Calcium Transport and Enrichment in Microorganisms: A Review
<p>The typical Ca<sup>2+</sup> channels. Voltage-operated calcium (VOC) channels, transient receptor potential calcium (TRPC) channels, store-operated calcium (SOC) channels, and acid-regulated calcium (ARC) channels.</p> "> Figure 2
<p>The common Ca<sup>2+</sup> transport pathways in eukaryotic cells.</p> "> Figure 3
<p>The common calcium-binding proteins in eukaryotic organisms. (<b>A</b>) calmodulin (CaM) from <span class="html-italic">Pongo abelii</span>; (<b>B</b>) protein kinase C (PKC) from <span class="html-italic">Caenorhabditis elegans</span>; (<b>C</b>) CaM from <span class="html-italic">Caenorhabditis elegans</span>; (<b>D</b>) calcineurin B-like protein (CBL) from <span class="html-italic">Homo sapiens</span>; (<b>E</b>) calcium-dependent protein kinase (CDPK) from <span class="html-italic">Solanum tuberosum</span>.</p> "> Figure 4
<p>The intracellular Ca<sup>2+</sup> transport channel in <span class="html-italic">Candida albicans</span>.</p> ">
Abstract
:1. Introduction
2. Effects of Calcium Accumulation on Microbial Physiology
2.1. The Impact of Calcium Accumulation on Microbial Growth
2.2. The Impact of Ca2+ Addition on Enrichment Rate in Microorganisms
2.3. The Impact of Ca2+ Accumulation on the Metabolites and Secondary Metabolite Production
2.4. The Impact of Calcium Accumulation on the Antioxidant System
3. Mechanisms of Calcium Transport and Enrichment in Microbial Cells
3.1. Calcium Transport and Enrichment in Eukaryotic Microorganisms
3.1.1. Adsorption of Ca2+ by Extracellular Matrix
3.1.2. The Pathways Involved in Calcium Transport and Enrichment Within Eukaryotic Microorganisms
Ca2+ Transport System
Calcium Channel Proteins and Genes
Calcium-Binding Proteins and Intracellular Storage Modes
3.2. Calcium Transport and Enrichment in Prokaryotes
3.2.1. Ca2+ Channel Protein Within Prokaryotic Cells
3.2.2. Ca2+ Adsorption and Accumulation of Through the Surface Group of Prokaryotics
3.2.3. Ca2+-Binding Compounds Within the Prokaryotic Cells
4. Developments of Microbial Calcium-Fortified Products
4.1. Calcium Enrichment by Edible Fungi
4.2. Calcium Enrichment by Yeast
4.3. Calcium Enrichment by Bacterial Cells
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bao, Y.; Gao, B.; Jiang, S.; Zhang, W. Screening, identification and safety evaluation of calcium-enriched lactic acid bacteria. China Brew. 2023, 42, 115–121. [Google Scholar]
- Kopic, S.; Geibel, J.P. Gastric acid, calcium absorption, and their impact on bone health. Physiol. Rev. 2013, 93, 189–268. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, C.; Ji, R. Effects of different exogenous calcium in the strains and fruit bodies on the growing of Pleurotus eryngii (DC. Fr.) Quél. Mol. Plant Breed. 2020, 18, 3421–3426. [Google Scholar]
- Shi, Y.; Wang, J.; Li, X.; Li, J.; Li, T.; Guo, X.; Huang, J.; Ding, H. Screening of calcium-enriched lactic acid bacteria and the effect of culture conditions on calcium-enriched. Sci. Technol. Food Ind. 2021, 42, 125–132. [Google Scholar]
- He, X.; Li, Z.; Gao, Q.; Guo, X.; Liu, Y.; Wang, H. Study on the enrichment ability of organic calcium in mycelium of four edible fungi. Sci. Technol. Food Ind. 2023, 44, 82–87. [Google Scholar]
- Kahwati, L.C.; Weber, R.P.; Pan, H.; Gourlay, M.; LeBlanc, E.; Coker-Schwimmer, M.; Viswanathan, M. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: Evidence report and systematic review for the US preventive services task force. J. Am. Med. Assoc. 2018, 319, 1600–1612. [Google Scholar] [CrossRef]
- Reddi, A.S. Calcium, phosphorus, and magnesium disorders and kidney stones. In Absolute Nephrology Review: An Essential Q & A Study Guide; Reddi, A.S., Ed.; Springer: Cham, Switzerland, 2022; pp. 173–209. [Google Scholar]
- Cormick, G.; Belizán, J.M. Calcium intake and health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef]
- Zhang, T.; Qian, L.; Wang, W.; Li, C.; Li, F. Study on calcium enrichment in mycelia of Hypsizygus marmoreus. North. Hortic. 2022, 4, 104–109. [Google Scholar]
- Lin, S.; Li, J.; Hu, X.; Chen, S.; Huang, H.; Wu, Y.; Li, Z. Potential dietary calcium supplement: Calcium-chelating peptides and peptide-calcium complexes derived from blue food proteins. Trends Food Sci. Technol. 2024, 145, 104364. [Google Scholar] [CrossRef]
- Vatanparast, H.; Islam, N.; Patil, R.P.; Shafiee, M.; Whiting, S.J. Calcium intake from food and supplemental sources decreased in the Canadian population from 2004 to 2015. J. Nutr. 2020, 150, 833–841. [Google Scholar] [CrossRef]
- Guo, L.; Pang, X.; Duan, Y.; Zhang, Q.; Wang, Y.; Wang, S.; Li, R.; Fu, P.; Zhao, L.; Chen, Y.; et al. Dietary micronutrient intake of children aged 25 years in China in 2019–2021. J. Hyg. Res. 2023, 52, 60–66. [Google Scholar]
- Li, W.; Wang, L.; Wang, S.; Hao, L.; Zhang, B.; Wang, H.; Wang, Z.; Jiang, H. Situation and trends in dietary minerals intakes of adults aged 18–35 years in 15 provinces (autonomous regions, municipalities) of China in 1989–2018. J. Hyg. Res. 2023, 52, 20–26. [Google Scholar]
- Vavrusova, M.; Skibsted, L.H. Calcium nutrition. bioavailability and fortification. LWT-Food Sci. Technol. 2014, 59, 1198–1204. [Google Scholar] [CrossRef]
- Shi, J.; Zou, Y.; Ma, J.; Yang, B.; Xu, W.; Wang, D.; Yang, J. Research progress in food-derived calcium chelated peptides. Sci. Technol. Food Ind. 2023, 44, 460–467. [Google Scholar]
- Ye, J.; Xu, Y.; Zhang, J.; Su, L. Research progress on exploitation and utilization of marine biological calcium. Chin. J. Mar. Drugs 2021, 40, 71–78. [Google Scholar]
- Wang, T.; Yang, L. Analysis of safe and rational use of calcium preparations in clinic. Chin. Pharm. Aff. 2018, 32, 1571–1574. [Google Scholar]
- Barbosa-Nuñez, J.A.; Herrera-Rodríguez, S.E.; García-Márquez, E.; Espinosa-Andrews, H. A comparative study on the physicochemical properties and gastrointestinal delivery of calcium niosomes produced by low and high-energy techniques. OpenNano 2024, 17, 100205. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Shi, L.-E.; Jiang, Z.-B.; Bai, X.-L.; Ying, R.-F. Calcium enrichment in edible mushrooms: A review. J. Fungi 2023, 9, 338. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, J.; Yang, B.; Liu, Z.; Wang, T.; Hu, Z. Preparing bioactive calcuim from cultured Cordyceps sinensis. Food Ferment. Technol. 2012, 48, 16–19. [Google Scholar]
- Zhang, X.; Ma, G.; Liu, Z.; Wei, G.; Chen, X. Screening and identification of organic calcium enriched microorganism from natural environment and it’s characteristic. J. Chin. Inst. Food Sci. Technol. 2017, 17, 251–259. [Google Scholar]
- Fang, R.; Kang, D.; Wan, C.; Wu, L.; Yang, Y.; Gui, Q. Study on calcium enrichment by microorganisms. J. Sichuan Univ. Eng. Sci. Edit. 2004, 36, 65–68. [Google Scholar]
- Chen, M. Study on the Preparation and Calcium Bioavailability of Ctenopharyngodon idellus Bone Fermentation Liquid by Inoclating Leuconostoc mesenteroides. Master’s Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Wu, J.; Wang, R.; Liu, X.; Ni, Y.; Sun, H.; Deng, X.; Wan, L.; Liu, F.; Tang, J.; Yu, J.; et al. Calcium dynamics during the growth of Agaricus bisporus: Implications for mushroom development and nutrition. Chem. Biol. Technol. Agric. 2023, 10, 99. [Google Scholar] [CrossRef]
- Zhao, J.; Jie, J. Research progress in bioaccumulation of trace elements in edible fungus. Sci. Technol. Food Ind. 2015, 36, 393–396. [Google Scholar]
- Zhao, J.; Kang, D.; Gao, Y.; Shui, Z.; Shen, M. Food research and development of enriching beneficial elements through microorganism. Food Res. Dev. 2017, 38, 206–210. [Google Scholar]
- Yang, Y.; Xie, P.; Li, Y.; Bi, Y.; Prusky, D.B. Updating insights into the regulatory mechanisms of calcineurin-activated transcription factor Crz1 in pathogenic fungi. J. Fungi 2022, 8, 1082. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Sato, Y.; Kamasaka, H.; Kuriki, T. Effects of phosphoryl oligosaccharides of calcium (POs-Ca) on mycelial growth and fruiting body development of the edible mushroom, Pleurotus ostreatus. J. Appl. Glycosci. 2020, 67, 67–72. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.-M.; Diamantopoulou, P. Carposome productivity of Pleurotus ostreatus and Pleurotus eryngii growing on agro-industrial residues enriched with nitrogen, calcium salts and oils. Carbon Resour. Convers. 2023, 6, 150–165. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Gu, J.; Wang, X.; Li, J.; Xie, K. Effects of calcium ion and zinc ion on the mycelium growth of Flammulina velutipes. J. Anhui Agric. Sci. 2020, 48, 43–45. [Google Scholar]
- Hua, Y.; Jiao, P.; Cao, Z. Influence of Ca2+ on cell cycle control of Candida tropicalis CT1-12. Ind. Microbiol. 2001, 31, 37–39. [Google Scholar]
- Jiang, H.; Lin, C.; Gao, P.; Li, J.; Gao, J.; Xiao, L. Effects of five inorganic salts on the mycelial growth of Stropharia rugoso-annulata. North. Hortic. 2020, 14, 128–135. [Google Scholar]
- Yang, H.; Zhang, M.; Song, C.; Liu, J.; Xu, Z.; Shang, X. Effects of Fe2+, Zn2+ and Ca2+ on mycelium growth and its biological enrichment in mycelia of three edible mushrooms. Acta Edulis Fungi 2017, 24, 27–33. [Google Scholar]
- Yang, N.; Shao, G.; Zhang, R.; Cui, Y.; Zheng, S. Initial investigation on effects of calcium lignosulphonate on mycelium growth of edible fungi. Edible Fungi 2024, 46, 11–14. [Google Scholar]
- Li, Y.; Xu, Y. Research progress on the function and mechanism of flocculating microorganisms in harvesting microalgal biomass. Microbiol. China 2019, 46, 1196–1203. [Google Scholar]
- Liu, R.; Tang, Y.; Bai, F. Regulatory mechanism underlying mycelium aggregation during filamentous fungi submerged fermentation. Chin. J. Biotechnol. 2019, 35, 749–758. [Google Scholar]
- Zhang, A.; Ji, X.; Nie, Z.; Ren, L.; Huang, H. Progress in influence factors on morphology of Mortierella alpina producing arachidonic acid-rich oil. Chem. Ind. Eng. Prog. 2013, 32, 1102–1107. [Google Scholar]
- Wu, W.; Hong, L.; Sun, X.; Fu, Y. Effects of calcium ion on the morphology of Rhizopus oryzae and production of L-lactic acid. Chin. J. Process Eng. 2014, 14, 655–659. [Google Scholar]
- Higashiyama, K.; Yaguchi, T.; Akimoto, K.; Fujikawaa, S.; Shimizu, S. Effects of mineral addition on the growth morphology of and arachidonic acid production by Mortierella alpina 1S-4. J. Am. Oil Chem. Soc. 1998, 75, 1815–1819. [Google Scholar] [CrossRef]
- Momenijavid, M.; Salimizand, H.; Korani, A.; Dianat, O.; Nouri, B.; Ramazanzadeh, R.; Ahmadi, A.; Rostamipour, J.; Khosravi, M.R. Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm. Sci. Rep. 2022, 12, 7595. [Google Scholar] [CrossRef] [PubMed]
- Finkel, J.S.; Mitchell, A.P. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 2011, 9, 109–118. [Google Scholar] [CrossRef]
- Liu, Y.; Filler, S.G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell 2011, 10, 168–173. [Google Scholar] [CrossRef]
- Pierce, C.G.; Thomas, D.P.; López-Ribot, J.L. Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J. Antimicrob. Chemother. 2008, 63, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Goto, R.; Iida, K.; Kojima, I.; Iida, H. Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology 2008, 154, 3775–3781. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yan, H.; Happeck, R.; Peiter-Volk, T.; Xu, H.; Zhang, Y.; Peiter, E.; van Oostende Triplet, C.; Whiteway, M.; Jiang, L. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. Eur. J. Cell Biol. 2016, 95, 164–174. [Google Scholar] [CrossRef]
- Gratia, J.P. Effects of Ca2+ ions on survival, growth, and cell size in Serratia marcescens SMG40 exposed to Mecillinam. Arch. Physiol. Biochem. 1997, 105, 347–357. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; Shi, Y.; Zhou, Y.; Zhang, W.; Su, X.D.; Xia, B.; Zhao, J.; Jin, C.; Hu, Y. Structures of anabaena calcium-binding protein CcbP insights into Ca2+ signaling during heterocyst differenation. J. Biol. Chem. 2011, 286, 12381–12388. [Google Scholar] [CrossRef]
- Sun, Y. Effect of Ca2+ on Growth, Metabolism and Antioxidant Properties of Yeast Under High Glucose Environment. Master’s Thesis, Henan University of Technology, Zhengzhou, China, 2023. [Google Scholar]
- Danova, S.T.; Moncheva, P.A.; Antonova, S.K.; Ivanova, I.V. Calcium ions in the life cycle of Streptomyces albogriseolus 444. Antibiot. Chemoterapy 1997, 42, 12–15. [Google Scholar]
- Tisi, R.; Rigamonti, M.; Groppi, S.; Belotti, F. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi. AIMS Mol. Sci. 2016, 3, 505–549. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, X.; Zou, X. Calcineurin signaling cascade regulates fungal growth, metabolism, virulence and stress resistance. Acta Microbiol. Sin. 2021, 61, 3844–3855. [Google Scholar]
- Tan, W. Cloning and Functional Analysis of Na+-Ca2+ Exchanger and Calcium Channel Inhibitor in Nomuraea rileyi. Master’s Thesis, College of Life Science Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Gao, Z.; Hou, R.; Song, S.; Ruan, J. Effect of calcium on biological properties of the ameloblast ALC. Stomatology 2023, 43, 39–45. [Google Scholar]
- Wang, W.; Li, F.; Chen, L. Study on the enrichment of calcium in Wolfiporia cocos mycelium. Edible Fungi 2007, 1, 9–10. [Google Scholar]
- Xiong, Y.; Guo, C.; Wei, S. Study on the efects of enrichment calcium and iron ions on the mycelium culture of Ganoderma lucidum. J. Anhui Agric. Sci. 2009, 37, 17365–17366. [Google Scholar]
- Choi, U.-K.; Lee, O.-H.; Kim, Y.-C. Effect of calcinated oyster shell powder on growth, yield, spawn run, and primordial formation of king oyster mushroom (Pleurotus eryngii). Molecules 2011, 16, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Royse, D.J.; Sanchez-Vazquez, J.E. Influence of precipitated calcium carbonate (CaCO3) on shiitake (Lentinula edodes) yield and mushroom size. Bioresour. Technol. 2003, 90, 225–228. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, X.; Wang, Y.; Wang, L.; Liu, B. Study on total triterpenoids content of enrichment mineral elements of Inonotus Obliquus. J. Chin. Med. Mater. 2016, 39, 1687–1691. [Google Scholar]
- Bu, Q.; Wang, L.; Liu, L.; Wang, S.; Yang, L.; Xu, H. Calcium enrichment in mycelia of three edible fungi. Food Sci. 2009, 30, 172–174. [Google Scholar]
- Foster, K.; Morrison, I.; Tyler, M.; Delgoda, R. The effect of casing and gypsum on the yield and psychoactive tryptamine content of Psilocybe cubensis (Earle) Singer. Fungal Biol. 2024, 128, 1590–1595. [Google Scholar] [CrossRef]
- Ren, Y. The Regulation Mechanism of Calcium on the α-Ketoglutaric Acid Joint and PgsB During γ-PGA Synthesis and Complete Genome Sequence of Bacillus subtilis HSF1410. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2015. [Google Scholar]
- Xu, Y. Impacts of Calcineurin Signal Transduction on Production of Antitumor Ganoderic Acids in Mycelia Fermentation of Medicinal Mushroom Ganoderma Lucidum. Doctoral Thesis, Shanghai Jiao Tong University, Shanghai, China, 2013. [Google Scholar]
- Yue, T. Further Enhancement of Individual Ganoderic acid Production by Integrating Vitreoscilla Hemoglobin Gene Overexpression and Calcium Ion Addition in Static Liquid Culture of Ganoderma lingzhi. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2018. [Google Scholar]
- Adil, B.; Xiang, Q.; He, M.; Wu, Y.; Asghar, M.A.; Arshad, M.; Qin, P.; Gu, Y.; Yu, X.; Zhao, K.; et al. Effect of sodium and calcium on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Lentinus edodes. AMB Express 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liu, X.; Tang, J.; Chen, Y. Effect of calcium stress on protein content of Lentinan. Food Mechinery 2014, 30, 59–61. [Google Scholar]
- Chung, K.-R. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Appl. Environ. Microbiol. 2003, 69, 1187–1196. [Google Scholar] [CrossRef]
- Juvvadi, P.R.; Chivukula, S. Putative calmodulin-binding domains in aflatoxin biosynthesis–regulatory proteins. Curr. Microbiol. 2006, 52, 493–496. [Google Scholar] [CrossRef]
- Pinedo, C.; Wang, C.-M.; Pradier, J.-M.; Dalmais, B.; Choquer, M.; Le Pêcheur, P.; Morgant, G.; Collado, I.G.; Cane, D.E.; Viaud, M. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem. Biol. 2008, 3, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Bagur, R.; Hajnóczky, G. Intracellular Ca2+ sensing: Its role in calcium homeostasis and signaling. Mol. Cell 2017, 66, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. The Regulatory Mechanism of Calcium on Glutamate Dehydrogenase in Production of Poly-γ-Glutamic Acid by Bacillus subtilis Natto. Master’s Thesis, Shanxi Normal University, Xi’an, China, 2014. [Google Scholar]
- Ning, Y.; Zhu, C.; Pan, J.; Zheng, Y.; Feng, Y.; Zhang, D. Advances in studies on edible fungi enrichment for trace elements and their effects on enzyme activity. Mod. Food 2020, 13, 109–112. [Google Scholar]
- Singh, R.; Parihar, P.; Prasad, S.M. Simultaneous exposure of sulphur and calcium hinder as toxicity: Up-regulation of growth, mineral nutrients uptake and antioxidants system. Ecotoxicol. Environ. Saf. 2018, 161, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Wang, H.; Qi, J. The enhancement effect of calcium ions on ectomycorrhizal fungi-mediated drought resistance in Pinus sylvestris var. mongolica. J. Plant Growth Regul. 2021, 40, 1389–1399. [Google Scholar] [CrossRef]
- Cui, S.; Feng, Z.; Chen, M.; Wang, H.; Chen, H. Advance in effective factors of antioxidant enzyme activity in edible fungi. J. Microbiol. 2015, 35, 87–92. [Google Scholar]
- Jin, Q. Effects of Several Forest and Fruit Plant Waste and CaSO4 on Mycelium Growth of Lentinula edodes. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. [Google Scholar]
- Zhou, J.; Gao, G.; Zhang, S.; Wang, H.; Ke, L.; Zhou, J.; Rao, P.; Wang, Q.; Li, J. Influences of calcium and magnesium ions on cellular antioxidant activity (CAA) determination. Food Chem. 2020, 320, 126625. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Liu, T.; Zhu, C.; Wu, F.; Jiang, C.; Wu, Q.; Chen, L.; Lu, H.; Shen, G.; et al. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. Plant Physiol. Biochem. 2023, 196, 1122–1136. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Chen, S.; Wang, T.; Jiang, L.; Wang, M.; Wang, S.; Li, Z. Biochemical changes of polysaccharides and proteins within EPS under Pb(II) stress in Rhodotorula mucilaginosa. Ecotox. Environ. Safe. 2019, 174, 484–490. [Google Scholar] [CrossRef]
- Dang, C.; Yang, Z.; Liu, W.; Du, P.; Cui, F.; He, K. Role of extracellular polymeric substances in biosorption of Pb2+ by a high metal ion tolerant fungal strain Aspergillus niger PTN31. J. Environ. Chem. Eng. 2018, 6, 2733–2742. [Google Scholar] [CrossRef]
- Cao, F.; Bourven, I.; Guibaud, G.; Rene, E.R.; Lens, P.N.L.; Pechaud, Y.; van Hullebusch, E.D. Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to sub-toxic concentrations of nickel (II). Int. Biodeterior. Biodegrad. 2018, 129, 179–188. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ. Sci. Pollut. Res. 2018, 25, 4667–4677. [Google Scholar] [CrossRef] [PubMed]
- Paria, K.; Pyne, S.; Chakraborty, S.K. Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere 2022, 286, 131874. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Acharya, M.; Singh, N.; Gupta, G.; Tambuwala, M.M.; Aljabali, A.A.A.; Chellappan, D.K.; Dua, K.; Goyal, R. Vitamin D, Calbindin, and calcium signaling: Unraveling the Alzheimer’s connection. Cell. Signal. 2024, 116, 111043. [Google Scholar] [CrossRef]
- Cavinder, B.; Trail, F. Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot. Cell 2012, 11, 978–988. [Google Scholar] [CrossRef]
- Stefan, C.P.; Zhang, N.; Sokabe, T.; Rivetta, A.; Slayman, C.L.; Montell, C.; Cunningham, K.W. Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot. Cell 2013, 12, 204–214. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, P.; Nan, Y.; Yuan, J.; Gong, D.; Li, Y.; Bi, Y.; Prusky, D.B. The low-affinity calcium channel protein AaFig1 is essential for the growth and development, infection structure differentiation, and pathogenicity of Alternaria alternata. Postharvest Biol. Technol. 2024, 210, 112756. [Google Scholar] [CrossRef]
- Berna-Erro, A.; Woodard, G.E.; Rosado, J.A. Orais and STIMs: Physiological mechanisms and disease. J. Cell. Mol. Med. 2012, 16, 407–424. [Google Scholar] [CrossRef]
- Hodeify, R.; Yu, F.; Courjaret, R.; Nader, N.; Dib, M.; Sun, L.; Adap, E.; Hubrack, S.; Machaca, K. Regulation and role of store-operated Ca2+ entry in cellular proliferation. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 215–240. [Google Scholar]
- Woo, J.S.; Srikanth, S.; Gwack, Y. Modulation of Orai1 and STIM1 by cellular factors. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; pp. 73–92. [Google Scholar]
- Liu, Y.; Bai, R.; Bao, L.; Sun, L.; Zhang, X.; Gong, X.; Wang, Y. Advances in cellular calcium transport system. Pharm. Clin. Res. 2020, 28, 125–130. [Google Scholar]
- Guse, A.H.; Gil Montoya, D.C.; Diercks, B.-P. Mechanisms and functions of calcium microdomains produced by ORAI channels, d-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors. Pharmacol. Ther. 2021, 223, 107804. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.; Kim, M.L.; Do Heo, W.; Jones, J.T.; Myers, J.W.; Ferrell, J.E., Jr.; Meyer, T. STIM Is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 2005, 15, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Yeromin, A.V.; Zhang, X.H.-F.; Yu, Y.; Safrina, O.; Penna, A.; Roos, J.; Stauderman, K.A.; Cahalan, M.D. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 2006, 103, 9357–9362. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, E.R.; Troncone, L.; Lebeche, D. SERCA control of cell death and survival. Cell Calcium 2018, 69, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T. The molecular mechanisms of mitochondrial calcium uptake by calcium uniporter. J. Pharm. Soc. Jpn. 2021, 141, 491–499. [Google Scholar] [CrossRef]
- Wang, S. Study on the Mechanism of High-Affinity Calcium Ion Absorption System of Aspergillus nidulans Involved in the Regulation of Growth and Development. Doctoral Thesis, Nanjing Normal University, Nanjing, China, 2013. [Google Scholar]
- Calzaferri, F.; Ruiz-Ruiz, C.; de Diego, A.M.G.; de Pascual, R.; Méndez-López, I.; Cano-Abad, M.F.; Maneu, V.; de los Ríos, C.; Gandía, L.; García, A.G. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med. Res. Rev. 2020, 40, 2427–2465. [Google Scholar] [CrossRef]
- Fairless, R.; Williams, S.K.; Diem, R. Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. Int. J. Mol. Sci. 2019, 20, 2146. [Google Scholar] [CrossRef]
- Fischer, M.; Schnell, N.; Chattaway, J.; Davies, P.; Dixon, G.; Sanders, D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett. 1997, 419, 259–262. [Google Scholar] [CrossRef]
- Iida, H.; Nakamura, H.; Ono, T.; Okumura, M.S.; Anraku, Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol. Cell. Biol. 1994, 14, 8259–8271. [Google Scholar]
- Revel, B.; Catty, P.; Ravanel, S.; Bourguignon, J.; Alban, C. High-affinity iron and calcium transport pathways are involved in U(VI) uptake in the budding yeast Saccharomyces cerevisiae. J. Hazard. Mater. 2022, 422, 126894. [Google Scholar] [CrossRef]
- Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S.-H.; Tanasa, B.; Hogan, P.G.; Lewis, R.S.; Daly, M.; Rao, A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006, 441, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bouillet, L.E.M.; Cardoso, A.S.; Perovano, E.; Pereira, R.R.; Ribeiro, E.M.C.; Trópia, M.J.M.; Fietto, L.G.; Tisi, R.; Martegani, E.; Castro, I.M.; et al. The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 2012, 51, 72–81. [Google Scholar] [CrossRef]
- Helliwell, K.E.; Chrachri, A.; Koester, J.A.; Wharam, S.; Verret, F.; Taylor, A.R.; Taylor, A.R.; Wheeler, G.L.; Brownlee, C. Alternative mechanisms for fast Na+/Ca2+ signaling in eukaryotes via a novel class of single-domain voltage-gated channels. Curr. Biol. 2019, 29, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, S.C.; Cardenas, M.E.; Heitman, J. Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe 2019, 26, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, D.C.; Guragain, M.; Patrauchan, M. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2015, 57, 151–165. [Google Scholar] [CrossRef]
- Kolodkin-Gal, I.; Parsek, M.R.; Patrauchan, M.A. The roles of calcium signaling and calcium deposition in microbial multicellularity. Trends Microbiol. 2023, 31, 1225–1237. [Google Scholar] [CrossRef]
- Parekh, A.B. Regulation of CRAC channels by Ca2+-dependent inactivation. Cell Calcium 2017, 63, 20–23. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 2011, 3, a003947. [Google Scholar] [CrossRef] [PubMed]
- McCormack, E.; Tsai, Y.-C.; Braam, J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 2005, 10, 383–389. [Google Scholar] [CrossRef]
- Dagher, R.; Peng, S.; Gioria, S.; Fève, M.; Zeniou, M.; Zimmermann, M.; Pigault, C.; Haiech, J.; Kilhoffer, M.-C. A general strategy to characterize calmodulin–calcium complexes involved in CaM–target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin–calcium complexes. BBA-Mol. Cell Res. 2011, 1813, 1059–1067. [Google Scholar] [CrossRef]
- Pedretti, M.; Favretto, F.; Troilo, F.; Giovannoni, M.; Conter, C.; Mattei, B.; Dominici, P.; Travaglini-Allocatelli, C.; Di Matteo, A.; Astegno, A. Role of myristoylation in modulating PCaP1 interaction with calmodulin. Plant Physiol. Biochem. 2023, 203, 108003. [Google Scholar] [CrossRef] [PubMed]
- Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 2009, 14, 37–42. [Google Scholar] [CrossRef]
- Tang, R.; Wang, C.; Li, K.; Luan, S. The CBL-CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci. 2020, 25, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.K.H.; Albertini, E.; Holzknecht, M.; Cappuccio, E.; Dorigatti, I.; Krahbichler, A.; Damisch, E.; Gstach, H.; Jansen-Dürr, P. Regulation of cellular senescence by eukaryotic members of the FAH superfamily—A role in calcium homeostasis? Mech. Ageing Dev. 2020, 190, 111284. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.; Shanks, S.; Duncan, V.M.S.; Yang, M.; Mackenzie, K.; Gow, N.A.R. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 2007, 17, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000, 26, 13–25. [Google Scholar] [CrossRef]
- Shimomura, T.; Yonekawa, Y.; Nagura, H.; Tateyama, M.; Fujiyoshi, Y.; Irie, K. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife 2020, 9, e52828. [Google Scholar] [CrossRef]
- Pavlov, E.; Grimbly, C.; Diao, C.T.M.; French, R.J. A high-conductance mode of a poly-3-hydroxybutyrate/calcium/polyphosphate channel isolated from competent Escherichia coli cells. FEBS Lett. 2005, 579, 5187–5192. [Google Scholar] [CrossRef]
- Schäffer, D.E.; Iyer, L.M.; Burroughs, A.M.; Aravind, L. Functional innovation in the evolution of the calcium-dependent system of the eukaryotic endoplasmic reticulum. Front. Genet. 2020, 11, 34. [Google Scholar] [CrossRef]
- Li, M.; Zhao, J.; Tang, N.; Sun, H.; Huang, J. Horizontal gene transfer from bacteria and plants to the arbuscular mycorrhizalfungus Rhizophagus irregularis. Front. Plant Sci. 2018, 9, 701. [Google Scholar]
- Harimawan, A.; Ting, Y.-P. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloid Surf. B Biointerface 2016, 146, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Fang, L.; Cai, P.; Huang, Q.; Chen, H.; Liang, W.; Rong, X. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ. Pollut. 2011, 159, 1369–1374. [Google Scholar] [CrossRef]
- Aslam, S.N.; Newman, M.-A.; Erbs, G.; Morrissey, K.L.; Chinchilla, D.; Boller, T.; Jensen, T.T.; De Castro, C.; Ierano, T.; Molinaro, A.; et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 2008, 18, 1078–1083. [Google Scholar] [CrossRef]
- Braissant, O.; Decho, A.W.; Dupraz, C.; Glunk, C.; Przekop, K.M.; Visscher, P.T. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 2007, 5, 401–411. [Google Scholar] [CrossRef]
- Lewit-Bentley, A.; Réty, S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 2000, 10, 637–643. [Google Scholar] [CrossRef]
- Xue, R.; Meng, H.; Yin, J.; Xia, J.; Hu, Z.; Liu, H. The role of calmodulin vs. synaptotagmin in exocytosis. Front. Mol. Neurosci. 2021, 14, 691363. [Google Scholar] [CrossRef]
- Yang, K. Prokaryotic calmodulins: Recent developments and evolutionary implications. J. Mol. Microbiol. Biotechnol. 2001, 3, 457–459. [Google Scholar] [PubMed]
- Kayastha, B.B.; Kubo, A.; Burch-Konda, J.; Dohmen, R.L.; McCoy, J.L.; Rogers, R.R.; Mares, S.; Bevere, J.; Huckaby, A.; Witt, W.; et al. EF-hand protein, EfhP, specifically binds Ca2+ and mediates Ca2+ regulation of virulence in a human pathogen Pseudomonas aeruginosa. Sci. Rep. 2022, 12, 8791. [Google Scholar] [CrossRef]
- Hoyer, E.; Knöppel, J.; Liebmann, M.; Steppert, M.; Raiwa, M.; Herczynski, O.; Hanspach, E.; Zehner, S.; Göttfert, M.; Tsushima, S.; et al. Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity. Sci. Rep. 2019, 9, 7115. [Google Scholar] [CrossRef]
- Martínez-Gil, M.; Romero, D.; Kolter, R.; Espinosa-Urgel, M. Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J. Bacteriol. 2012, 194, 6782–6789. [Google Scholar] [CrossRef]
- Li, C.; Xu, W.; Guo, L. Research process in the adsorption of heavy metals by edible fungi. Jiangsu Agric. Sci. 2019, 47, 23–27. [Google Scholar]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Brit. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yan, X. Research on the application of calcium, iron and zinc enriched Saccharomyces cerevisiae in bread. Sci. Technol. Food Ind. 2005, 2, 78–79. [Google Scholar]
- Tompkins, T.A.; Renard, N.E.; Kiuchi, A. Clinical evaluation of the bioavailability of zinc-enriched yeast and zinc gluconate in healthy volunteers. Biol. Trace Elem. Res. 2007, 120, 28–35. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Su, T.; Guan, Z.; Ji, M. Screening of iron-and zinc-enriched yeast strain and optimization of cultivation conditions. Prep. Biochem. Biotechnol. 2011, 41, 278–286. [Google Scholar] [CrossRef]
- Gao, M.; Qin, W.; Miao, J.; Tu, B.; Lu, Z. Research on deep cultivation of calcium-enriched Gamoderma lucidum. Lett. Biotechnol. 2007, 18, 641–643. [Google Scholar]
- Kang, D.; Peng, L.; Fang, R. Study on soy yogurt beverage made of calcium-rich Plearotus Erungii mycelia incubated in Konja. Food Sci. 2004, 25, 206–208. [Google Scholar]
- Li, Q.; Xue, X.; Qi, S.; Zhao, L.; Zhang, W.; Fan, M.; Wu, L.; Wang, M. Disinfectant dodecyl dimethyl benzyl ammonium chloride (DDBAC) disrupts gut microbiota, phospholipids, and calcium signaling in honeybees (Apis mellifera) at an environmentally relevant level. Environ. Int. 2022, 170, 107639. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Yin, Y. Study on beer leaven gather calcium. Liquor Making 2007, 34, 56–58. [Google Scholar]
- Ju, Y. Development and Study of Calcium-Rich Yogurt. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2007. [Google Scholar]
- Wang, P. Studies on Preparation of Calcium Tablets Containing Lactic Acid Bacteria from Pacific Cod Bone Fermented by Lactobacillus reuteri. Master’s Thesis, Liaoning University, Liaoning, China, 2022. [Google Scholar]
- Tang, Y. The Study on Lactobacillus Bioaccumulation of Calcium and Fermented Super Microsmashing Hog_Bone Particles. Master’s Thesis, Southwest Agricultural University, Chongqing, China, 2002. [Google Scholar]
- Bo, R.; Guo, X.; Fu, X.; He, X. One Strain of Saccharomyces cerevisiae with Calcium Enrichment Ability and Its Application. CN 200410032718.5, 7 November 2007. [Google Scholar]
- Sun, X.; Dong, C.; Li, W.; Zhang, F. Optimization of preparation process of peptides chelated calcium from Bacillus natto fermentation by reponse surface methodology. China Brew. 2021, 40, 119–123. [Google Scholar]
- Liao, H. Study on the Bio-Characteristics of Micro-Smashed Meat and Bone Meal Fermented by Lactobacillus and Its Function of Improving Bone Density. Doctoral Thesis, Southwest University, Chongqing, China, 2008. [Google Scholar]
- Szajnar, K.; Znamirowska, A.; Kuźniar, P. Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. Int. J. Food Prop. 2020, 23, 582–598. [Google Scholar] [CrossRef]
- Bing, Y.; Luo, A.; Wan, T.; Yin, Y.; Zhou, G. Effect of growth-promoting factors on calcium conversion rate of bovine bone powder fermented by composite probiotics. Guizhou Agric. Sci. 2011, 39, 165–169. [Google Scholar]
- Chen, X. Biotransformation of Calcium and Utilization of Skeleton Pulp form Baijiao Sea Bass. Master’s Thesis, South China University of Technology, Guangzhou, China, 2021. [Google Scholar]
- Wang, M.; Xia, Q.; Sun, Y.; He, J.; Pan, D.; Cao, J.; Zhou, C. Effects of lactic acid bacteria fermentation on calcium release and metabolites in chicken bone paste. Sci. Technol. Food Ind. 2024, 45, 67–75. [Google Scholar]
- Hu, L.; Zhao, Y.; Qin, X.; Jiang, S. Optimization of fermentation of porcine bone powder by lactic acid bacteria for enhanced free calcium content. Food Sci. 2010, 31, 210–213. [Google Scholar]
The Strains | Experimental Conditions | Enrichment Rate | Reference |
---|---|---|---|
Wolfiporia cocos | Ca Source: CaCl2; the optimized Ca content for enrichment: 2.0 g/L. | 0.89 mg/g | [54] |
Ganoderma lucidum | Ca Source: CaCl2; the optimal Ca content for enrichment: 200 μg/L. | 100.6 mg/g | [55] |
Inonotus obliquus | Ca Source: Ca(NO3)2; the optimal Ca concentration for enrichment: 1000 mg/L. | 21.0 mg/g | [58] |
Pleurotusnebrodensis | Ca Source: CaCl2; the optimal Ca concentration for enrichment: 6000 mg/L. | 790.6 mg/g | [59] |
Cordyceps sinensis CCTCC AF99009 | Ca Source: Ca(NO3)2 + CaCO3; the optimal Ca concentration for enrichment: 3.0 g/L. | 0.78 mg/g | [20] |
Lactobacillus plantarum CY1-1 | Ca Source: CaCl2; the optimal Ca concentration for enrichment: 1.2 mg/L. | 45.41 mg/g | [4] |
Lactobacillus plantarum Z7 | 37.9 mg/g | ||
Hypsizygus marmoreus | Ca Source: CaCl2; the optimal Ca concentration for enrichment: 100 mg/L. | 22.40 mg/g | [9] |
Lactobacillus fermentum | Ca Source: CaCl2; the optimal Ca concentration for enrichment: 1.2 mg/L. | 41.90 mg/g | [1] |
Pediococcus acidilactici | 41.90 mg/g | ||
Lactiplantibacillus plantarum | 52.60 mg/g | ||
Laetiporus sulphureus (Fr). Murrill | Ca Source: CaCl2; the optimal Ca concentration for enrichment: 100 mg/L. | 18.34 mg/g | [5] |
Categorization | Offerings | Microorganisms | Specificity | Calcium Content | References |
---|---|---|---|---|---|
Edible Fungi | Calcium-enriched almond mushroom mycelium sour soya bean milk | Pleurotus eryngii | Short production cycle, simple equipment, low input cost | 47 mg/100 g | [139] |
Calcium-rich spotted mushroom | Mottled mushroomYH01 | Good calcium enrichment, absorption, and conversion capacity | / | [140] | |
Calcium-rich Poria cocos mycelium | Poria cocos Po | Rich in calcium while stimulating the production of large amounts of polysaccharides | 8911 mg/100 g | [54] | |
Calcium-rich Ganoderma lucidum hyphae | Ganoderma lucidum 730 | Good stability; binds to protein, sugar, and fat substances, facilitates absorption and utilization | 364.2 mg/100 g | [55] | |
Calcium-rich Ganoderma lucidum | Red Ganoderma lucidum | Organic calcium was Ganoderma lucidum polysaccharide calcium | 453.82 mg/100 g | [138] | |
Yeast | Calcium-rich bread | Beer yeast | High apparent digestibility and high bioavailability | 10.40 ± 1.10 mg/100 g | [135] |
High-calcium edible dry yeast | beer yeast | Combines calcium with yeast, easy absorption | 627 mg/100 g | [141] | |
Bacterium | High-calcium yogurt | Lactic acid bacteria | High bioavailability, low dependence on gastric acid secretion, low impact on other nutrient intake | 160 mg/100 mL | [142] |
Lactobacillus calcium tablets | Lactobacillus reuteri | The ratio of calcium and phosphorus was suitable for human needs | 50 ± 1.03 mg/g | [143] | |
Fermented superfine crushed bone powder | Lactic acid bacteria | Maximum density of enriched calcium in the cell wall | 148.5 mg/100 g | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Hu, Y.-Y.; Tang, Z.-X.; Jiang, Z.-B.; Huang, J.; Zhang, T.; Shen, H.-Y.; Ye, X.-P.; Huang, X.-Y.; Wang, X.; et al. Calcium Transport and Enrichment in Microorganisms: A Review. Foods 2024, 13, 3612. https://doi.org/10.3390/foods13223612
Zhou H, Hu Y-Y, Tang Z-X, Jiang Z-B, Huang J, Zhang T, Shen H-Y, Ye X-P, Huang X-Y, Wang X, et al. Calcium Transport and Enrichment in Microorganisms: A Review. Foods. 2024; 13(22):3612. https://doi.org/10.3390/foods13223612
Chicago/Turabian StyleZhou, Hai, Yan-Yu Hu, Zhen-Xing Tang, Zhong-Bao Jiang, Jie Huang, Tian Zhang, Hui-Yang Shen, Xin-Pei Ye, Xuan-Ya Huang, Xiang Wang, and et al. 2024. "Calcium Transport and Enrichment in Microorganisms: A Review" Foods 13, no. 22: 3612. https://doi.org/10.3390/foods13223612
APA StyleZhou, H., Hu, Y.-Y., Tang, Z.-X., Jiang, Z.-B., Huang, J., Zhang, T., Shen, H.-Y., Ye, X.-P., Huang, X.-Y., Wang, X., Zhou, T., Bai, X.-L., Zhu, Q., & Shi, L.-E. (2024). Calcium Transport and Enrichment in Microorganisms: A Review. Foods, 13(22), 3612. https://doi.org/10.3390/foods13223612