Key Points
-
Biofilm formation by Candida albicans on implanted medical devices is a major source of infection.
-
Advances in expression profiling and genetic manipulation have provided insights into the mechanisms and regulatory pathways that govern C. albicans biofilm formation and biofilm-based drug resistance. Major regulatory genes and their targets have been connected to biofilm formation. Relevant targets include many cell surface proteins; some are adhesins, but many are still not understood mechanistically. Identifying the regulators has provided insight into the signals that control biofilm development, including nutrients, hyphae formation and quorum sensing molecules.
-
Increasingly, mechanistic studies have focused on diverse biofilms, including mucosal infection models, in vivo implanted-device models and mixed-species biofilms. One of the common themes to emerge is the requirement for hyphae formation and for the transcription factor biofilm and cell wall regulator 1 (Bcr1).
-
Biofilm induction assays have shown a unique biological function for non-mating white cells in creating cohesive biofilms that promote mating, and have uncovered a hybrid signal transduction pathway that mediates this behaviour.
-
Biofilms of most species are associated with epigenetic resistance to antimicrobials. Resistance of C. albicans biofilms is conferred by multiple mechanisms that include drug binding by extracellular matrix material and the production of persisters.
-
Finally, the cells released from a preformed biofilm have unique properties that favour invasive infection. The dispersed cells are yeast-form cells, and their production depends on several regulators of the yeast–hypha transition.
Abstract
Candida species cause frequent infections owing to their ability to form biofilms — surface-associated microbial communities — primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C. albicans biofilm development and associated drug resistance, thus providing biological insight and therapeutic foresight.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36, 1–53 (2010).
Pappas, P. G. et al. Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38, 161–189 (2004).
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).
Marrie, T. J. & Costerton, J. W. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19, 687–693 (1984).
Douglas, L. J. Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36 (2003).
Donlan, R. M. & Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002).
Kojic, E. M. & Darouiche, R. O. Candida infections of medical devices. Clin. Microbiol. Rev. 17, 255–267 (2004).
Viudes, A. et al. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur. J. Clin. Microbiol. Infect. Dis. 21, 767–774 (2002).
Wilson, L. S. et al. The direct cost and incidence of systemic fungal infections. Value Health 5, 26–34 (2002).
Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007).
Andes, D. et al. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 72, 6023–6031 (2004).
Chandra, J. et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183, 5385–5394 (2001).
Baillie, G. S. & Douglas, L. J. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48, 671–679 (1999).
Ramage, G., VandeWalle, K., Lopez-Ribot, J. L. & Wickes, B. L. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214, 95–100 (2002).
Hornby, J. M. et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992 (2001).
Oh, K. B., Miyazawa, H., Naito, T. & Matsuoka, H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl Acad. Sci. USA 98, 4664–4668 (2001).
Ramage, G., Saville, S. P., Wickes, B. L. & Lopez-Ribot, J. L. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol. 68, 5459–5463 (2002). This paper reports that farnesol functions as a quorum sensing molecule in C. albicans biofilms, and that biofilm density and morphology are altered by high concentrations of farnesol.
Alem, M. A., Oteef, M. D., Flowers, T. H. & Douglas, L. J. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Euk. Cell 5, 1770–1779 (2006).
Ghosh, S., Kebaara, B. W., Atkin, A. L. & Nickerson, K. W. Regulation of aromatic alcohol production in Candida albicans. Appl. Environ. Microbiol. 74, 7211–7218 (2008).
Martins, M. et al. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Euk. Cell 6, 2429–2436 (2007).
Li, F. & Palecek, S. P. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154, 1193–1203 (2008).
Nobile, C. J. et al. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18, 1017–1024 (2008). This paper reports that Als1, Als3 and Hwp1 function as complementary adhesins in biofilms both in vivo and in vitro .
Nobile, C. J., Nett, J. E., Andes, D. R. & Mitchell, A. P. Function of Candida albicans adhesin Hwp1 in biofilm formation. Euk. Cell 5, 1604–1610 (2006).
Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nature Rev. Microbiol. 6, 199–210 (2008).
Domergue, R. et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308, 866–870 (2005).
Verstrepen, K. J. & Fink, G. R. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu. Rev. Genet. 43, 1–24 (2009).
Nobile, C. J. & Mitchell, A. P. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15, 1150–1155 (2005).
Nobile, C. J. et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2, e63 (2006).
Nobile, C. J. et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 7, e1000133 (2009). This paper shows that transcription factor Zap1 is a key regulator of extracellular matrix production by biofilms in vitro and in vivo.
Mukherjee, P. K. et al. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect. Immun. 74, 3804–3816 (2006).
Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T. & Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259–2266 (2008).
Chen, H. & Fink, G. R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20, 1150–1161 (2006).
Nett, J. E., Marchillo, K., Spiegel, C. A. & Andes, D. Development and validation of an in vivo Candida albicans biofilm denture model. Infect. Immun. 78, 3650–3659 (2010).
Ricicova, M. et al. Candida albicans biofilm formation in a new in vivo rat model. Microbiology 156, 909–919 (2010).
Schinabeck, M. K. et al. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob. Agents Chemother. 48, 1727–1732 (2004).
Kuhn, D. M., Chandra, J., Mukherjee, P. K. & Ghannoum, M. A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun. 70, 878–888 (2002).
Baillie, G. S. & Douglas, L. J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46, 397–403 (2000).
Stichternoth, C. & Ernst, J. F. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl. Environ. Microbiol. 75, 3663–3672 (2009).
Dongari-Bagtzoglou, A., Kashleva, H., Dwivedi, P., Diaz, P. & Vasilakos, J. Characterization of mucosal Candida albicans biofilms. PLoS ONE 4, e7967 (2009).
Harriott, M. M., Lilly, E. A., Rodriguez, T. E., Fidel, P. L. & Noverr, M. C. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156, 3635–3644 (2010).
Kumamoto, C. A. Niche-specific gene expression during C. albicans infection. Curr. Opin. Microbiol. 11, 325–330 (2008).
Klotz, S. A., Chasin, B. S., Powell, B., Gaur, N. K. & Lipke, P. N. Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. Diagn. Microbiol. Infect. Dis. 59, 401–406 (2007).
Chrissoheris, M. P. et al. Endocarditis complicating central venous catheter bloodstream infections: a unique form of health care associated endocarditis. Clin. Cardiol. 32, E48–E54 (2009).
Morales, D. K. & Hogan, D. A. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog. 6, e1000886 (2010).
Adam, B., Baillie, G. S. & Douglas, L. J. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbiol. 51, 344–349 (2002).
Bamford, C. V. et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77, 3696–3704 (2009).
Jabra-Rizk, M. A., Meiller, T. F., James, C. E. & Shirtliff, M. E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 50, 1463–1469 (2006).
Kuroda, M., Nagasaki, S., Ito, R. & Ohta, T. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. FEMS Microbiol. Lett. 273, 28–34 (2007).
Hogan, D. A., Vik, A. & Kolter, R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54, 1212–1223 (2004). This study shows that a molecule produced by P. aeruginosa mimics the actions of the C. albicans quorum sensing molecule farnesol, thus providing P. aeruginosa with a competitive advantage in the host.
Boris, S. & Barbes, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2, 543–546 (2000).
Shirtliff, M. E. et al. Farnesol-induced apoptosis in Candida albicans. Antimicrob. Agents Chemother. 53, 2392–2401 (2009).
Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).
Li, F. et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Euk. Cell 6, 931–939 (2007). Eap1 is shown to be a GPI-anchored, glucan-cross-linked cell wall protein that acts as an adhesin and is required for biofilm formation in vitro as well as in vivo.
Chaffin, W. L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72, 495–544 (2008).
Richard, M. L. & Plaine, A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Euk. Cell 6, 119–133 (2007).
Li, F. & Palecek, S. P. EAP1, a Candida albicans gene involved in binding human epithelial cells. Euk. Cell 2, 1266–1273 (2003).
Hoyer, L. L. The ALS gene family of Candida albicans. Trends Microbiol. 9, 176–180 (2001).
Sheppard, D. C. et al. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279, 30480–30489 (2004).
Green, C. B., Zhao, X., Yeater, K. M. & Hoyer, L. L. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151, 1051–1060 (2005).
Murillo, L. A. et al. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Euk. Cell 4, 1562–1573 (2005).
Mateus, C., Crow, S. A., Jr & Ahearn, D. G. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 48, 3358–3366 (2004).
Zucchi, P. C., Davis, T. R. & Kumamoto, C. A. A Candida albicans cell wall-linked protein promotes invasive filamentation into semi-solid medium. Mol. Microbiol. 76, 733–748 (2010).
Kumamoto, C. A. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nature Rev. Microbiol. 6, 667–673 (2008).
Kumamoto, C. A. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA 102, 5576–5581 (2005).
Daniels, K. J., Srikantha, T., Lockhart, S. R., Pujol, C. & Soll, D. R. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25, 2240–2252 (2006).
Sahni, N. et al. Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol. 8, e1000363 (2010).
Ene, I. V. & Bennett, R. J. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Euk. Cell 8, 1909–1913 (2009).
Sahni, N. et al. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog. 5, e1000601 (2009). This work identifies several genes that are upregulated in white cells in the presence of mating pheromone. It also finds that white cells use their pheromone response pathway to produce a mature biofilm.
Bennett, R. J. & Johnson, A. D. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59, 233–255 (2005).
Singleton, D. R. & Hazen, K. C. Differential surface localization and temperature-dependent expression of the Candida albicans CSH1 protein. Microbiology 150, 285–292 (2004).
Zhao, X. et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152, 2287–2299 (2006).
Ding, C. & Butler, G. Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Euk. Cell 6, 1310–1319 (2007). This paper reports that transcription factor Bcr1 is a conserved regulator of biofilm formation in C. parapsilosis.
Firon, A. et al. The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol. Microbiol. 66, 1256–1275 (2007).
Perez, A. et al. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res. 6, 1074–1084 (2006).
Norice, C. T., Smith, F. J. Jr, Solis, N., Filler, S. G. & Mitchell, A. P. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Euk. Cell 6, 2046–2055 (2007).
Hiller, E., Heine, S., Brunner, H. & Rupp, S. Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Euk. Cell 6, 2056–2065 (2007).
Rossignol, T. et al. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Euk. Cell 8, 550–559 (2009).
Blankenship, J. R., Fanning, S., Hamaker, J. J. & Mitchell, A. P. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 6, e1000752 (2010).
Al-Fattani, M. A. & Douglas, L. J. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 55, 999–1008 (2006).
Nett, J. et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51, 510–520 (2007).
Martinez-Gomariz, M. et al. Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 9, 2230–2252 (2009).
Martins, M. et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169, 323–331 (2009).
Bayles, K. W. The biological role of death and lysis in biofilm development. Nature Rev. Microbiol. 5, 721–726 (2007).
Kim, W. I., Lee, W. B., Song, K. & Kim, J. Identification of a putative DEAD-box RNA helicase and a zinc-finger protein in Candida albicans by functional complementation of the S. cerevisiae rok1 mutation. Yeast 16, 401–409 (2000).
Kim, M. J., Kil, M., Jung, J. H. & Kim, J. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J. Microbiol. Biotechnol. 18, 242–247 (2008).
Delneri, D., Gardner, D. C., Bruschi, C. V. & Oliver, S. G. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 15, 1681–1689 (1999).
Dickinson, J. R., Salgado, L. E. & Hewlins, M. J. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8028–8034 (2003).
Chen, H., Fujita, M., Feng, Q., Clardy, J. & Fink, G. R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl Acad. Sci. USA 101, 5048–5052 (2004).
Mukherjee, P. K., Chandra, J., Kuhn, D. M. & Ghannoum, M. A. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71, 4333–4340 (2003).
Garcia-Sanchez, S. et al. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Euk. Cell 3, 536–545 (2004).
Nett, J. E., Lepak, A. J., Marchillo, K. & Andes, D. R. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis. 200, 307–313 (2009). This study is the first in vivo characterization of C. albicans biofilms to be carried out through microarray analysis.
Khot, P. D., Suci, P. A., Miller, R. L., Nelson, R. D. & Tyler, B. J. A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and β-1,6-glucan pathway genes. Antimicrob. Agents Chemother. 50, 3708–3716 (2006).
Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).
LaFleur, M. D., Kumamoto, C. A. & Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50, 3839–3846 (2006). This paper reports the discovery of persisters that contribute to drug resistance in C. albicans biofilms.
Lafleur, M. D., Qi, Q. & Lewis, K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob. Agents Chemother. 54, 39–44 (2010).
Selmecki, A., Forche, A. & Berman, J. Genomic plasticity of the human fungal pathogen Candida albicans. Euk. Cell 9, 991–1008 (2010).
Nett, J. E., Sanchez, H., Cain, M. T. & Andes, D. R. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 202, 171–175 (2010). This study defines β-glucan levels as a key determinant of in vivo biofilm-based azole drug resistance.
Uppuluri, P. et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6, e1000828 (2010). This article describes a novel assay for biofilm cell dispersal in C. albicans , the unique virulence properties of the dispersed cells, and genetic regulators of dispersal.
Uppuluri, P. et al. The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Euk. Cell 9, 1531–1537 (2010).
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).
Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial-fungal interactions. Nature Rev. Microbiol. 8, 340–349 (2010).
Siehnel, R. et al. A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 107, 7916–7921 (2010).
Nasmyth, K. A. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16, 439–500 (1982).
Bennett, R. J., Uhl, M. A., Miller, M. G. & Johnson, A. D. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell Biol. 23, 8189–8201 (2003).
Rikkerink, E. H., Magee, B. B. & Magee, P. T. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J. Bacteriol. 170, 895–899 (1988).
Soll, D. R., Lockhart, S. R. & Zhao, R. Relationship between switching and mating in Candida albicans. Euk. Cell 2, 390–397 (2003).
Lockhart, S. R., Zhao, R., Daniels, K. J. & Soll, D. R. a-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Euk. Cell 2, 847–855 (2003).
Miller, M. G. & Johnson, A. D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302 (2002).
Zordan, R. E., Miller, M. G., Galgoczy, D. J., Tuch, B. B. & Johnson, A. D. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 5, e256 (2007).
Ramirez-Zavala, B., Reuss, O., Park, Y. N., Ohlsen, K. & Morschhauser, J. Environmental induction of white–opaque switching in Candida albicans. PLoS Pathog. 4, e1000089 (2008).
Huang, G. et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 6, e1000806.
Magee, B. B. & Magee, P. T. Induction of mating in Candida albicans by construction of MTLa and MTLa strains. Science 289, 310–313 (2000).
Hull, C. M., Raisner, R. M. & Johnson, A. D. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289, 307–310 (2000).
Alby, K., Schaefer, D. & Bennett, R. J. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460, 890–893 (2009).
Bennett, R. J. A Candida-based view of fungal sex and pathogenesis. Genome Biol. 10, 230 (2009).
Forche, A. et al. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6, e110 (2008).
Zhao, R. et al. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Euk. Cell 4, 1175–1190 (2005).
Kelly, M. T. et al. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53, 969–983 (2004).
Sanchez, A. A. et al. Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect. Immun. 72, 598–601 (2004).
Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113–133 (2005).
Lewis, R. E., Lo, H. J., Raad, II & Kontoyiannis, D. P. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob. Agents Chemother. 46, 1153–1155 (2002).
Cao, Y. Y. et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 49, 584–589 (2005).
Zhao, X., Oh, S. H., Yeater, K. M. & Hoyer, L. L. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151, 1619–1630 (2005).
Hashash, R. et al. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses 6th April 2010 (doi: 10.1111/j.1439–05072010.01883.x).
Peltroche-Llacsahuanga, H., Goyard, S., d'Enfert, C., Prill, S. K. & Ernst, J. F. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob. Agents Chemother. 50, 3488–3491 (2006).
Granger, B. L., Flenniken, M. L., Davis, D. A., Mitchell, A. P. & Cutler, J. E. Yeast wall protein 1 of Candida albicans. Microbiology 151, 1631–1644 (2005).
Nobile, C. J. & Mitchell, A. P. Large-scale gene disruption using the UAU1 cassette. Methods Mol. Biol. 499, 175–194 (2009).
Goyard, S. et al. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol. Biol. Cell 19, 2251–2266 (2008).
Kruppa, M. et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Euk. Cell 3, 1062–1065 (2004).
Bastidas, R. J., Heitman, J. & Cardenas, M. E. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 5, e1000294 (2009). This study connects biofilm adhesin expression to global nutrient sensing via the conserved Tor pathway.
Strijbis, K. et al. Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Euk. Cell 7, 610–618 (2008).
Richard, M. L., Nobile, C. J., Bruno, V. M. & Mitchell, A. P. Candida albicans biofilm-defective mutants. Euk. Cell 4, 1493–1502 (2005).
Liu, G., Vellucci, V. F., Kyc, S. & Hostetter, M. K. Simvastatin inhibits Candida albicans biofilm in vitro. Pediatr. Res. 66, 600–604 (2009).
Melo, A. S. et al. The Candida albicans AAA ATPase homologue of Saccharomyces cerevisiae Rix7p (YLL034c) is essential for proper morphology, biofilm formation and activity of secreted aspartyl proteinases. Genet. Mol. Res. 5, 664–687 (2006).
Palanisamy, S. K., Ramirez, M. A., Lorenz, M. & Lee, S. A. Candida albicans PEP12 is required for biofilm integrity and in vivo virulence. Euk. Cell 9, 266–277 (2009).
Bernardo, S. M., Khalique, Z., Kot, J., Jones, J. K. & Lee, S. A. Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet. Biol. 45, 861–877 (2008).
Acknowledgements
We are grateful to J. Blankenship, S. Fanning, S. Ganguly, E. Hill and C. Woolford for comments on this manuscript. Our studies on biofilm formation have been supported by US National Institutes of Health grant R01 AI067703 (to A.P.M.) and fellowship F32 AI085521 (to J.S.F.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1 (table)
Candida albicans genes that function in biofilm development (PDF 256 kb)
Related links
Glossary
- Pseudohypha
-
A chain of attached, elongated cells with constrictions at the septa.
- Quorum sensing
-
Communication between neighbouring cells, carried out through secreted signalling molecules, allowing populations to sense organism density and alter gene expression accordingly.
- Ergosterol
-
The main sterol in the fungal cell membrane. Ergosterol is responsible, and essential, for structural and regulatory membrane features such as fluidity and permeability (equivalent to cholesterol in mammalian cells).
- Azole
-
A class of antifungal drug that inhibits a late step in the biosynthesis of ergosterol; this includes the triazoles (for example, fluconazole, voriconazole and posaconazole) and the imidazoles.
- Polyene
-
A class of antifungal drug that intercalates into ergosterol-containing fungal membranes, thereby forming membrane-spanning channels that lead to the leakage of cellular components and cell death.
- Persister
-
A metabolically quiescent cell that neither grows nor dies when exposed to cidal concentrations of antimicrobial compounds.
Rights and permissions
About this article
Cite this article
Finkel, J., Mitchell, A. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9, 109–118 (2011). https://doi.org/10.1038/nrmicro2475
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2475
This article is cited by
-
Activity of thonningianin A against Candida albicans in vitro and in vivo
Applied Microbiology and Biotechnology (2024)
-
Morphogenic plasticity: the pathogenic attribute of Candida albicans
Current Genetics (2023)
-
Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies
Brazilian Journal of Microbiology (2023)
-
A Secondary Metabolite of Cercospora sp., Associated with Rosa damascena Mill., Inhibits Proliferation, Biofilm Production, Ergosterol Synthesis and Other Virulence Factors in Candida albicans
Microbial Ecology (2023)
-
Enniatins from a marine-derived fungus Fusarium sp. inhibit biofilm formation by the pathogenic fungus Candida albicans
Journal of Natural Medicines (2023)