Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage
<p>Development of CO<sub>2</sub> content (% <span class="html-italic">w</span>/<span class="html-italic">w</span>; part <b>A</b>) and O<sub>2</sub> content (mg/L; part <b>B</b>) in the Czech lager beer samples during a 6 months cold storage period at 4 ± 2°C. The examined beer samples presented different original wort extract values (■—10.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ○—11.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ▲—11.5% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ☆—12.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>). The results are expressed as means; the error bars represent standard deviation (<span class="html-italic">n</span> = 6).</p> "> Figure 2
<p>Development of bitter substances (mg/L; part <b>A</b>), total polyphenol content (mg/L; part <b>B</b>), color (EBC; part <b>C</b>) and foam collapse time (s; part <b>D</b>) of the Czech lager beer samples during a 6 months cold storage period at 4 ± 2 °C. The examined beer samples presented different original wort extract values (■—10.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ○—11.0 % <span class="html-italic">w</span>/<span class="html-italic">w</span>; ▲—11.5% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ☆—12.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>). The results are expressed as means; the error bars represent standard deviation (<span class="html-italic">n</span> = 6).</p> "> Figure 3
<p>Development of turbidity values (EBC; 90° angle—part <b>A</b>; 25° angle—part <b>B</b>) of the Czech lager beer samples during a 6 months cold storage period at 4 ± 2°C. The examined beer samples presented different original wort extract values (■—10.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ○—11.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ▲—11.5% <span class="html-italic">w</span>/<span class="html-italic">w</span>; ☆—12.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>). The results are expressed as means; the error bars represent standard deviation (<span class="html-italic">n</span> = 6).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beer Sample Production
2.2. Determination of Beer Ethanol, Density, Extract, Fermentation Degree and pH
2.3. Determination of Beer Dissolved Carbon Dioxide and Oxygen Contents
2.4. Determination of Beer Bitterness, Total Polyphenol Content, Color and Beer Foam Stability
2.5. Determination of Beer Turbidity (Haze)
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Beer Ethanol, Density, Extract and pH
3.2. Beer Dissolved Carbon Dioxide and Oxygen Contents
3.3. Beer Bitterness, Total Polyphenol Content, Color and Foam Stability
3.4. Beer Foam Stability
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Lorencová, E.; Salek, R.N.; Černošková, I.; Buňka, F. Evaluation of force-carbonated Czech-type lager beer quality during storage in relation to the applied type of packaging. Food Control 2019, 106, 106706. [Google Scholar] [CrossRef]
- Gagula, G.; Mastanjević, K.; Mastanjević, K.; Krstanović, V.; Horvat, D.; Magdić, D. The influence of packaging material on volatile compounds of pale lager beer. Food Packag. Shelf Life 2020, 24, 100496. [Google Scholar] [CrossRef]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Co-occurrence of nivalenol, deoxynivalenol and deoxynivalenol-3-glucoside in beer samples. Food Control 2018, 92, 319–324. [Google Scholar] [CrossRef]
- Da Silva, L.A.; Flumignan, D.L.; Pezza, H.R.; Pezza, L. 1H NMR spectroscopy combined with multivariate data analysis for differentiation of Brazilian lager beer according to brewery. Eur. Food Res. Technol. 2019, 245, 2365–2372. [Google Scholar] [CrossRef]
- Denby, C.M.; Li, R.A.; Vu, V.T.; Costello, Z.; Lin, W.; Chan, L.J.G.; Williams, J.; Donaldson, B.; Bamforth, C.W.; Petzold, C.J.; et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 2018, 9, 965. [Google Scholar] [CrossRef] [Green Version]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef]
- Neto, J.R.O.; de Macêdo, I.Y.L.; de Oliveira, N.R.L.; de Ferreira, R.Q.; de Gil, E.S. Antioxidant capacity and total phenol content in hop and malt commercial samples. Electroanalysis 2017, 29, 2788–2792. [Google Scholar] [CrossRef]
- Hempel, A.; O’Sullivan, M.G.; Papkovsky, D.B.; Kerry, J.P. Use of optical oxygen sensors to monitor residual oxygen in pre- and post-pasteurised bottled beer and its effect on sensory attributes and product acceptability during simulated commercial storage. LWT 2013, 50, 226–231. [Google Scholar] [CrossRef]
- Čejka, P.; Kellner, V.; Čulík, J.; Horák, T.; Jurková, M. Characterizing a Czech-Type Beer. Kvasny Prumysl 2004, 50, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Olšovská, J.; Čejka, P.; Sigler, K.; Hönigová, V. The phenomenon of Czech beer: A review. Czech J. Food Sci. 2014, 32, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Czech Republic, Decree No. 248/2018 Coll. Requirements for Beverages, Fermented Vinegar and Yeast; Ministry of Agriculture: Prague, Czech Republic, 2018.
- Březinová, M. Beer Industry in the Czech Republic: Reasons for Founding a Craft Brewery. Sustainability 2021, 13, 9680. [Google Scholar] [CrossRef]
- Lekjing, S.; Venkatachalam, K. Quality changes of HomChaiya rice beer during storage at two alternative temperatures. J. Biosci. Bioeng. 2022, 133, 369–374. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Freitas, F.; Pinheiro, S.; Mourão, M.F.; Guido, L.F.; da Silva, M.G. Impact of temperature during beer storage on beer chemical profile. LWT 2022, 154, 112688. [Google Scholar] [CrossRef]
- Guido, L.F.; Curto, A.F.; Boivin, P.; Benismail, N.; Gonçalves, C.R.; Barros, A.A. Correlation of Malt Quality Parameters and Beer Flavor Stability: Multivariate Analysis. J. Agric. Food Chem. 2007, 55, 728–733. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Delvaux, F.; Daenen, L.; Verachtert, H.; Delvaux, F.R. Aging characteristics of different beer types. Food Chem. 2007, 103, 404–412. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- EBC. European Brewery Convention Analytica–EBC; Fachverlag Hans Carl: Nürnberg, Germany, 2007. [Google Scholar]
- Rübsam, H.; Gastl, M.; Becker, T. Influence of the range of molecular weight distribution of beer components on the intensity of palate fullness. Eur. Food Res. Technol. 2013, 236, 65–75. [Google Scholar] [CrossRef]
- ISO 8586-1; Sensory Analysis–General Guidance for the Selection, Training and Monitoring of Assessors–Part 1: Selected Assessors. International Organization for Standardization: Geneva, Switzerland, 1993.
- ISO 8589; Sensory Analysis–General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Kuchel, L.; Brody, A.L.; Wicker, L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006, 19, 25–32. [Google Scholar] [CrossRef]
- Paternoster, A.; Vanlanduit, S.; Springael, J.; Braet, J. Measurement and analysis of vibration and shock levels for truck transport in Belgium with respect to packaged beer during transit. Food Packag. Shelf Life 2018, 15, 134–143. [Google Scholar] [CrossRef]
- Šulc, R.; Bojas, J. Beer foam decay: Effect of glass surface quality and CO2 content. EPJ Web Conf. 2018, 180, 02101. [Google Scholar] [CrossRef]
- Guadalupe-Daqui, M.; MacIntosh, A.J. Rapid Beer Fermentation: The Effect of Vacuum Pressure on a Pilot Scale Lager Fermentation. J. Am. Soc. Brew. Chem. 2019, 77, 235–242. [Google Scholar] [CrossRef]
- Calado, L.S.; Lacerda, A.L.F.; Fiaux, S.B.; Sphaier, L.A.; Silva, V.N.H.; Peixoto, F.C. Low-cost fluorescence-based method for beer bitterness measurement. J. Food Eng. 2019, 262, 9–12. [Google Scholar] [CrossRef]
- Kemp, O.; Hofmann, S.; Braumann, I.; Jensen, S.; Fenton, A.; Oladokun, O. Changes in key hop-derived compounds and their impact on perceived dry-hop flavour in beers after storage at cold and ambient temperature. J. Inst. Brew. 2021, 127, 367–384. [Google Scholar] [CrossRef]
- Jurić, A.; Ćorić, N.; Odak, A.; Herceg, Z.; Tišma, M. Analysis of total polyphenols, bitterness and haze in pale and dark lager beers produced under different mashing and boiling conditions. J. Inst. Brew. 2015, 121, 541–547. [Google Scholar] [CrossRef]
- Floridi, S.; Montanari, L.; Marconi, O.; Fantozzi, P. Determination of Free Phenolic Acids in Wort and Beer by Coulometric Array Detection. J. Agric. Food Chem. 2003, 51, 1548–1554. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Voorspoels, S.; Noten, B.; De Paepe, D.; Baart, G.J.E.; De Cooman, L.; Posewitz, M. Detection of flavonoids in microalgae from different evolutionary lineages. J. Phycol. 2014, 50, 483–492. [Google Scholar] [CrossRef]
- Habschied, K.; Lončarić, A.; Mastanjević, K. Screening of Polyphenols and Antioxidative Activity in Industrial Beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Steiner, E.; Becker, T.; Gastl, M. Turbidity and Haze Formation in Beer-Insights and Overview. J. Inst. Brew. 2010, 116, 360–368. [Google Scholar] [CrossRef]
- Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Vulin, Z.; Mastanjević, K. Beer–The Importance of Colloidal Stability (Non-Biological Haze). Fermentation 2018, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Blanco, C.A.; Porras, M. Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci. Technol. 2012, 26, 21–30. [Google Scholar] [CrossRef]
- Breda, C.; Barros, A.I.; Gouvinhas, I. Characterization of bioactive compounds and antioxidant capacity of Portuguese craft beers. Int. J. Gastron. Food Sci. 2022, 27, 100473. [Google Scholar] [CrossRef]
- Heuberger, A.L.; Broeckling, C.D.; Lewis, M.R.; Salazar, L.; Bouckaert, P.; Prenni, J.E. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem. 2012, 135, 1284–1289. [Google Scholar] [CrossRef]
- Mascia, I.; Fadda, C.; Karabín, M.; Dostálek, P.; del Caro, A. Aging of craft durum wheat beer fermented with sourdough yeasts. LWT 2016, 65, 487–494. [Google Scholar] [CrossRef]
Values | ||||
---|---|---|---|---|
Mashing a | CB10.0 ** | CB11.0 ** | CB11.5 ** | CB12.0 ** |
Brew liquor/grist ratio | 5.1/1 (L/kg) | 5.1/1 (L/kg) | 5.1/1 (L/kg) | 5.1/1 (L/kg) |
Mashing method | Double decoction process | Double decoction process | Double decoction process | Double decoction process |
Mash-in temperature | 40.0 (±2.0) °C | 40.0 (±2.0) °C | 40.0 (±2.0) °C | 40.0 (±2.0) °C |
pH of mashing | 5.2 (±0.1) | 5.2 (±0.1) | 5.2 (±0.1) | 5.2 (±0.1) |
Mashing program | 50 °C for 15 min | 50 °C for 15 min | 50 °C for 15 min | 50 °C for 15 min |
1st decoction (⅓ of the main mash) | 65 °C for 55 min [from 65 °C to 97 °C (1 °C/min)] | 65 °C for 55 min [from 65 °C to 97 °C (1 °C/min)] | 65 °C for 55 min [from 65 °C to 97 °C (1 °C/min)] | 65 °C for 55 min [from 65 °C to 97 °C (1 °C/min)] |
Return to the main mash | 65 °C for 45 min | 65 °C for 45 min | 65 °C for 45 min | 65 °C for 45 min |
2nd decoction (⅓ of the main mash) | 70 °C for 60 min | 70 °C for 60 min | 70 °C for 60 min | 70 °C for 60 min |
Return to the main mash | 80 °C for 60 min | 80 °C for 60 min | 80 °C for 60 min | 80 °C for 60 min |
Mash-out temperature | 78 (±0.2) °C | 78 (±0.2) °C | 78 (±0.2) °C | 78 (±0.2) °C |
Total mashing time | 267 min | 267 min | 267 min | 267 min |
Hopping b | ||||
Hopping method | Three-step hopping process | Three-step hopping process | Three-step hopping process (and extra dry hopping *) | Three-step hopping process |
1st hopping | 40% c out of the total quantity of α-bitter acids 5 min after the beginning of hop boiling | 40% c out of the total quantity of α-bitter acids 5 min after the beginning of hop boiling | 40% c out of the total quantity of α-bitter acids 5 min after the beginning of hop boiling | 40% c out of the total quantity of α-bitter acids 5 min after the beginning of hop boiling |
2nd hopping | 30% c out of the total quantity of α-bitter acids 20 min after the beginning of hop boiling | 30% c out of the total quantity of α-bitter acids 20 min after the beginning of hop boiling | 30% c out of the total quantity of α-bitter acids 20 min after the beginning of hop boiling | 30% c out of the total quantity of α-bitter acids 20 min after the beginning of hop boiling |
3rd hopping | 30% c out of the total quantity of α-bitter acids 15 min before the end of hop boiling | 30% c out of the total quantity of α-bitter acids 15 min before the end of hop boiling | 30% c out of the total quantity of α-bitter acids 15 min before the end of hop boiling | 30% c out of the total quantity of α-bitter acids 15 min before the end of hop boiling |
Total hopping time | 80 min | 80 min | 90 min | 120 min |
Fermentation | 6 days at 7 (±1) °C | 7 days at 7 (±1) °C | 9 days at 7 (±1) °C | 10 days at 7 (±1) °C |
Lagering (cold maturation) * | 50 days 2 (±0.5) °C | 55 days 2 (±0.5) °C | 60 days 2 (±0.5) °C | 60 days 2 (±0.5) °C |
Parameter | Values | |||
---|---|---|---|---|
CB10.0 * | CB11.0 * | CB11.5 * | CB12.0 * | |
Ethanol | ||||
% v/v | 3.94 ± 0.02 a | 4.38 ± 0.01 b | 4.50 ± 0.02 c | 4.78 ± 0.01 d |
% w/w | 3.09 ± 0.01 a | 3.43 ± 0.01 b | 3.52 ± 0.03 c | 3.74 ± 0.01 d |
Extract of original wort (% w/w) | 9.88 ± 0.09 a | 10.89 ± 0.05 b | 11.44 ± 0.08 c | 11.85 ± 0.07 d |
Extract | ||||
Apparent (% w/w) | 2.26 ± 0.04 a | 2.51 ± 0.02 b | 2.76 ± 0.02 c | 2.91 ± 0.01 d |
Real (% w/w) | 3.71 ± 0.04 a | 4.10 ± 0.03 b | 4.39 ± 0.02 c | 4.63 ± 0.01 d |
Fermentation degree | ||||
Apparent (% w/w) | 76.71 ± 0.15 a | 77.19 ± 0.11 b | 77.68 ± 0.17 c | 78.13 ± 0.14 d |
Real (% w/w) | 61.01 ± 0.16 a | 61.57 ± 0.12 b | 62.31 ± 0.17 c | 62.69 ± 0.15 d |
Color (EBC Units) | 9.46 ± 0.05 a | 10.39 ± 0.03 b | 12.21 ± 0.04 c | 11.53 ± 0.02 d |
Density (g/L) | 1.041 ± 0.05 a | 1.044 ± 0.03 b | 1.046 ± 0.04 c | 1.048 ± 0.05 d |
pH (−) | 4.55 ± 0.01 a | 4.52 ± 0.02 a | 4.51 ± 0.01 a | 4.54 ± 0.01 a |
Beer Samples 2 | Storage Time (Months) | Sensory Evaluation 1 | ||||
---|---|---|---|---|---|---|
Carbonation Level 3 | Fullness 3 | Bitterness Intensity 3 | Off-Flavors 3 | Overall Rating 3 | ||
CB10.0 | 0 | 3 aA | 3 aA | 3 aA | 2 aA | 3 aA |
1 | 3 aA | 3 aA | 3 aA | 1 bB | 3 aA | |
2 | 3 aA | 3 aA | 3 aA | 1 bB | 3 aA | |
3 | 3 aA | 3 aA | 3 aA | 3 cC | 4 bC | |
4 | 3 aA | 3 aA | 3 aA | 2 aA | 4 bC | |
5 | 2 bC | 2 aC | 3 aA | 3 cC | 4 bC | |
6 | 2 bC | 2 aC | 3 aA | 3 cC | 5 bD | |
CB11.0 | 0 | 3 aA | 3 aA | 3 aA | 1 bB | 3 aA |
1 | 3 aA | 3 aA | 4 bB | 1 bB | 3 aA | |
2 | 3 aA | 3 aA | 3 aA | 2 aA | 4 bC | |
3 | 3 aA | 3 aA | 3 aA | 2 aA | 4 bC | |
4 | 3 aA | 3 aA | 3 aA | 3 cC | 4 bC | |
5 | 2 bC | 2 aC | 3 aA | 3 cC | 5 cD | |
6 | 2 bC | 2 bC | 3 aA | 4 dD | 5 cD | |
CB11.5 | 0 | 4 cB | 3 aA | 3 aA | 1 bB | 2 dB |
1 | 3 aA | 3 aA | 3 aA | 1 bB | 2 dB | |
2 | 3 aA | 3 aA | 3 aA | 3 cC | 4 bC | |
3 | 3 aA | 3 aA | 3 aA | 3 cC | 4 cC | |
4 | 3 aA | 3 aA | 4 bB | 3 cC | 4 bC | |
5 | 2 bC | 2 aC | 3 aA | 3 cC | 5 cD | |
6 | 2 bC | 2 bC | 3 aA | 4 dD | 6 eE | |
CB12.0 | 0 | 3 aA | 4 cB | 3 aA | 1 bB | 2 dB |
1 | 3 aA | 3 aA | 3 aA | 1 bB | 2 dB | |
2 | 3 aA | 3 aA | 3 aA | 2 aA | 4 bC | |
3 | 3 aA | 3 aA | 3 aA | 2 aA | 4 bC | |
4 | 3 aA | 3 aA | 3 aA | 3 cC | 4 bC | |
5 | 2 bC | 2 aC | 3 aA | 3 cC | 5 bD | |
6 | 2 bC | 2 aC | 3 aA | 4 cD | 6 cE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salek, R.N.; Lorencová, E.; Gál, R.; Kůrová, V.; Opustilová, K.; Buňka, F. Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage. Foods 2022, 11, 3389. https://doi.org/10.3390/foods11213389
Salek RN, Lorencová E, Gál R, Kůrová V, Opustilová K, Buňka F. Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage. Foods. 2022; 11(21):3389. https://doi.org/10.3390/foods11213389
Chicago/Turabian StyleSalek, Richardos Nikolaos, Eva Lorencová, Robert Gál, Vendula Kůrová, Kristýna Opustilová, and František Buňka. 2022. "Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage" Foods 11, no. 21: 3389. https://doi.org/10.3390/foods11213389
APA StyleSalek, R. N., Lorencová, E., Gál, R., Kůrová, V., Opustilová, K., & Buňka, F. (2022). Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage. Foods, 11(21), 3389. https://doi.org/10.3390/foods11213389