
process a task locally or offload it to a neighboring node or cloud resource. For each task τ

arriving at edge node Ej ∈ E, the execution decision is determined based on the following
latency-aware rules function
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F(τ) =


Ej, if TEj ≤ TC and TEj ≤ TEk + Tcomm(Ej, Ek),

Ek, if TEk + Tcomm(Ej, Ek) ≤ TEj and TEk + Tcomm(Ej, Ek) ≤ TC,

C, otherwise.

(10)

where TEj , TEk is the task execution time at edge node Ej and Ek, respectively, TC is the exe-
cution time at the cloud, and in case of task offloading to a neighboring node, Tcomm(Ej, Ek)

denotes the communication delay between nodes j and k. This decision function aims to
minimize execution latency while accounting for network constraints and computational
limitations [32,33]. The function prioritizes local execution at Ej if it offers the lowest latency.
If a neighboring edge node Ek executes the task faster than Ej and the cloud, the task is
migrated to Ek. If neither local execution nor edge-to-edge migration is feasible, the task is
offloaded to the cloud.

Each edge node has finite computational capacity CEj and energy budget Ebudget
Ej

. The
workload assigned to an edge node at any time is constrained by

∑
τ∈TEj

Cτ ≤ CEj , ∑
τ∈TEj

Econs
τ ≤ Ebudget

Ej
, ∀Ej ∈ E, (11)

where TEj represents the set of tasks assigned to node Ej (which is a subset of the total tasks
T ), and Cτ and Econs

τ denote the computational demand and energy consumption of task τ,
respectively [34,35].

In the distributed model, edge nodes collaborate dynamically to balance workload dis-
tribution. The probability of task offloading from one edge node to another is governed by

Poffload(Ej → Ek) =
1

1 + e−λ(θk−θj)
, (12)

where θj and θk denote the available computational capacity of nodes Ej and Ek, respectively,
and λ is a sensitivity parameter controlling the offloading decision. If an edge node’s
available capacity falls below a threshold θth, it attempts to offload tasks to neighboring
nodes before considering cloud offloading [36,37].

The total system latency Tsys in a fully distributed edge–cloud network is expressed as

Tsys = ∑
τ∈T

(
TEj +

dEj ,Ek

BEj ,Ek

+ TCδτ

)
, (13)

where dEj ,Ek represents the distance between two edge nodes, BEj ,Ek is the available band-
width for communication, and δτ is an indicator function, where δτ = 1 if the task is
processed in the cloud, and δτ = 0 if processed at the edge [38,39].

The distributed nature of this architecture enhances fault tolerance. If an edge node Ej

fails, its workload is reallocated to neighboring nodes without interrupting service. The
failure probability of a task execution in this model is given by

Pf = 1 −
K

∏
j=1

(1 − pEj), (14)

where pEj represents the failure probability of node Ej. As the number of cooperative nodes
increases, the probability of successful execution improves [40,41].

Energy efficiency is a crucial consideration in fully distributed architectures, especially
where edge nodes operate on limited power. The total energy consumption of the system is
given by
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Etotal =
K

∑
j=1

(
PEj TEj + PcommTcomm(Ej, Ek) + PCTCδτ

)
, (15)

where PEj and Pcomm are the power consumption rates for computation and communication,
respectively. Efficient scheduling strategies, such as reinforcement learning (RL)-based task
allocation, can optimize energy efficiency by dynamically adjusting resource usage [42,43].

The fully distributed edge–cloud architecture removes the limitations of hierarchical
computing, ensuring adaptability to variations in workload, network congestion, and node
availability. This cooperative processing framework maximizes resource utilization and
minimizes latency while maintaining service reliability. However, the model introduces
challenges such as increased synchronization complexity and the need for consensus
mechanisms to maintain consistency across edge nodes [44,45].

2.3. Clustered Edge–Cloud Architecture with Federated Learning

The clustered edge–cloud architecture with FL introduces a structured, decentralized
approach to computational resource allocation, where edge nodes are grouped into dynam-
ically coordinated clusters that collaborate with cloud servers. This architectural model
optimizes computational efficiency by minimizing latency, reducing network congestion,
and preserving data privacy, thereby enhancing the scalability and adaptability of edge
computing in smart-city environments. Unlike fully distributed architectures, which oper-
ate without a predefined structure, the clustered model ensures systematic coordination,
enabling intelligent workload distribution and federated machine learning (ML) while
mitigating inter-cluster communication overhead [46,47].

The architecture consists of a set of clusters

CE = {Cl1, Cl2, . . . , ClQ}, (16)

where each cluster Clq comprises multiple edge nodes Eq and a cluster coordinator Gq.
Each cluster is dynamically formed based on spatial proximity, resource availability, and
computational demand. The set of Nq edge nodes within the qth cluster is denoted as

Eq = {Eq1, Eq2, . . . , EqNq}, q = {1, 2, . . . , Q}, (17)

where each edge node Eqi (i = 1, 2, . . . , Nq) is characterized by a triple (Pqi, Sqi, Lqi), repre-
senting processing power, available storage, and inherent latency, respectively. The cluster
coordinator Gq manages intra-cluster task distribution and FL aggregation. The selection
of a cluster coordinator follows an optimization criterion

Gq = arg min
Eqi∈Eq

(
αLqi − βPqi − γSqi

)
, (18)

where α, β, γ are weighting coefficients balancing latency, computational power, and storage
capacity in selecting the optimal coordinator. Higher processing power and storage are
preferred, ensuring efficient coordination while minimizing latency [48–50].

Each cluster follows a hierarchical processing framework, where tasks are first assigned
to an available edge node within the cluster based on the optimization function

E∗
qi = arg min

Eqi∈Eq

(
TEqi +

dEqi ,Gq

BEqi ,Gq

)
, (19)

where TEqi represents the processing delay at edge node Eqj, dEqi ,Gq denotes the communica-
tion distance to the cluster coordinator, and BEqi ,Gq is the available bandwidth between Eqi
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and Gq. If no edge node within the cluster meets the latency constraint, the task is offloaded
to the cloud according to

F(τ) =

E∗
qi, if TE∗

qi
+ Tcomm(Eqi, Gq) ≤ Tth,where Eqi ∈ Eq

C, otherwise,
(20)

where Tth is the maximum latency threshold for real-time processing [51,52].
FL is integrated into this architecture to facilitate collaborative model training without

exposing raw data to external networks. Each edge node Eqi maintains a local ML model
Mi and updates it using local datasets Dti following

Mt
i = Mt−1

i − η∇L(Mt−1
i , Dti), (21)

where η is the learning rate, and ∇L represents the gradient of the loss function. The locally
trained models are then transmitted to the cluster coordinator for aggregation

Mt
q =

Nq

∑
i=1

wiMt
i ,

Nq

∑
i=1

wi = 1, (22)

where wi represents the weight assigned to each edge node based on its dataset size. The
aggregated model is periodically synchronized with the global cloud model

Mt
C =

Q

∑
q=1

vqMt
q,

Q

∑
q=1

vq = 1, (23)

where vq is the aggregation weight assigned to each cluster. This FL mechanism ensures
privacy preservation, reduces cloud communication costs, and enhances model adaptability
to local conditions [53,54].

The overall system latency, encompassing computational, communication, and learn-
ing synchronization delays, is expressed as

Tsys = ∑
τ∈T

(
TEqi + Tcomm(Eqi, Gq) + Tagg + TCδτ

)
, (24)

where Tagg denotes the time required for model aggregation at the cluster level, and TC

captures additional delays if cloud interaction is required [55].
A key advantage of the clustered architecture lies in its fault tolerance and resilience

to node failures. If an edge node becomes unavailable, its computational workload is
dynamically reassigned to neighboring nodes within the same cluster. The probability of
complete failure is determined by assessing the likelihood that all nodes in a cluster q fail
simultaneously. The following equation aggregates individual node failure probabilities to
evaluate system resilience and fault tolerance

Pf = 1 −
Nq

∏
i=1

(1 − pEqi ), (25)

where pEqi is the failure probability of node Eqi. The probability of service continuity
increases with the number of edge nodes in the cluster, ensuring robustness in decentralized
environments [56].

Energy efficiency in this architecture is enhanced by restricting cloud interactions and
optimizing intra-cluster task execution. The total energy consumption across clusters is
given by:
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Etotal =
Nq

∑
i=1

(
PEqi TEqi + PcommTcomm(Eqi, Gq) + PaggTagg + PCTCδτ

)
, (26)

where Pagg represents the power consumption associated with FL model aggregation. Adap-
tive power management strategies, such as dynamic voltage scaling and sleep scheduling,
further improve energy efficiency [57,58].

2.4. Hybrid Digital Twin-Enabled Edge–Cloud Architecture

The hybrid digital twin-enabled edge–cloud architecture integrates computational
capabilities across distributed edge nodes and centralized cloud resources while incorporat-
ing real-time virtual representations of physical systems. By leveraging digital twins, this
architecture enhances predictive analytics, adaptive decision-making, and dynamic opti-
mization of urban environments, enabling intelligent automation and real-time monitoring.
The architecture is structured to maintain seamless interactions between the physical sys-
tem, its digital counterpart, and the computational infrastructure, ensuring data consistency
and low-latency execution [59,60].

The computational framework is modeled as a set of interconnected layers, where
each physical entity in the smart-city environment is associated with a digital twin. This
system is formalized as

G = (P ,D, E, C,L), (27)

where P represents the set of physical entities, D denotes the digital-twin models corre-
sponding to each entity, E consists of the edge nodes responsible for localized processing,
C includes cloud resources performing large-scale analytics, and L defines the set of com-
munication links interconnecting these components [61,62].

The digital twin Di associated with a physical entity Pi maintains a continuous
state synchronization mechanism to ensure accurate real-time representation. The up-
date cycle follows

Dt+1
i = f (Dt

i ,Si, δt), (28)

where Dt+1
i represents the updated digital-twin state at time t + 1, Si denotes the set of

sensor inputs from Pi, and δt is the time step governing synchronization frequency. The
function f encapsulates the transformation of sensor data into a virtual model, ensuring
consistency with the real-world entity [63,64].

The decision-making process in this architecture is governed by an optimization
function that determines the optimal execution layer for each computational task τ. The
execution strategy follows

F(τ) =

Ej, if TEj + Tsync ≤ TC + Tcomm, where Ej ∈ E

C, otherwise,
(29)

where TEj is the processing delay at the edge node Ej, Tsync denotes the synchronization
delay between the digital twin and the physical entity, TC represents the cloud processing
delay, and Tcomm is the communication latency between the edge and cloud. The selection
function prioritizes execution at the edge layer unless cloud processing becomes necessary
due to resource constraints or computational complexity [65,66].

Synchronization latency in digital-twin architectures significantly impacts real-time
system performance. The total synchronization delay is modeled as

Tsync =
dupdate + dcomm + dproc

fsync
, (30)
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where dupdate represents the time taken for sensor data acquisition, dcomm captures the trans-
mission delay from the physical system to the digital twin, dproc accounts for the processing
time required to update the twin’s state, and fsync is the synchronization frequency. The
objective is to minimize Tsync to ensure real-time consistency between the physical and
digital environments [67,68].

Computational load balancing between the edge and cloud layers is a fundamental
aspect of this architecture, as resource allocation must dynamically adapt to real-time
conditions. The total workload across the architecture is represented by

K

∑
j=1

ajCEj + (1 − aj)CC = Ctotal , (31)

where aj is a binary variable indicating whether task τ is processed at the edge (aj = 1)
or offloaded to the cloud (aj = 0), CEj denotes the computational capacity of the edge
node, CC represents the cloud’s processing capability, and Ctotal is the overall system
workload [69,70].

In addition to computational efficiency, energy consumption remains a critical fac-
tor in determining the viability of digital twin-enabled architectures. The total energy
consumption is given by:

Etotal =
K

∑
j=1

(
PEj TEj + PsyncTsync + PCTC

)
, (32)

where PEj represents the power consumption of edge node Ej, Psync accounts for the energy
required to maintain synchronization, and PC denotes the power cost of cloud-based
processing. Efficient task scheduling algorithms, such as RL-based optimizations, can be
incorporated to minimize Etotal while maintaining system performance [71,72].

The hybrid edge–cloud model offers several advantages over conventional archi-
tectures by integrating real-time simulation, predictive analytics, and adaptive resource
allocation. However, maintaining consistency between the digital twin models and their
physical counterparts introduces computational overhead, particularly in high-frequency
synchronization scenarios. To address this challenge, adaptive synchronization strategies
dynamically adjust fsync based on task urgency and network conditions, ensuring efficient
data transmission while preventing excessive update cycles [73–75].

From a fault-tolerance perspective, system resilience is achieved through distributed
redundancy mechanisms. In the event of an edge node failure, the system dynamically
redistributes computational tasks and synchronization responsibilities to adjacent nodes,
mitigating service disruptions. The probability of failure in this architecture is expressed as

Pf = 1 −
K

∏
j=1

(1 − pEj), (33)

where pEj denotes the failure probability of an individual edge node, and K represents
the total number of edge nodes supporting redundancy. By increasing the number of
participating nodes, the likelihood of service continuity is enhanced [76,77].

2.5. Comparative Analysis of Architectures

The integration of edge and cloud computing within smart-city infrastructures follows
distinct architectural paradigms, each addressing key challenges such as latency, scalabil-
ity, fault tolerance, energy efficiency, and computational complexity. Selecting the right
architecture significantly impacts system performance, resource utilization, and efficiency,
making a comparative analysis essential for real-time and large-scale applications.
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Latency is critical for responsiveness in edge–cloud systems. Hierarchical architectures
involve multiple layers, which can introduce delays due to transmission overhead. Fully
distributed models minimize latency by processing tasks closer to data sources, reduc-
ing cloud dependency. Clustered architectures improve efficiency by structuring edge
nodes into localized groups, ensuring faster response times. Meanwhile, digital twin-
enabled architectures may experience additional delays due to the need for continuous
synchronization, impacting ultra-low-latency applications.

Scalability defines how well an architecture can handle increasing workloads. Hier-
archical models rely on cloud computing, which scales vertically but can face congestion
issues. Fully distributed approaches support horizontal scaling by dynamically reallocating
tasks across edge nodes, improving adaptability. Clustered architectures optimize local
resource management, offering a balance between cloud-based and edge-based scalability.
Digital-twin architectures enhance system adaptability by simulating resource demands,
allowing preemptive adjustments.

Fault tolerance ensures system reliability despite node failures. Hierarchical architec-
tures are more vulnerable due to their reliance on cloud infrastructure. Fully distributed
models enhance resilience through cooperative processing, ensuring that failures at one
node do not disrupt overall operations. Clustered architectures provide moderate fault
tolerance by redistributing workloads within each cluster. Digital twin-enabled models
further improve resilience by maintaining virtual representations of physical components,
allowing proactive failure mitigation.

Energy efficiency is crucial for smart-city applications, especially in power-constrained
environments. Fully distributed models typically consume less energy by processing
data locally, reducing transmission costs. Hierarchical models involve frequent cloud
communication, increasing energy usage. Clustered architectures balance energy con-
sumption by minimizing long-range data transfers. Digital twin-based architectures, while
enhancing system intelligence, may lead to higher energy consumption due to continuous
synchronization and processing.

Computational complexity varies across architectures. Hierarchical models follow
structured workflows, making them relatively simple to implement but less flexible.
Fully distributed systems introduce higher complexity due to decentralized decision-
making and real-time task balancing. Clustered models mitigate this by organizing edge
resources into manageable units, reducing system-wide overhead. Digital-twin archi-
tectures, though highly adaptive, require extensive real-time processing, making them
computationally intensive.

Each architecture presents unique trade-offs based on latency, scalability, fault toler-
ance, energy efficiency, and complexity. Hierarchical architectures offer structured work-
load distribution but struggle with scalability and fault tolerance. Fully distributed models
maximize resilience but require advanced coordination. Clustered architectures provide a
balance between scalability and efficiency. Digital-twin architectures enhance predictive
decision-making but introduce synchronization overhead. The choice of architecture should
align with application-specific requirements, ensuring optimal system performance. In
summary, Table 2 presents a comparative analysis of the different architectures based on
key performance metrics.
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Table 2. Comparative Analysis of Edge-Cloud Architectures.

Architecture Latency Scalability Fault Tolerance Energy
Efficiency

Computational
Complexity

Hierarchical
[14–27]

Moderate.
Multi-layer
processing
increases latency
but improves
structured
workload
allocation.

Moderate–High.
It can scale by
adding cloud
resources but is
constrained by
layer
dependencies.

Low. Cloud
dependency
creates a single
point of failure,
reducing
reliability.

Moderate. Edge
reduces energy
consumption,
but inter-layer
communication
overhead
remains.

Low. Task
allocation
follows
predefined
deterministic
execution
models.

Fully distributed
[28–45]

Low.
Decentralized
execution
reduces
transmission
delays,
improving
responsiveness.

High. Adaptive
task allocation
enables
horizontal
scalability
without reliance
on the cloud.

High.
Redundant
nodes allow task
redistribution,
ensuring
minimal service
disruption.

High. Execution
at the edge
reduces data
transmission
energy costs.

High. Requires
real-time
synchronization
and
decentralized
scheduling
strategies.

Clustered
edge–cloud
[46–58]

Low–Moderate.
Clusters handle
local processing,
but cloud
involvement
adds minimal
delay.

High. Cluster
controllers
optimize
workload
balancing across
multiple nodes.

Moderate–High.
Node failures are
managed within
clusters, but
controller
failures impact
performance.

Moderate–High.
Local execution
is efficient, but
cloud
synchronization
increases
overhead.

Moderate.
Cluster-level
processing
improves
efficiency while
reducing global
complexity.

Hybrid digital
twin-enabled
[59–77]

Moderate–High.
Digital-twin
synchronization
introduces
additional
processing delay.

High. Supports
predictive
analytics for
proactive system
scaling.

High. Digital
twins maintain a
system state
even when
physical
components fail.

Moderate.
Frequent
updates impact
power efficiency;
reducing
synchronization
frequency
mitigates this.

High. Requires
continuous
real-time data
processing and
AI-driven
analytics.

3. Enabling Technologies
The integration of edge and cloud computing in smart cities relies on a set of enabling

technologies that enhance computational efficiency, network performance, data security,
and intelligent automation. These technologies form the backbone of modern computing
infrastructures, allowing seamless interactions between distributed processing units and
centralized cloud resources. The interplay among advanced communication protocols,
artificial intelligence-driven optimizations, and secure data transmission mechanisms
dictates the efficiency and scalability of edge–cloud architectures. This section presents
a detailed analysis of the key enabling technologies, highlighting their mathematical
formulations and impact on system performance.

3.1. Advanced Communication Networks

Effective communication networks are crucial for enabling seamless interaction be-
tween edge nodes, cloud resources, and end-user devices in smart cities. The performance
of edge–cloud computing systems depends on low-latency, high-bandwidth connectivity
to support real-time applications [78–80].
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First, 5G and 6G technologies play a pivotal role in improving network efficiency by
providing ultra-reliable low-latency communication (URLLC), massive machine-type com-
munication (mMTC), and enhanced mobile broadband (eMBB). These advancements ensure
that smart-city applications can handle vast amounts of data with minimal transmission
delays [81].

To further enhance network efficiency, Software-Defined Networking (SDN) and Net-
work Function Virtualization (NFV) enable dynamic network configuration and resource
optimization. SDN decouples the control and data planes, allowing for flexible network
management, while NFV virtualizes network functions, reducing hardware dependencies
and improving scalability [82–84].

Another critical factor is interference management, which affects signal quality and
data throughput. High interference levels can cause network congestion and delays,
impacting real-time applications. By implementing intelligent traffic routing and adaptive
bandwidth allocation, communication networks can mitigate interference issues, ensuring
reliable data exchange across edge–cloud infrastructures [85,86].

Overall, advanced communication technologies facilitate efficient data transmission in
edge–cloud environments, making them fundamental to the success of latency-sensitive
smart-city applications.

3.2. Artificial Intelligence and Machine Learning

The integration of AI and ML in edge–cloud computing enhances decision-making,
resource management, and predictive analytics. AI-driven techniques help optimize task
scheduling, improve computational efficiency, and ensure adaptive service provisioning.

One of the key applications of AI in edge–cloud computing is intelligent workload
distribution. AI models analyze real-time conditions, such as network latency, processing
capacity, and energy consumption, to determine whether a task should be executed at the
edge or offloaded to the cloud. This dynamic allocation minimizes response times and
optimizes resource utilization [87–89].

Another important aspect is FL, which allows edge devices to collaboratively train AI
models without sharing raw data. Instead of sending complete datasets to a central server,
FL enables decentralized model updates, preserving data privacy while improving overall
system intelligence. This approach is particularly useful in healthcare, transportation, and
other sensitive domains where data confidentiality is a priority [90,91]. Additionally, RL
techniques are used to adapt resource allocation strategies over time. By continuously learn-
ing from system performance, RL-based models can dynamically adjust processing power,
bandwidth allocation, and task prioritization, ensuring efficient edge–cloud operations [92].
AI and ML significantly enhance the scalability and responsiveness of edge–cloud systems,
enabling smarter, more adaptive computing frameworks in smart-city applications.

3.3. Blockchain and Secure Data Transmission

Security is a critical concern in edge–cloud computing, where large-scale data trans-
mission and processing occur across multiple distributed nodes. Blockchain technology
enhances security by providing a decentralized framework that ensures data integrity,
transparency, and protection against unauthorized modifications. A key advantage of
blockchain is its ability to create tamper-proof transaction records. In edge–cloud environ-
ments, blockchain secures communication between edge nodes and the cloud by verifying
each transaction through a consensus mechanism. This prevents malicious entities from
altering data and strengthens trust among interconnected devices [93,94].

Another essential aspect of secure data transmission is end-to-end encryption. Ad-
vanced cryptographic techniques, such as Elliptic Curve Cryptography (ECC) and Zero-
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Trust Security Frameworks, ensure that only authorized entities can access sensitive in-
formation. Unlike traditional security models that assume trust within a network, the
zero-trust approach continuously verifies identities and access permissions, reducing the
risk of cyberthreats [95,96].

Furthermore, multi-factor authentication (MFA) and intrusion detection systems (IDS)
enhance cybersecurity by preventing unauthorized access and identifying anomalies in
network activity. These mechanisms help mitigate threats such as data breaches, denial-of-
service (DoS) attacks, and unauthorized system modifications [97,98].

By integrating blockchain with encryption techniques and zero-trust models, edge–
cloud computing can achieve enhanced security, data integrity, and resilience against
cyberattacks, ensuring the safe deployment of smart-city services.

3.4. Edge Virtualization and Resource Management

Virtualization technologies are essential for managing computational resources ef-
ficiently in edge–cloud environments. By enabling multiple applications to share pro-
cessing infrastructure dynamically, virtualization enhances scalability, flexibility, and
cost-effectiveness.

One of the key benefits of virtualization is containerization, which allows applications
to run in isolated environments with minimal overhead. Containers provide a lightweight
alternative to virtual machines (VMs), reducing the complexity of deploying and managing
workloads at the edge. This approach is widely used in microservice-based architectures,
where applications are broken down into smaller, modular components [99–101].

Another important aspect of resource management is dynamic workload scaling.
Edge–cloud systems must adjust computational resources based on real-time demand to
maintain optimal performance. When the workload increases, additional virtual instances
can be deployed to handle the demand. Conversely, during low-traffic periods, resources
can be deallocated to save energy [102].

To further enhance efficiency, energy-aware resource management strategies are im-
plemented. These include techniques such as dynamic voltage and frequency scaling
(DVFS), which adjusts processing power based on workload intensity to reduce energy
consumption. By optimizing power usage, edge–cloud systems can achieve sustainability
without compromising performance [103].

Effective virtualization and intelligent resource management enable seamless work-
load distribution, energy-efficient computing, and adaptive service provisioning, making
them fundamental for large-scale edge–cloud infrastructures in smart cities [104,105].

3.5. Comparative Analysis of Enabling Technologies

The integration of enabling technologies within edge–cloud computing frameworks
enhances efficiency, scalability, and resilience by optimizing latency, computational intelli-
gence, security, and resource allocation. Their effectiveness depends on improving system
performance while minimizing energy consumption, response time, and computational
overhead. This section compares their contributions and trade-offs.

High-speed communication protocols, such as 5G, 6G, and Wi-Fi 6, reduce latency
and enhance data transmission rates, improving real-time interactions. While 5G supports
ultra-reliable low-latency communication (URLLC), its infrastructure costs remain high.
Future 6G networks promise lower latency but introduce higher power consumption and
signal stability challenges over long distances.

AI-driven resource management improves task scheduling and workload balancing
through RL and FL. RL dynamically adjusts resource allocation, while FL decentralizes
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model training to enhance privacy. However, FL introduces synchronization delays and
additional communication costs, requiring optimized coordination.

Security mechanisms, particularly blockchain-based authentication, mitigate unau-
thorized access risks in decentralized edge–cloud environments. Traditional mechanisms
impose high computational costs, making them less viable for real-time applications.
Lightweight alternatives, incorporating ECC and zero-trust models, enhance security while
minimizing overhead.

Virtualization technologies, including containerization, facilitate dynamic resource
allocation and multi-tenancy. Containers provide faster deployment and lower overhead
than VMs, making them well suited for edge workloads. However, security concerns,
particularly kernel vulnerabilities, necessitate robust isolation mechanisms.

Energy efficiency is a major challenge in edge–cloud computing, requiring a balance
between performance and power consumption. Dynamic Voltage Scaling (DVS) and
adaptive workload migration help optimize energy use by reallocating tasks to nodes with
higher efficiency. While these techniques improve sustainability, they require accurate
predictive models to prevent performance degradation.

Each enabling technology plays a distinct role in optimizing edge–cloud infrastruc-
tures. High-speed networks improve latency-sensitive applications, AI-driven optimization
enhances resource management, blockchain strengthens security, and virtualization im-
proves computational efficiency. The selection of an optimal technology combination
depends on application-specific requirements, including latency constraints, security con-
siderations, and computational trade-offs. A summarized comparative analysis is presented
in Table 3, highlighting each technology’s contributions, limitations, and trade-offs.

Table 3. Comparative analysis of enabling technologies in edge–cloud computing.

Technology Functionality Benefits Limitations
Influence on
Edge-Cloud
Computing

Advanced
communication
networks
[78–86]

High-speed data
transmission,
low-latency
networking,
real-time routing.

Enhances
responsiveness,
minimizes delays,
maximizes
throughput.

High deployment
costs, spectrum
allocation complexity,
interference
management.

Ensures fast and
reliable connectivity
between edge and
cloud layers.

AI and ML
[87–92]

Intelligent workload
distribution,
predictive analytics,
real-time
optimizations.

Enhances efficiency,
automates
decision-making,
and reduces task
execution time.

Computational
overhead, real-time
inference complexity,
data privacy
concerns.

Reduces latency,
optimizes task
execution, and
improves
adaptability in
dynamic
environments.

Blockchain and
secure transmission
[93–98]

Decentralized
security,
cryptographic
authentication,
integrity verification.

Ensures
tamper-proof data
transactions and
eliminates reliance
on centralized
authorities.

High computational
power demand,
increased verification
latency, and
scalability
challenges.

Strengthens trust and
reliability in
multi-node
environments but
introduces
verification delays.

Edge virtualization
and resource
optimization
[99–105]

Dynamic workload
allocation,
multi-tenant
computing,
containerized
execution.

Improves system
elasticity, enhances
load balancing, and
minimizes
operational costs.

Complexity in
orchestration,
potential security
vulnerabilities,
resource contention.

Enables adaptive
workload migration,
optimizes resource
distribution, and
balances processing
loads.
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4. Application Domains
The deployment of edge and cloud computing architectures has revolutionized various

application domains by enabling real-time data processing, intelligent decision-making,
and efficient resource management. These architectures support diverse industries such as
transportation, healthcare, industrial automation, and smart-city infrastructure while also
transforming energy management, immersive AR/VR experiences, disaster response, and
cybersecurity. By optimizing computational efficiency and reducing latency, edge–cloud
frameworks ensure that mission-critical applications operate with seamless connectivity
and adaptive intelligence. The convergence of distributed intelligence with cloud-based
analytics fosters scalable and resilient ecosystems, addressing the growing complexities of
modern digital infrastructures.

4.1. Smart Transportation Systems

The advancement of smart transportation relies on distributed intelligence for real-
time traffic optimization, vehicle coordination, and safety management. Edge computing
enables the local processing of vast streams of vehicular data, facilitating dynamic route
adjustments, congestion mitigation, and intelligent traffic signal control. Cloud services ag-
gregate large-scale mobility data, providing long-term analytics for infrastructure planning
and predictive modeling [106,107].

Vehicle-to-everything (V2X) communication ensures seamless interaction between
vehicles, roadside units, and cloud platforms, enabling low-latency data exchange crucial
for collision avoidance and autonomous navigation. The increasing integration of AI
enhances decision-making by predicting traffic patterns, optimizing resource allocation,
and enabling cooperative driving strategies. While edge nodes process time-sensitive data
for immediate action, cloud resources refine long-term mobility insights, ensuring a balance
between real-time responsiveness and large-scale intelligence [108–110].

The deployment of autonomous vehicles intensifies the demand for ultra-reliable,
low-latency processing. Edge-based AI algorithms support real-time sensor fusion and
adaptive control, minimizing reliance on distant cloud servers. As mobility ecosystems
become more interconnected, FL enables collaborative AI model training across distributed
vehicle networks while preserving data privacy, improving real-time decision accuracy,
and enhancing safety standards [111–113].

4.2. Smart Healthcare Systems

Edge–cloud computing has redefined healthcare through remote patient monitoring,
intelligent diagnostics, and real-time emergency response. The proliferation of wearable
medical devices and smart sensors enables continuous health tracking, where edge nodes
analyze patient vitals and detect anomalies instantly. By decentralizing health analytics,
edge computing ensures that critical alerts are generated without delays, enabling timely
intervention and reducing dependency on centralized infrastructures [114,115].

Cloud services complement edge processing by providing deep learning (DL) capa-
bilities for disease prediction, medical image analysis, and large-scale epidemiological
modeling. The hybrid approach enhances diagnostic accuracy while supporting personal-
ized treatment plans based on historical patient data. FL further strengthens privacy by
training AI models across distributed edge nodes, preventing sensitive medical data from
being exposed to centralized repositories [116–118].

Emergency response systems leverage edge–cloud architectures to optimize medical
resource allocation and dynamic dispatch of ambulances and personnel. AI-driven triage
mechanisms assist in prioritizing emergency cases by analyzing real-time patient conditions,
reducing response times, and improving survival rates. These innovations collectively
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enable intelligent, real-time, and scalable healthcare services, addressing the growing
challenges of modern medical infrastructures [119–121].

4.3. Industrial Automation and Smart Manufacturing

The integration of edge–cloud computing in industrial automation enhances predic-
tive maintenance, robotic coordination, and process optimization, significantly improving
production efficiency. Edge nodes facilitate localized decision-making by continuously mon-
itoring machine performance, detecting anomalies, and initiating preventive measures to re-
duce downtime. AI-enhanced fault detection systems ensure that deviations in operational
parameters trigger immediate corrective actions, minimizing financial losses [122,123].

Real-time quality control benefits from edge-based vision systems, which identify
product defects through high-speed image analysis and AI-assisted pattern recognition.
Cloud integration enhances process optimization by aggregating quality metrics across
multiple production lines, refining models for defect prediction and performance improve-
ment. The ability to balance real-time processing at the edge with comprehensive cloud
analytics ensures optimal manufacturing workflows [124–126].

Collaborative robotics, or cobots, rely on edge intelligence for distributed control,
ensuring synchronized operations in automated assembly lines. Real-time data exchange
between robotic agents enables adaptive task execution and improves efficiency in dy-
namic production environments. The integration of industrial AI, cloud-driven analytics,
and distributed edge computing creates highly flexible and autonomous manufacturing
ecosystems [127,128].

4.4. Smart Cities and IoT-Based Urban Management

The increasing deployment of IoT devices in urban environments has transformed
smart-city management, allowing real-time monitoring of environmental parameters, traffic
regulation, and automated public services. Edge computing enables localized processing
of urban data streams, ensuring faster decision-making in applications such as smart grids,
intelligent waste management, and real-time infrastructure monitoring [129,130].

Cloud computing enhances large-scale urban planning by aggregating historical and
real-time data, providing predictive analytics for energy demand, traffic optimization, and
air quality management. The hybrid edge–cloud framework ensures that time-sensitive
decisions, such as adjusting traffic lights during peak hours or detecting environmental
hazards, are handled at the edge while comprehensive analysis and governance remain
cloud-centric [131,132].

Energy grid optimization benefits from edge intelligence, where real-time monitoring
of consumption patterns enables adaptive load balancing. AI-driven demand–response
mechanisms adjust power distribution based on usage trends, improving grid stability and
sustainability. Environmental monitoring leverages IoT sensors deployed across urban
regions, providing real-time data on air pollution, noise levels, and climate conditions.
These insights drive proactive urban policymaking, ensuring sustainable and resilient
smart-city ecosystems [133–135].

4.5. Smart Energy and Power Systems

The modernization of energy infrastructures relies on edge–cloud architectures for
intelligent grid management, decentralized energy trading, and predictive maintenance.
Edge computing enables real-time load balancing by continuously monitoring power
consumption, detecting fluctuations, and dynamically adjusting distribution. This decen-
tralized approach enhances grid resilience, preventing failures and optimizing resource
utilization [136–138].
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Cloud analytics are crucial for predicting energy demand, optimizing renewable
energy integration, and improving fault tolerance in power networks. AI-based predictive
models refine energy consumption strategies by analyzing historical and real-time grid
data, supporting efficient energy allocation [139,140].

The emergence of peer-to-peer energy trading platforms powered by blockchain and
edge intelligence enables consumers to exchange surplus electricity securely. Smart con-
tracts enforce automated transactions, reducing reliance on centralized power distribution
authorities while fostering decentralized energy markets [141,142].

4.6. Edge-Assisted Augmented and Virtual Reality

The adoption of AR/VR applications demands ultra-low-latency processing and
high computational efficiency, making edge–cloud integration essential for immersive
experiences. Edge computing accelerates real-time rendering by offloading processing
from end-user devices, ensuring seamless motion tracking, adaptive scene generation, and
AI-driven interaction modeling [143–145].

Cloud services complement edge computing by handling computationally intensive
physics simulations, DL-based content generation, and large-scale data synchronization.
This balance ensures that AR/VR experiences remain fluid and responsive, avoiding delays
that could degrade user immersion [146,147].

Edge-assisted AI prediction enhances AR/VR experiences by anticipating user move-
ments, reducing perceived latency, and improving interactivity. Optimized network band-
width allocation further ensures smooth multi-user collaboration in virtual environments,
preventing congestion and maintaining synchronization in real-time simulations [148–150].

4.7. Disaster Management and Emergency Response

Edge–cloud computing significantly enhances disaster response by providing real-
time situational awareness, predictive analytics, and rapid resource deployment. Edge
nodes facilitate immediate hazard detection by processing sensor data from surveillance
cameras, unmanned aerial vehicles (UAVs), and environmental sensors. Instantaneous
risk assessment enables authorities to make informed decisions and deploy emergency
resources efficiently [151–153].

Cloud services assist in large-scale coordination by aggregating multi-source data,
refining disaster prediction models, and optimizing evacuation strategies. AI-driven emer-
gency response systems prioritize rescue operations based on real-time impact assessments,
ensuring that relief efforts are allocated to the most affected regions [154,155].

UAVs equipped with edge processors play a vital role in disaster monitoring. They
assist in search and rescue missions through AI-enhanced object recognition. These ad-
vancements ensure faster response times, improved victim detection, and efficient resource
utilization in crisis scenarios [156,157].

4.8. Cybersecurity and Threat Detection

As edge–cloud infrastructures expand, ensuring robust cybersecurity is critical to
mitigate risks associated with data breaches, unauthorized access, and cyberattacks. AI-
driven anomaly detection enables real-time threat identification at the edge, preventing
security breaches before they escalate [158–160].

FL enhances cybersecurity by enabling real-time threat intelligence sharing without ex-
posing raw data, improving collaborative defense mechanisms across distributed networks.
Blockchain-based security frameworks introduce decentralized trust models, ensuring
tamper-proof authentication and secure data exchanges [161–163].

The integration of zero-trust architectures enforces continuous authentication and
access verification, reducing vulnerabilities in edge–cloud ecosystems. These advancements
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collectively strengthen cybersecurity resilience, ensuring the integrity, confidentiality, and
availability of edge–cloud services [164,165].

Table 4 provides a summary of various application domains in edge–cloud computing,
categorizing them based on their primary objectives, computational challenges, key perfor-
mance metrics, edge–cloud dependencies, and critical constraints. The table encapsulates
how different sectors leverage edge–cloud frameworks to enhance efficiency, minimize
latency, and optimize resource management.

Table 4. Summary of application domains in edge–cloud computing.

Application
Domain Primary Objective Computational

Challenges
Key Performance
Metrics

Edge-Cloud
Dependency

Critical
Constraints

Smart
transportation
[106–113]

Real-time traffic
management,
autonomous
mobility, and
safety
enhancement.

High-speed
vehicular data
processing,
low-latency V2X
communication.

Route optimization
time, accident
avoidance rate,
latency
minimization.

Edge for real-time
vehicle control and
cloud for
long-term traffic
analytics.

Stringent safety
requirements,
dynamic network
conditions.

Smart healthcare
[114–121]

Remote patient
monitoring,
medical
diagnostics, and
emergency
response.

AI-based anomaly
detection, real-time
alerting, and
privacy
preservation.

Detection accuracy,
emergency
response time, and
medical resource
availability.

Edge for
immediate health
data processing,
cloud for historical
medical trends.

Regulatory
compliance, data
security, reliability
of edge health
models.

Industrial
automation
[122–128]

Predictive
maintenance,
robotic automation,
and process
optimization.

Machine status
monitoring,
robotic
coordination,
AI-driven
analytics.

Fault prediction
accuracy,
production
efficiency, robotic
synchronization.

Edge for real-time
factory
automation, cloud
for predictive
maintenance.

Synchronization
issues in
automated
systems,
cybersecurity risks.

Smart cities
[129–135]

Environmental
monitoring, traffic
regulation, and
automated
governance.

Distributed sensor
fusion, IoT-based
analytics, energy
optimization.

Data processing
efficiency, service
availability, energy
consumption
control.

Edge for localized
city services, cloud
for policy planning
and large-scale
governance.

Scalability of IoT
networks, energy
efficiency,
infrastructure
costs.

Smart energy
[136–142]

Energy grid
optimization,
decentralized
trading, and
renewable
integration.

Smart
contract-based
trading, load
balancing,
fault-tolerant
forecasting.

Grid stability, fault
tolerance, power
efficiency.

Edge for dynamic
demand balancing,
cloud for
predictive
analytics.

Renewable energy
fluctuations,
cybersecurity in
decentralized
trading.

AR/VR
[143–150]

Immersive
real-time
experiences,
interactive
collaboration.

Low-latency
rendering,
AI-assisted
prediction,
network
congestion
management.

Frame rate,
response delay,
and quality of
service (QoS) in
interactive
sessions.

Edge for real-time
frame processing
and cloud for
complex graphics
rendering.

Network latency,
power constraints
of mobile devices,
user experience
consistency.

Disaster
management
[151–157]

Early warning,
emergency
coordination, and
rescue
optimization.

AI-based threat
detection,
UAV-assisted
search, large-scale
event aggregation.

Mission response
time, victim
detection rate,
disaster resilience.

Edge for
UAV-based
reconnaissance,
cloud for
large-scale
coordination.

Real-time data
reliability and
communication
stability in crisis
environments.

Cybersecurity
[158–165]

Real-time threat
detection, secure
authentication,
and data integrity.

FL for intrusion
detection and
blockchain-based
identity
verification.

Detection rate,
false alarm
reduction, access
trustworthiness.

Edge for
decentralized
threat detection,
cloud for federated
cybersecurity
intelligence.

Computational
cost of security
measures, attack
resilience,
real-time response
speed.
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5. Challenges, Open Issues, and Future Research Directions
The rapid evolution of edge–cloud computing in smart cities introduces complex

challenges spanning system architecture, resource allocation, network optimization, and
security. As these paradigms continue to scale, the growing heterogeneity of devices,
dynamic workload demands, and the need for real-time processing create significant con-
straints. Efficient coordination across architectural layers is essential to maintaining service
reliability and performance. Additionally, the increasing frequency of inter-tier interactions
amplifies issues such as latency, resource provisioning, and energy consumption. This sec-
tion identifies and examines critical open research areas, including network efficiency, task
offloading, data caching, and energy-aware resource management, providing insights into
emerging solutions necessary for the seamless deployment of edge–cloud infrastructures.

5.1. Architectural Complexity and System Integration

The integration of edge and cloud computing in smart cities presents significant
architectural challenges due to the heterogeneous nature of computing, networking, and
storage resources across different tiers. The multi-tier architecture involves frequent inter-
layer interactions, requiring efficient coordination to maintain performance, security, and
reliability. The complexity arises from diverse hardware and software environments,
interoperability constraints, and the need for dynamic adaptation to fluctuating workloads
and network conditions [166,167].

One of the primary challenges is system-wide interoperability, as edge devices, edge
servers, and cloud platforms operate on different frameworks, communication protocols,
and computing models. The lack of standardized architectures complicates seamless
integration, making cross-platform orchestration a critical issue. Existing solutions, such
as containerized microservices and service mesh architectures, attempt to address this by
providing a unified framework for managing distributed workloads. However, ensuring
consistency in service execution, API compatibility, and latency-aware decision-making
remains an open challenge [168–170].

Moreover, another significant concern is real-time orchestration across tiers. Edge
nodes handle time-sensitive tasks closer to end-users, while cloud servers provide
long-term data storage and large-scale computation. The challenge lies in determin-
ing the optimal placement of services dynamically to minimize network congestion
and maximize responsiveness. While AI-driven orchestration frameworks have been
explored, their scalability and adaptability to highly dynamic environments require further
investigation [171,172].

Future research should focus on developing standardized orchestration frameworks
to ensure seamless system integration across heterogeneous edge–cloud environments.
AI-driven workload balancing can dynamically optimize resource allocation and cross-layer
interactions, reducing system complexity. Additionally, cross-layer optimization strategies
must be explored to enhance adaptability in real-time applications while ensuring efficient
communication across software and hardware layers [173–175].

5.2. Resource Allocation in Edge-Cloud Environments

Efficient resource allocation in edge–cloud architectures is critical due to heteroge-
neous computational capacities, dynamic service demands, and network constraints. Un-
like traditional cloud-based infrastructures, where centralized schedulers optimize resource
distribution, multi-tier edge–cloud environments require decentralized and adaptive al-
location mechanisms that can respond to real-time variations in workload and network
conditions [176,177].
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One of the main challenges is coordinating resource allocation across tiers. Since
edge nodes have limited processing power and storage, prioritizing which tasks should be
processed locally and which should be offloaded is non-trivial. Current strategies rely on
heuristic-based scheduling, but RL and federated optimization are emerging as promising
approaches. Additionally, the trade-off between latency and computational load must be
optimized, as overloading edge nodes can lead to increased response times and energy
consumption [178–180].

Another key issue is interference in shared-resource environments. When multi-
ple applications compete for edge resources, contention leads to degraded performance.
Multi-tenant resource isolation, dynamic slicing, and QoS-aware workload allocation are
necessary to ensure fair resource distribution. Moreover, in mobility-driven smart-city
applications, handover-aware resource allocation is required to prevent service disruptions
during user transitions between edge nodes [181,182].

The unpredictability of workloads in edge–cloud environments necessitates RL-based
resource management strategies. Future research should focus on predictive workload
balancing and decentralized task scheduling, which leverage AI models to dynamically
adjust resources based on demand. FL approaches can further enhance allocation by
enabling real-time adaptation while preserving privacy [183–186].

5.3. Task Offloading Strategies

Task offloading in edge–cloud environments must be dynamically optimized to bal-
ance latency, energy consumption, and computational efficiency. A major challenge is
determining the optimal execution location for each task, as edge devices, edge servers,
and cloud platforms have distinct processing capabilities. The decision-making process
must account for fluctuating network bandwidth, computation delays, and real-time user
mobility [187,188].

Existing approaches to task offloading rely on static thresholds or heuristic models,
which fail to adapt to dynamic workloads. More recently, Deep RL (DRL)-based adaptive
offloading has been proposed, where an AI model continuously learns optimal offloading
policies by analyzing network conditions and device capabilities. However, training effi-
ciency, generalization to unseen network states, and scalability to large-scale deployments
remain open issues [189–191].

Another challenge is joint optimization of task partitioning and offloading. Many tasks
in smart-city applications are computationally intensive and require partial execution at dif-
ferent layers. Traditional binary offloading (executing a task entirely at one location) is often
suboptimal, leading to high transmission delays. Partition-aware offloading models, which
split tasks dynamically across cloud and edge layers, need further exploration [192,193].

AI-based offloading policies should be adaptive and context-aware, considering net-
work variability, device constraints, and service deadlines. Future studies should explore
hybrid offloading models, combining cloud-based and edge-based decision-making mech-
anisms. Dynamic learning techniques can be employed to adjust offloading decisions in
real-time based on evolving network conditions [194–196].

5.4. Data Caching and Content Distribution

Data caching is essential for reducing redundant transmissions, minimizing latency,
and improving system throughput in edge–cloud environments. However, efficient cache
placement and eviction strategies remain a major challenge due to the dynamic nature of
smart-city applications [197,198].

One key issue is predicting data access patterns. Traditional Least Recently Used
(LRU) and Least Frequently Used (LFU) caching policies do not account for real-time
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variations in data demand. Recent studies propose AI-driven predictive caching, where
DL models forecast future requests based on historical data. However, challenges such as
scalability, model retraining overhead, and adaptability to unseen traffic patterns remain
unsolved [199–201].

Another challenge is cooperative caching in multi-tier architectures. With frequent in-
teractions between cloud and edge nodes, data redundancy across tiers must be minimized
while ensuring timely content availability. Hierarchical cache synchronization mechanisms,
where edge nodes dynamically adjust caching decisions based on cloud-side intelligence,
have shown potential but require further optimization [202,203].

Additionally, cache consistency in highly dynamic environments poses a critical
problem. When data are updated at the cloud or an edge server, outdated cached
copies can cause stale content delivery. Existing solutions rely on synchronous updates,
which introduce delays, or asynchronous replication, which risks inconsistencies. Hybrid
cache coherence mechanisms, leveraging edge-consensus algorithms and real-time syn-
chronization techniques, need to be explored to ensure accuracy without compromising
efficiency [204,205].

Advancements in AI-driven cache management will improve content placement
strategies, ensuring minimal redundancy in distributed storage. Future research should
focus on collaborative caching schemes, where multiple edge nodes cooperatively manage
storage to optimize retrieval speed and reduce bandwidth consumption. Hierarchical
caching frameworks could further enhance data accessibility across multi-tier edge–cloud
environments [206–208].

5.5. Network Scalability and Latency Optimization

Edge–cloud architectures rely on high-speed communication networks to facilitate
real-time data exchange and deliver low-latency service. However, the scalability of these
networks remains a fundamental challenge as the number of connected devices and data-
intensive applications continues to rise. The proliferation of latency-sensitive services such
as autonomous driving, industrial automation, and remote healthcare necessitates network
architectures that can efficiently handle massive data volumes while maintaining ultra-
reliable low-latency communications. Traditional cloud-centric networking models struggle
to meet these stringent requirements, prompting the need for innovative approaches
that leverage edge computing for localized data processing and hierarchical network
management [209–212].

The dynamic nature of mobile edge computing environments further complicates
latency optimization, as user mobility patterns, network congestion, and fluctuating band-
width availability introduce unpredictable delays. Conventional routing mechanisms are
often inadequate for handling time-sensitive data streams, necessitating adaptive trans-
mission protocols that prioritize critical information while mitigating network bottlenecks.
The emergence of 5G and beyond-5G technologies presents promising solutions for en-
hancing network scalability, yet challenges related to spectrum allocation, interference
mitigation, and MEC integration persist. These unresolved issues highlight the importance
of developing advanced network architectures capable of dynamically provisioning re-
sources, optimizing data paths, and ensuring seamless connectivity in highly distributed
edge–cloud ecosystems [213–217].

The increasing demand for low-latency applications requires 5G and beyond tech-
nologies to be integrated with edge–cloud architectures. AI-driven adaptive routing
protocols should be developed to mitigate congestion dynamically. Furthermore, MEC
can be leveraged to bring computation closer to users, reducing latency and improving
scalability [218–220].
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5.6. Security, Privacy, and Trust Management

The distributed nature of edge–cloud infrastructures introduces substantial security
risks, as decentralized computing resources are exposed to a wide range of cyberthreats.
Unlike traditional cloud environments that operate within tightly controlled data centers,
edge computing infrastructures are inherently more vulnerable to attacks such as data
breaches, man-in-the-middle interceptions, and distributed denial-of-service (DDoS) as-
saults. The integration of diverse computing nodes across public, private, and hybrid
domains complicates the enforcement of uniform security policies and access control
mechanisms [221–223].

Data privacy concerns further exacerbate the security landscape, particularly in appli-
cations involving sensitive information such as healthcare records, financial transactions,
and industrial control systems. The necessity to process user-generated data at the edge
raises critical questions regarding data ownership, confidentiality preservation, and compli-
ance with regulatory frameworks such as the General Data Protection Regulation (GDPR).
Existing cryptographic techniques often introduce computational overhead that may be
impractical for resource-constrained edge devices, necessitating lightweight encryption
schemes and privacy-preserving FL models [224–226].

The establishment of trust within heterogeneous edge–cloud environments remains
an open challenge, as devices from different vendors, network operators, and service
providers must interact within shared computational spaces. Blockchain and distributed
ledger technologies have emerged as potential solutions for enhancing trust and trans-
parency in edge–cloud transactions, yet scalability issues and consensus latency hinder
their widespread adoption. Addressing these security and trust challenges requires a holis-
tic approach that combines intrusion detection systems, access control frameworks, and
secure multi-party computation techniques to fortify edge–cloud infrastructures against
evolving cyberthreats [227–230].

To address growing security threats, future research should focus on blockchain-based
security models, which provide decentralized trust mechanisms with verifiable immutabil-
ity. Additionally, FL can be used for privacy-preserving analytics, enabling AI models
to train on distributed data without exposing sensitive information. Lightweight encryp-
tion techniques should be optimized to enhance security with minimal computational
overhead [231–233].

5.7. Resource Management

Efficient resource management in multi-tier edge–cloud architectures is crucial to
maintaining low latency, high availability, and optimal service performance in smart-
city applications. Unlike traditional cloud-centric models, where resources are centrally
managed, edge–cloud environments require decentralized, real-time coordination of com-
puting, networking, and storage resources. The complexity of resource management arises
from dynamic workloads, fluctuating network conditions, heterogeneous edge nodes, and
mobility-induced service migrations [234,235].

A key challenge is multi-tier resource orchestration, where computational tasks must
be dynamically distributed among cloud servers, edge nodes, and end devices based on
real-time constraints such as latency, energy efficiency, and network congestion. Existing
scheduling mechanisms, such as heuristic-based static allocation and first-come–first-served
(FCFS) models, often fail under highly dynamic conditions. RL-based schedulers have
emerged as promising solutions, enabling real-time decision-making based on changing
system states. However, scalability issues, convergence speed, and high training overhead
limit their practical deployment [236–238].
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Another challenge is cross-layer resource optimization, where computing, commu-
nication, and storage resources must be jointly managed to ensure end-to-end service
continuity. Traditional solutions treat these layers independently, leading to suboptimal
performance. Recent research focuses on DL-driven cross-layer schedulers, which optimize
central processing unit (CPU) cycles, bandwidth allocation, and memory utilization simul-
taneously. However, the real-time execution of these models is computationally expensive,
necessitating lightweight approximation methods that maintain high accuracy without
excessive processing overhead [239,240].

Mobility-aware resource allocation is particularly challenging in smart-city environ-
ments where users frequently switch between edge nodes. Traditional fixed allocation
approaches struggle to maintain seamless service continuity due to handover-induced
delays. Emerging solutions, such as proactive migration strategies based on graph neural
networks (GNNs), attempt to predict user movement and reallocate resources accordingly.
However, achieving high prediction accuracy without excessive computation remains an
open issue [241–243].

Interference management in multi-tenant edge environments is another critical con-
cern. As multiple services compete for limited resources, contention can degrade perfor-
mance and violate QoS agreements. Current approaches use resource slicing and priority-
based queuing mechanisms, but fine-grained control remains a challenge [244,245].

Future advancements should incorporate AI-powered workload scheduling to ensure
efficient utilization of computing resources across dynamic edge–cloud networks. Decen-
tralized resource orchestration models should also be explored to minimize bottlenecks
and improve responsiveness in high-load environments [246–248].

5.8. Energy Efficiency

Energy efficiency is a critical concern in edge–cloud computing due to the resource
constraints of edge nodes and the high power consumption of cloud data centers. Unlike
cloud environments, where centralized power management can be optimized at scale,
edge nodes operate in distributed, often energy-limited environments, making fine-grained
energy control essential. Smart-city applications, including real-time surveillance, au-
tonomous transportation, and industrial automation, require continuous data processing
at the edge, leading to high energy demands that must be optimized without sacrificing
performance [249–251].

One of the main challenges is energy-aware task scheduling and workload balancing
across cloud, edge, and end devices. DVFS has been widely adopted to adjust processing
power based on workload demands, but its effectiveness is limited in latency-sensitive
applications. A more adaptive solution involves RL-based power management, where
an AI model continuously learns optimal CPU/GPU scaling strategies based on real-time
workload variations. However, training such models remains computationally expensive,
and their deployment at the edge requires lightweight inference models to minimize
processing overhead [252–254].

Another issue is energy-efficient communication between edge nodes and cloud
servers. Frequent data transmissions over wireless networks consume significant power,
particularly in mobile environments. Emerging solutions leverage adaptive edge caching
and data compression techniques to reduce redundant transmissions, thereby lowering
energy consumption. Additionally, energy-aware network slicing can optimize resource
allocation at the network level, ensuring that only the required computing resources are
activated while deactivating idle components [255–257].

Furthermore, heterogeneous energy consumption in multi-tier architectures presents
optimization challenges. While cloud servers can leverage liquid cooling and advanced
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thermal management systems, edge devices must rely on low-power hardware acceler-
ators such as ARM-based processors, Field Programmable Gate Arrays (FPGAs), and
neuromorphic chips to achieve energy efficiency. However, the integration of specialized
hardware into existing edge frameworks remains a challenge due to compatibility issues
and software–hardware co-design constraints [258,259].

Dynamic energy-aware workload scheduling should be implemented to optimize
power consumption without compromising performance. Future research should ex-
plore low-power computing techniques, including neuromorphic processing and green
energy integration, to enhance sustainability in edge–cloud environments. Additionally,
predictive task migration mechanisms can be employed to minimize energy-intensive
operations [260–263].

5.9. Standardization and Interoperability Constraints

The absence of standardized protocols and interoperability frameworks poses a signif-
icant barrier to the widespread adoption of edge–cloud computing. The fragmented nature
of current implementations results in compatibility issues across different platforms, leading
to inefficiencies in system deployment and operational management. The lack of universal
communication standards hinders seamless interaction between heterogeneous devices,
making it difficult to achieve cohesive and scalable edge–cloud infrastructures [264–266].

The integration of edge computing with emerging technologies such as 6G, blockchain,
and AI-driven decision-making further amplifies the need for standardized architectures.
Existing frameworks often fail to address the dynamic requirements of real-time edge
processing, necessitating flexible and adaptive standards that can accommodate evolving
computing paradigms. The challenge lies in defining interoperability guidelines that enable
diverse edge–cloud environments to function cohesively while ensuring compliance with
regulatory mandates and industry best practices [267–269].

Developing globally accepted edge–cloud standards requires collaboration among
industry leaders, academic researchers, and regulatory bodies. The establishment of
unified frameworks for workload orchestration, data exchange, and security enforcement
will be essential in enabling large-scale deployments while reducing integration overhead.
Addressing these standardization constraints will play a pivotal role in shaping the future
of edge–cloud computing, ensuring that heterogeneous infrastructures can seamlessly
interoperate across diverse application domains [270–272].

Future research should prioritize the development of universal communication pro-
tocols that facilitate seamless interoperability across diverse platforms. Cross-industry
collaborations will be essential for establishing regulatory frameworks and compliance
standards to ensure consistent and scalable edge–cloud deployments [273–275].

In conclusion, Table 5 provides a comparative summary of challenges in edge–cloud
computing, outlining key issues, their impact, potential solutions, and future research
directions. It highlights areas such as architectural complexity, resource allocation, security,
and energy efficiency while suggesting AI-driven optimizations, decentralized models,
and emerging technologies (e.g., 6G, blockchain, neuromorphic computing) to enhance
scalability, efficiency, and interoperability.
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Table 5. Comparative summary of challenges, key issues, impact, potential solutions, and future
research directions in edge–cloud computing.

Challenge Key Issues Impact on Edge-Cloud Potential Solutions Future Directions

Architectural complexity
and system integration
[166–172]

Heterogeneous hardware
and software platforms,
inefficient workload
distribution, cross-layer
dependency management.

Increased complexity in
system deployment,
suboptimal resource
utilization, and reduced
adaptability in real-time
applications.

Standardized
orchestration frameworks,
intelligent workload
balancing, and cross-layer
optimization strategies.

Developing AI-driven
self-adaptive orchestration
for real-time workload
distribution and
cross-platform
interoperability using
GNNs.
[173–175]

Resource allocation in
edge–cloud environments
[176–182]

Dynamic workload
distribution, inefficient
resource provisioning,
unpredictable demand
fluctuations.

Service degradation,
increased response times,
excessive energy
consumption in high-load
scenarios.

RL-based resource
management, predictive
workload balancing,
decentralized task
scheduling.

Hybrid learning models
for dynamic resource
allocation, integrating FL
to enhance distributed
decision-making.
[183–186]

Task offloading strategies
[187–193]

Suboptimal
decision-making in
offloading strategies, high
communication overhead,
network variability effects.

Increased latency,
excessive energy drain in
mobile edge devices,
inefficient execution of
real-time applications.

AI-based offloading
policies, adaptive learning
techniques, edge-to-cloud
migration frameworks.

Exploring multi-agent RL
for intelligent cooperative
offloading in dynamic
network conditions.
[194–196]

Data caching and content
distribution
[197–205]

Redundant data
transmissions, inefficient
caching policies, limited
storage in edge nodes.

Increased bandwidth
consumption, high data
retrieval delays,
inconsistent caching
effectiveness.

AI-driven cache
management,
collaborative caching
schemes, hierarchical
caching frameworks.

Using edge-aware
predictive caching
mechanisms with DL to
improve data retrieval
efficiency.
[206–208]

Network scalability and
latency optimization
[209–217]

Scalability limitations,
high latency in dynamic
environments, network
congestion, suboptimal
routing protocols.

Inability to handle
large-scale data
processing, reduced QoS
for latency-sensitive
applications, inconsistent
service delivery.

5G and beyond networks,
AI-driven adaptive
routing, MEC integration.

Leveraging 6G networks
and quantum-assisted
computing to optimize
ultra-low-latency
communications.
[218–220]

Security, privacy, and trust
management
[221–230]

Exposure to cyberthreats,
data privacy concerns,
decentralized trust
enforcement, security
overhead in edge nodes.

High risk of data breaches,
increased computational
costs for security
enforcement, reduced user
trust in distributed
systems.

Blockchain-based security
models, FL for
privacy-preserving
analytics, lightweight
encryption schemes.

Integrating homomorphic
encryption and zero-trust
architectures to ensure
secure decentralized
processing.
[231–233]

Resource management
[234–245]

Inefficient resource
allocation, lack of adaptive
scaling mechanisms, poor
cross-domain resource
sharing.

Suboptimal resource
utilization, service
bottlenecks, and reduced
performance in dynamic
environments.

Decentralized resource
scheduling, multi-agent
resource optimization
techniques.

Developing AI-driven
intent-based resource
allocation frameworks
that autonomously adjust
to workload shifts.
[246–248]

Energy efficiency
[249–259]

High energy consumption
in constrained
environments, inefficient
power allocation,
unpredictable workload
energy demands.

Increased operational
costs, sustainability
concerns, performance
bottlenecks in mobile and
IoT-based applications.

AI-powered workload
scheduling, dynamic
energy scaling techniques,
predictive task migration
mechanisms.

Exploring neuromorphic
computing and
energy-aware AI models
to minimize power
consumption in
edge–cloud
infrastructures.
[260–263]

Standardization and
interoperability
constraints
[264–272]

Lack of unified standards,
interoperability issues
across different platforms,
regulatory compliance
challenges.

Fragmentation in
edge–cloud deployments,
difficulty in achieving
seamless integration,
increased operational
overhead.

Development of universal
communication protocols,
industry-wide
collaboration for
standardization, adaptive
compliance frameworks.

Creating a globally
accepted edge–cloud
standardization
framework with
cross-industry
collaboration.
[273–275]

6. Conclusions
The findings of this survey reveal that the integration of edge and cloud comput-

ing plays a pivotal role in shaping the future of smart cities, enabling real-time analytics,
resource-efficient computation, and intelligent decision-making. Through an extensive ex-
amination of architectural models, enabling technologies, and diverse application domains,
this study demonstrates how edge–cloud infrastructures optimize computational efficiency
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while minimizing latency and bandwidth overhead. The comparative analysis of various
architectural paradigms—ranging from hierarchical multi-tier designs to fully distributed
and FL-enhanced frameworks—illustrates that each model presents unique trade-offs
concerning scalability, resilience, and energy efficiency. The findings indicate that hybrid
approaches, particularly those incorporating digital twins and AI-driven orchestration,
offer promising pathways toward adaptive and self-optimizing urban infrastructures.

Moreover, the enabling technologies explored in this survey underscore the signif-
icance of advanced networking protocols, AI-based resource management, blockchain
security, and FL in augmenting the performance and security of edge–cloud ecosystems.
High-speed communication networks, such as 5G and future 6G architectures, provide
ultra-low-latency data transmission essential for real-time applications, while federated
intelligence facilitates decentralized learning models that enhance privacy preservation.
However, challenges related to synchronization, interoperability, and security enforcement
remain key obstacles that necessitate further investigation. The survey findings emphasize
that future research must focus on developing robust mechanisms for workload balancing,
real-time fault tolerance, and energy-efficient computing to ensure sustainable deployment
in large-scale urban environments.

Application-specific insights from smart transportation, healthcare, industrial automa-
tion, and urban IoT management further reinforce the practical relevance of edge–cloud
computing in transforming smart-city services. The analysis of these domains highlights
the imperative for dynamic workload migration strategies, real-time AI inferencing, and
secure data-sharing mechanisms to accommodate the diverse computational needs of
intelligent infrastructures. While edge-assisted architectures successfully reduce latency
for time-sensitive applications, cloud-based analytics remain indispensable for large-scale
data aggregation and long-term predictive modeling. The findings of this survey strongly
suggest that an optimal edge–cloud synergy, supported by AI-driven decision-making and
next-generation networking, will be instrumental in achieving sustainable, resilient, and
highly adaptive smart-city ecosystems.
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List of Abbreviations
The following abbreviations are used in this manuscript:

Variable/Parameter Definition
Cm Cloud node m
P Processing power
S Available storage
L Inherent processing latency
TC Total execution latency at the cloud
TD→C Time required to transmit data from device or edge to the cloud
TC→D Response time for sending processed results back to the device
E Set of K edge nodes
Ek Edge node k
Eqi Edge node i at cluster q
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D Set of N IoT devices in the system
Dn n-th IoT device
αi Execution ratio determining task execution at an edge node
Cτ Computational demand of a task τ

CEi Computational capacity at edge node Ei

CC Computational capacity at the cloud
TEi Processing delay at edge node Ei

F(τ) Decision function determining execution location of task τ

Dti Dataset at edge node i for training AI models
Mt

i Updated model at edge node i in training round t
η Learning rate for model updates
Tsys Total system latency in a fully distributed edge–cloud network
dEj ,Ek Distance between two edge nodes (j, k)
BEj ,Ek Available bandwidth for communication between two edge nodes (j, k)
Pf Failure probability of a task execution
PD→Ei Power consumed for data transmission from devices to edge
Pactive

Ei
Power consumed when processing at the edge

Pidle
Ei

Power consumed when idle at the edge
PEi→C Power consumed for cloud communication
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