The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract
"> Figure 1
<p>Base peak chromatogram (BPC) of bound phenolics in legumes. ACB-S: acid hydrolysis-bound phenolics of soybean; ALB-S: alkaline hydrolysis-bound phenolics of soybean; ACB-V: acid hydrolysis-bound phenolics of vicia faba; ALB-V: alkaline hydrolysis-bound phenolics of vicia faba; ACB-K: acid hydrolysis-bound phenolics of kidney bean; ALB-K: alkaline hydrolysis-bound phenolics of kidney bean.</p> "> Figure 2
<p>Total ion chromatogram (TIC) of phenolic extracts in legumes after colonic fermentation.</p> "> Figure 2 Cont.
<p>Total ion chromatogram (TIC) of phenolic extracts in legumes after colonic fermentation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Extraction of Bound Phenolic Compounds
2.4. Gastrointestinal Digestion of Bound Phenolic
2.5. In Vitro Colonic Fermentation
2.5.1. In Vitro Fermentation Growth Medium Preparation
2.5.2. Fecal Extract Preparation
2.5.3. Fermentation Conditions
2.6. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.6.1. Determination of TPC
2.6.2. Determination of TFC
2.7. Antioxidant Activity
2.7.1. ABTS Radical Scavenging Activity
2.7.2. Ferric Reducing Antioxidant Power (FRAP Assay)
2.8. Qualitative Analysis by UPLC-ESI-QTOF-MS/MS
2.8.1. Liquid Cromatographic Conditions
2.8.2. Mass Spectrometric Conditions
2.9. Quantitative Analysis by HPLC-ESI-QqQ-MS
2.9.1. LC-MS Conditions
2.9.2. Calibration and Quantification of Phenolics
2.10. Statistical Analysis
3. Result and Discussion
3.1. Total Phenolics and Total Flavonoids of Legumes
3.2. Identification and Quantification of Bound Phenolic Compounds of Three Legumes in Acid/Alkaline Hydrolysis
3.2.1. Phenolic Acids
3.2.2. Flavonoids
3.2.3. Quantitative Analysis of Bound Phenolic Compounds
3.3. The Antioxidant Activities of Legumes
3.4. The Effect of In Vitro Gastrointestinal Digestion on Bound Phenolics in Three Legumes
3.5. The Effect of Colonic Fermentation by Human Microflora on Bound Phenolics in Three Legumes
3.5.1. The Change of pH During Colonic Fermentation
3.5.2. Total Phenolic Contents
3.5.3. Phenolics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol antioxidant quantity and quality in foods: Fruits. J. Agric. Food Chem. 2001, 49, 5315–5321. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—part 2: Phenolic acids. Food Chem. 2012, 135, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Shahidi, F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. J. Funct. Foods 2017, 38, 716–722. [Google Scholar] [CrossRef]
- Baskaran, R.; Pullencheri, D.; Somasundaram, R. Characterization of of free, esterified and bound phenolics in custard apple (Annona squamosa L.) fruit pulp by UPLC-ESI-MS/MS. Food Res. Int. 2016, 82, 121–127. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Garcialafuente, A.; Moro, C.; Manchon, N.; Gonzaloruiz, A.; Villares, A.; Guillamon, E.; Rostagno, M.A.; Mateovivaracho, L. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014, 161, 216–223. [Google Scholar] [CrossRef]
- Mojica, L.; Meyer, A.; Berhow, M.A.; De Mejia, E.G. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Morenovaldespino, C.A.; Lunavital, D.; Camachoruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Inada, K.O.P.; Silva, T.; Lobo, L.A.; Domingues, R.M.C.P.; Perrone, D.; Monteiro, M. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. J. Funct. Foods 2020, 67, 103851. [Google Scholar] [CrossRef]
- Mosele, J.I.; Macià, A.; Romero, M.P.; Motilva, M.J.; Rubió, L. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. J. Funct. Foods 2015, 14, 529–540. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Mikkelsen, D.; Gidley, M.J. Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct. 2013, 4, 906. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Li, W.; Li, H.; Deng, Z.; Zhang, B. Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr). J. Funct. Foods 2017, 32, 296–312. [Google Scholar] [CrossRef]
- Kim, K.H.; Rong, T.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Sun, Y.; Hu, B.; Sun, Y.; Jabbar, S.; Zeng, X. Fermentation in vitro of EGCG, GCG, and EGCG3\Me isolated from Oolong tea by human intestinal microbiota. Food Res. Int. 2013, 54, 1589–1595. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Y.; Li, H.; Peng, H.; Chen, H.; Xie, H.-r.; Deng, Z. Rapid characterization of chemical constituents in radix tetrastigma, a functional herbal mixture, before and after metabolism and their antioxidant/antiproliferative activities. J. Funct. Foods 2015, 18, 300–318. [Google Scholar] [CrossRef]
- Chen, G.L.; Zhang, X.; Chen, S.G.; Han, M.D.; Gao, Y.Q. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of china. J. Funct. Foods 2017, 30, 290–302. [Google Scholar] [CrossRef]
- Wang, Y.K.; Zhang, X.; Chen, G.L.; Yu, J.; Yang, L.Q.; Gao, Y.Q. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Kim, J.S. Antioxidant activities of selected berries and their free, esterified, and insoluble-bound phenolic acid contents. Prev. Nutr. Food Sci. 2018, 23, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, L.; Nie, S.; Hu, J.; Liu, Z.; Xie, M. Antioxidant activities and anthocyanins composition of seed coats from twenty-six kidney bean cultivars. J. Funct. Foods 2016, 26, 622–631. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Amicucci, M. Biological activities of phenolic compounds extracted from amaranthaceae plants and their LC/ESI-MS/MS profiling. J. Funct. Foods 2016, 26, 645–656. [Google Scholar] [CrossRef]
- Aguilera, Y.; Dueñas, M.; Estrella, I.; Hernandez, T.; Benitez, V.; Esteban, R.M.; Martin-Cabrejas, M.A. Evaluation of phenolic profile and antioxidant properties of pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 2010, 58, 10101–10108. [Google Scholar] [CrossRef]
- Różalska, S.; Szewczyk, R.; Długoński, J. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus gliocephalotrichum simplex: A proposal of a metabolic pathway. J. Hazard. Mater. 2010, 180, 323–331. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD–ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and characterization of phenolic antioxidant compounds from brown irish seaweed himanthalia elongata using LC-DAD–ESI-MS/MS. Innov. Food Sci. Emerg. Technol. 2016, 37, 261–268. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, S.; Zhong, Y.; Zhan, R.; Yan, Y.; Pan, H.; Yan, P. UPLC-QTOF-MS identification of the chemical constituents in rat plasma and urine after oral administration of rubia cordifolia L. Extract. Molecules 2017, 22, 1327. [Google Scholar] [CrossRef] [Green Version]
- Prommajak, T.; Sang, M.K.; Pan, C.H.; Sang, M.K.; Rattanapanone, N. Identification of antioxidants in young mango leaves by LC-ABTS and LC-MS. Chiang Mai Univ. J. Nat. Sci. 2014, 13, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Estrada, B.A.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Chiremba, C.; Rooney, L.W.; Beta, T. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J. Agric. Food Chem. 2012, 60, 4735–4742. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Barros, L.; Ferreira, I.C. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Podsędek, A.; Redzynia, M.; Klewicka, E.; Koziołkiewicz, M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Res. Int. 2014, 2014, 365738. [Google Scholar] [CrossRef] [PubMed]
- Hachibamba, T.; Dykes, L.; Awika, J.; Minnaar, A.; Duodu, K.G. Effect of simulated gastrointestinal digestion on phenolic composition and antioxidant capacity of cooked cowpea (vigna unguiculata) varieties. Int. J. Food Sci. Technol. 2013, 48, 2638–2649. [Google Scholar] [CrossRef]
- Kroon, P.A.; Faulds, C.B.; Ryden, P.; Robertson, J.A.; Williamson, G. Release of covalently bound ferulic acid from fiber in the human colon. J. Agric. Food Chem. 1997, 45, 661–667. [Google Scholar] [CrossRef]
- Fereidoon, S.; Judong, Y. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar]
- Mosele, J.I.; Macia, A.; Romero, M.P.; Motilva, M.-J. Stability and metabolism of arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chem. 2016, 201, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filesi, C.; Benedetto, R.D. Polyphenols, dietary sources and bioavailability. Ann. Ist Super Sanita 2007, 43, 348–361. [Google Scholar]
- Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.S.; Moore, K.P.; Rice-Evans, C.A. Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products. Free Radical Biol. Med. 2004, 36, 212–225. [Google Scholar] [CrossRef]
- Dall’Asta, M.; Calani, L.; Tedeschi, M.; Jechiu, L.; Brighenti, F.; Del Rio, D. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition 2012, 28, 197–203. [Google Scholar] [CrossRef]
- Brosnan, B.; Coffey, A.; Arendt, E.K.; Furey, A. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Anal. Bioanal. Chem. 2012, 403, 2983–2995. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from madeira island by HPLC-DAD-ESI-MS and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Rotches-Ribalta, M.; Andres-Lacueva, C.; Estruch, R.; Escribano, E.; Urpi-Sarda, M. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol. Res. 2012, 66, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Aura, A.-M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008, 7, 407–429. [Google Scholar] [CrossRef]
Antioxidative Assay | Hydrolysis Method | Soybean | Vicia Faba | Kidney Bean |
---|---|---|---|---|
TPC | acid | 0.012 ± 0.001 c | 0.18 ± 0.01 b | 0.31 ± 0.01 a |
(mg GAE/g DW) | alkaline | 2.27 ± 0.30 a | 1.79 ± 0.12 b | 2.07 ± 0.09 ab |
TFC | acid | 0.006 ± 0.001 c | 0.09 ± 0.03 b | 0.17 ± 0.02 a |
(mg CAE/g DW) | alkaline | 0.13 ± 0.03 c | 0.35 ± 0.05 b | 0.76 ± 0.03 a |
ABTS | acid | 1.54 ± 0.04 a | 1.11 ± 0.06 b | 1.52 ± 0.04 a |
(mg TE/g DW) | alkaline | 1.11 ± 0.09 c | 1.79 ± 0.36 b | 3.13 ± 0.11 a |
FRAP | acid | 5.86 ± 0.31 c | 7.58 ± 0.07 b | 11.17 ± 0.04 a |
(mmol FE/g DW) | alkaline | 4.57 ± 0.25c | 15.24 ± 1.10 b | 30.77 ± 1.77 a |
Peak | tR | λmax | Formula | [M-H]- (m/z) | Major Fragment Ions (m/z) | Identification | Source |
---|---|---|---|---|---|---|---|
No. | (min) | (nm) | |||||
Phenolic acids and derivatives | |||||||
1 | 3.555 | 206,273 | C7H6O5 | 169.0148 | 125.0205[M-H-CO2]− | Gallic acid abc | V1, V2, K1 |
2 | 3.623 | 206,273 | C9H10O5 | 197.006 | 153.0227[M-H-CO2]− | Syringic acid ab | V2 |
3 | 5.503 | 206,273 | C7H6O4 | 153.0189 | 109.0261[M-H-CO2]− | Procatechuic acid abc | S1, S2, V2, K1, K2 |
125.0214[M-H-CO]− | |||||||
4 | 6.86 | 261,292 | C7H6O4 | 153.0191 | 109.0286[M-H-CO2]− | Dihydroxybenzoic acid ab | V1, K2 |
5 | 7.168 | 291,208 | C9H10O4 | 181.012 | 153.0190[M-H-CO]− | Hydroxyphenyllactic acid b | V2, K2 |
135.0087[M-H-CO-H2O]− | |||||||
162.9992[M-H-H2O]− | |||||||
6 | 9.11 | 280,311 | C7H6O3 | 137.0222 | 109.0461[M-H-CO]− | Hydroxybenzoic acid a | K1, K2 |
7 | 9.996 | 280,310 | C7H6O3 | 137.0225 | 119.0129[M-H-H2O]− | Hydroxybenzoic acid a | V1, V2, K2, K2 |
108.0238[M-H-CHO]− | |||||||
9 | 11.181 | 256 | C7H6O3 | 137.0254 | 119.0115[M-H-H2O]− | Hydroxybenzoic acid a | S1, S2 |
108.0205[M-H-CHO]− | |||||||
14 | 15.614 | 270 | C10H10O4 | 193.0144 | 133.2188 [M-H-C2H4O2]− | Ferulic acid abc | V2, K2 |
16 | 18.01 | 268 | C11H12O5 | 223.021 | Sinapic acid bc | K2 | |
18 | 20.836 | 264,294 | C8H8O4 | 167.0326 | 148.8648[M-H-H2O]− | 4-Hydroxyphenylglycolic acid a | K1, K2 |
19 | 21.018 | 273 | C11H12O5 | 223.0358 | 179.0437[M-H-CO2]− | Sinapic acid ac | V2 |
22 | 22.89 | 296 | C9H8O3 | 163.0358 | 119.0500[M-H-CO2]− | Coumaric acid ab | S2, V2 |
24 | 23.762 | 290 | C16H18O9 | 353.1136 | 190.8992[M-H-C6H10O5]− | Chlorogenic acid abc | S2 |
25 | 24.728 | 290 | C9H8O3 | 163.0402 | 119.0494[M-H -CO2]− | p-Coumaric acid abc | S2, V2, K2 |
29 | 33.099 | 271 | 343.2033 | 297.1303,163.0575 | Coumaric acid derivative a | S1, S2, V2, K1 | |
35 | 36.65 | 268 | C9H8O3 | 162.8382 | 119.0492 [M-H-CO2]− | Coumaric acid ab | S1,V1 |
Flavonoids | |||||||
Isoflavones and derivatives | |||||||
27 | 28.416 | 282 | C21H20O9 | 415.1493 | 253.0198[M-C6H10O5]− | Daidzin abc | S1, S2 |
31 | 33.69 | 274 | C21H20O10 | 431.0939 | 269.0404[M-H-C6H10O5]− | Genistin ac | S1, S2 |
Flavones and derivatives | |||||||
20 | 20.956 | 280 | C15H10O5 | 269.064 | Trihydroxyflavone a | V2 | |
32 | 34.043 | 298 | C21H20O10 | 431.093 | 477.1000[M-H+HCOOH]− | Vitexin abc | S2 |
36 | 41.448 | 265 | C15H10O7 | 301.0318 | Quercetin abc | K1, K2 | |
Flavonols and derivatives | |||||||
21 | 22.425 | 294 | C15H10O8 | 317.0303 | 190.9986[M-H-C6H6O3]−, | Myricetin ab | K1, K2 |
163.0008[M-H-C7H6O4]− | |||||||
Flavanones and derivatives | |||||||
26 | 27.935 | 267 | C15H12O8 | 319.04 | 183.027 | Ampelopsin a | K1 |
30 | 33.285 | 268 | C16H14O8 | 333.1053 | Hovenitin I a | K1 | |
Flavanes and derivatives | |||||||
13 | 15.484 | 278 | C15H14O6 | 289.0666 | 109.1011[M-H-C9H12O4]− | Catechin abc | V2, V1, K1, K2 |
Other compounds | |||||||
8 | 11.134 | 208,273 | C8H10O3 | 153.0183 | 123.0441[M-H-CH2O]−, | Hydroxytyrosol b | V2 |
125.6422 [M-H-CO]− | |||||||
10 | 12.667 | 285 | C9H6O3 | 161.0776 | 117.0551[M-H-CO2]− | 4-Hydroxycoumarin b | V2 |
11 | 13.233 | 283 | C7H6O2 | 121.0277 | m-Hydroxybenzaldehyde ab | K1 | |
12 | 14.701 | 284 | C7H6O2 | 121.0295 | p-Hydroxybenzaldehyde ab | S1, S2, V2 | |
15 | 16.83 | 287 | C8H10O3 | 153.0174 | 125.0286[M-H-CO]− | Hydroxytyrosol b | K1, K2 |
123.0128[M-H-CH2O]− | |||||||
17 | 18.357 | 287 | C8H10O3 | 153.0203 | 125.0286[M-H-CO]− | Hydroxytyrosol b | V2 |
123.0128[M-H-CH2O]− | |||||||
23 | 23.01 | 283 | C14H8O4 | 239.0894 | 195.1382[M-H-CO2]− | Alizarin a | V1, V2 |
28 | 31.256 | 282 | C13H14O3 | 217.1048 | 172.8927[M-H-CO2]− | EUPATORIOCHROMENE b | V2 |
33 | 36.732 | 264 | C18H24O3 | 287.15 | 269.1377[M-H-H2O]− | 2-Hydroxyestradiol b | K2 |
227.1307,209.5160 | |||||||
34 | 35.801 | 295 | C13H10O6 | 261.1502 | 125.0975[M-H-C7H4O3]− | Maclurin a | S1, S2 |
187.0988 |
Compounds | Soybean (μg/g DW) | Vicia Faba (μg/g DW) | Kidney Bean (μg/g DW) | |||
---|---|---|---|---|---|---|
Acid Hydrolysis | Alkaline Hydrolysis | Acid Hydrolysis | Alkaline Hydrolysis | Acid Hydrolysis | Alkaline Hydrolysis | |
Phenolic Acids | ||||||
p-hydroxybenzoic acid | 2.11 ± 0.02 | 2.01 ± 0.23 | 19.96 ± 0.42 | 20.74 ± 0.42 | 2.14 ± 0.14 | 0.20 ± 0.04 |
procatechuic acid | 8.69 ± 0.02 | 9.87 ± 0.21 | 46.87 ± 0.13 | 31.58 ± 0.36 | 16.13 ± 1.11 | 7.83 ± 0.11 |
ferulic acid | 0.67 ± 0.03 | 0.17 ± 0.09 | 1.68 ± 0.10 | 1.07 ± 0.09 | 0.96 ± 0.12 | 0.19 ± 0.03 |
chlorogenic acid | Nd | 0.84 ± 0.05 | Nd | Nd | Nd | Nd |
sinapic acid | 0.16 ± 0.01 | 0.03 ± 0.01 | 0.25 ± 0.04 | 0.26 ± 0.01 | 0.20 ± 0.04 | 0.08 ± 0.03 |
gallic acid | Nd | Nd | 0.32 ± 0.01 | Nd | 18.58 ± 0.68 | 9.57 ± 0.10 |
p-coumaric acid | 3.09 ± 0.07 | 3.84 ± 0.15 | 0.66 ± 0.01 | 0.74 ± 0.01 | 2.13 ± 0.08 | 0.80 ± 0.02 |
Flavonoids | ||||||
Isoflavones | ||||||
daidzein | 0.18 ± 0.01 | nd | 0.01 | nd | nd | nd |
daidzin | 3.54 ± 0.01 | 3.99 ± 0.16 | nd | nd | nd | nd |
genistin | 4.17 ± 0.06 | 3.87 ± 0.05 | nd | nd | nd | nd |
glycitin | Nd | 0.82 ± 0.03 | nd | nd | nd | nd |
Flavones | ||||||
quercetin | Nd | 0.18 ± 0.01 | 4.31 ± 0.07 | 1.79 ± 0.03 | 0.20 ± 0.02 | 0.33 ± 0.01 |
hyperoside | Nd | Nd | nd | nd | nd | nd |
rutin | Nd | 0.28 ± 0.14 | nd | 0.20 ± 0.01 | nd | 1.30 ± 0.02 |
vitexin | 0.01 | 0.06 ± 0.01 | 0.02 | nd | 0.06 ± 0.01 | 0.05 ± 0.01 |
Flavanones | ||||||
naringenin | 0.07 ± 0.01 | 0.02 ± 0.01 | 0.01 | nd | nd | 0.01 |
Flavanes | ||||||
catechin | Nd | Nd | 7.97 ± 0.40 | 17.54 ± 0.22 | 0.84 ± 0.02 | 51.59 ± 1.18 |
Total | 22.68 ± 0.24 | 25.98 ± 1.15 | 82.06 ± 0.82 | 73.92 ± 1.15 | 41.24 ± 2.22 | 71.95 ± 1.55 |
Compounds | Soybean (μg/g DW) | Vicia Faba (μg/g DW) | Kidney Bean (μg/g DW) | ||||||
---|---|---|---|---|---|---|---|---|---|
Oral | Gastric | Intestinal | Oral | Gastric | Intestinal | Oral | Gastric | Intestinal | |
Phenolic acids | |||||||||
p-hydroxybenz-oic acid | 0.01 ± 0.01 | 0.05 ± 0.01 | 0.16 ± 0.02 | 0.29 ± 0.09 | 0.54 ± 0.33 | 0.69 ± 0.02 | 0.61 ± 0.06 | 0.72 ± 0.10 | 1.22 ± 0.19 |
procatechuic acid | Nd | Nd | Nd | 0.16 ± 0.02 | 0.22 ± 0.03 | 0.10 ± 0.01 | 0.40 ± 0.04 | 0.78 ± 0.11 | 1.28 ± 0.02 |
ferulic acid | Nd | Nd | Nd | nd | nd | nd | 1.08 ± 0.03 | 2.49 ± 0.32 | 2.09 ± 0.23 |
chlorogenic acid | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.16 ± 0.07 | 0.19 ± 0.04 | 0.14 ± 0.02 | 0.20 ± 0.04 | nd | nd | 0.11 ± 0.02 |
sinapic acid | nd | nd | nd | Nd | nd | nd | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.01 |
gallic aicd | nd | nd | nd | Nd | nd | nd | nd | nd | nd |
p-coumaric acid | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.50 ± 0.05 | 0.81 ± 0.01 | 0.34 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.10 ± 0.01 |
Flavonoids | |||||||||
Isoflavones | |||||||||
daidzein | 0.17 ± 0.05 | 0.30 ± 0.12 | 0.46 ± 0.04 | nd | nd | nd | nd | nd | nd |
daidzin | 0.80 ± 0.02 | 0.85 ± 0.20 | 1.10 ± 0.06 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.01 | nd | nd | nd |
genistin | 0.71 ± 0.03 | 0.99 ± 0.12 | 1.26 ± 0.10 | nd | nd | nd | nd | nd | nd |
glycitein | 0.08 ± 0.06 | 0.31 ± 0.04 | 0.44 ± 0.03 | nd | nd | nd | nd | nd | nd |
glycitin | 0.09 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.01 | nd | nd | nd | nd | nd | nd |
Flavones | |||||||||
quercetin | nd | nd | nd | nd | nd | nd | nd | nd | 0.13 ± 0.01 |
rutin | nd | nd | nd | nd | nd | nd | 0.19 ± 0.04 | 0.09 ± 0.01 | 0.09 ± 0.01 |
vitexin | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.004 | 0 | 0.009 | nd | nd | nd |
Flavanones | |||||||||
naringenin | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | nd | nd | nd | nd | nd | nd |
Flavanes | |||||||||
catechin | nd | nd | nd | 0.90 ± 0.19 | 1.05 ± 0.32 | 3.66 ± 0.03 | 0.62 ± 0.04 | 0.21 ± 0.03 | 2.67 ± 0.09 |
Total | 2.09 ± 0.23 | 2.80 ± 0.54 | 3.80 ± 0.36 | 2.08 ± 0.40 | 2.80 ± 0.72 | 5.05 ± 0.12 | 2.99 ± 0.23 | 4.40 ± 0.59 | 7.75 ± 0.59 |
Percent of acid hydrolysis/% | 9.22 | 12.34 | 16.75 | 5.04 | 6.79 | 12.25 | 3.65 | 5.36 | 9.45 |
Percent of alkaline hydrolysis/% | 8.04 | 10.78 | 14.63 | 3.25 | 4.38 | 7.9 | 4.04 | 5.95 | 10.48 |
0 h | 1 h | 3 h | 6 h | 12 h | 24 h | 36 h | 48 h | |
---|---|---|---|---|---|---|---|---|
Soybean | 0 b | 1.43 ± 0.04 a | 1.50 ± 0.19 a | 1.64 ± 0.17 a | 1.49 ± 0.24 a | 1.72 ± 0.26 a | 1.30 ± 0.15 a | 1.65 ± 0.01 a |
Vicia faba | 0 c | 0.85 ± 0.11 b | 0.93 ± 0.25 b | 0.91 ± 0.25 b | 1.16 ± 0.09 ab | 1.29 ± 0.28 ab | 1.48 ± 0.11 a | 1.45 ± 0.26 a |
Kidney bean | 0 c | 0.73 ± 0.17 a | 0.40 ± 0.12 b | 0.56 ± 0.19 ab | 0.59 ± 0.06 ab | 0.79 ± 0.12 a | 0.82 ± 0.10 a | 0.81 ± 0.06 a |
tR/ | Formula | [M-H]- (m/z) | Fragment Ions (m/z) | Identification | Fermentation Time | ||||
---|---|---|---|---|---|---|---|---|---|
(min) | 1 h | 3 h | 6 h | 12 h | |||||
Kidney Bean | |||||||||
1 | 4.635 | C14H12O5 | 259.1302 | 241.1191,197.1293,171.1476 | 2,6,4′-trihydroxy-4-methoxybenzophenone b | √ | √ | ||
2 | 8.305 | C14H14O3 | 229.154 | 185.1658 | (Iso)pentenyl-7-hydroxy-coumarin b | √ | √ | √ | |
3 | 10.142 | C7H6O3 | 137.0578 | 95.0489,122.0349 | Hydroxybenzoic acid abc | √ | √ | √ | |
4 | 11.852 | C13H7O5 | 243.1684 | 199.179 | Xanthotoxol acette b | √ | √ | √ | |
5 | 13.82 | C13H7O5 | 243.1651 | 199.1807,182.1586 | Xanthotoxol acette b | √ | √ | √ | |
6 | 15.591 | C14H12O4 | 243.17 | Benzophenone b | √ | √ | |||
7 | 16.069 | 327.1298 | 291.1036 | Brevifolin-carboxylic acid derivative ab | √ | √ | |||
8 | 17.986 | C10H12O4 | 195.0653 | Acetosyringone b | √ | ||||
9 | 18.832 | C17H25O3 | 277.1516 | Decyloxy benzoic acid b | √ | √ | |||
10 | 44.099 | 391.2823 | 223.3473 | Sinapic acid derivative ab | √ | √ | √ | ||
11 | 48.601 | 391.2902 | 343.2653 | 6-Hydroxy kaempferol 3,6,7-trimethyl ether derivative b | √ | ||||
Vicia Faba | |||||||||
1 | 5.277 | C9H10O2 | 149.0689 | 4-ethylbenzoic acid b | √ | √ | |||
2 | 7.996 | C9H8O3 | 163.1728 | Hydroxyphenyl acrylate b | √ | ||||
3 | 8.001 | C9H10O4 | 181.0481 | 163.0412,131.1925 | Dihydroxybenzene propionic acid b | √ | √ | √ | |
4 | 8.099 | C14H14O3 | 229.1533 | 185.1668 | (Iso)pentenyl-7-hydroxy-coumarin b | √ | √ | √ | |
5 | 43.049 | 391.2808 | 223.3473 | Sinapic acid derivative ab | √ | √ | |||
6 | 48.614 | 391.2812 | 343.2653 | 6-Hydroxycalanol 3,6,7-trimethyl ether derivative b | √ | ||||
Soybean | |||||||||
1 | 3.079 | C16H10O | 217.1187 | 187.1087,130.0877 | 1-hydroxyindole b | √ | √ | √ | |
2 | 8.103 | C14H14O3 | 229.1593 | 185.0603 | (Iso)pentenyl-7-hydroxy-coumarin b | √ | √ | √ | |
3 | 11.612 | C8H8O3 | 151.0448 | 113.0778,109.1214 | Hydroxyphenylacetic acid ab | √ | |||
4 | 47.147 | C20H22O8 | 389.266 | 435.2747,226.6650 | Resveratrol glucoside ab | □ | √ | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Li, W.; Deng, Z.; Li, H.; Zhang, B. The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods 2020, 9, 1816. https://doi.org/10.3390/foods9121816
Zhu L, Li W, Deng Z, Li H, Zhang B. The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods. 2020; 9(12):1816. https://doi.org/10.3390/foods9121816
Chicago/Turabian StyleZhu, Liuying, Wenting Li, Zeyuan Deng, Hongyan Li, and Bing Zhang. 2020. "The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract" Foods 9, no. 12: 1816. https://doi.org/10.3390/foods9121816
APA StyleZhu, L., Li, W., Deng, Z., Li, H., & Zhang, B. (2020). The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods, 9(12), 1816. https://doi.org/10.3390/foods9121816