Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads
<p>The reverse-phase high-performance liquid chromatograms (RP-HPLC) of ultrafiltrates (NMWL 3000) of three fermented Bactrian camel’s milks obtained from different herders (C1–C3). Arrows indicate fractions manually collected for MS/MS peptide identification. The peak IDs were given in accordance with their retention time, e.g., the arrow indicating the left-most peak’s ID in C3 is C3–1.</p> "> Figure 2
<p>The RP-HPLC chromatograms of ultrafiltrates (NMWL 3000) of three fermented mare’s milks obtained from different herders. Arrows indicate fractions manually collected for MS/MS peptide identification. Arrows indicate fractions manually collected for MS/MS peptide identification. The peak IDs were given in accordance with their retention time, e.g., the arrow indicating the left-most peak’s ID in H1 is H1–1.</p> "> Figure 3
<p>Location of the identified peptides in their mother proteins. The peptides identified in this study are indicated by underlines. The NCBI reference numbers of the mother proteins are indicated in the parentheses. The numbers present at the left-most of the column indicate the number of amino acid residues that started from the N-terminal methionine of the precursors. Dotted lines indicate sequence inconsistency between the identified peptide and the mother protein used as reference, probably due to the presence of genetic variants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Milk Samples
2.3. Peptide Purification
2.4. Mass Spectrometry
2.5. N-Terminal Sequence Analysis
3. Results
3.1. Peptide Profiles in the Fermented Milks Analyzed by RP-HPLC
3.2. Peptide Analysis by MALDI TOF-MS/MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bonnet, P. Dromadaires et Chameaux, Animaux Laitiers: Actes du Colloque, 24–26 Octobre, Nouakchott, Mauritanie; Éditions Quae: Versailles, France, 1998; pp. 257–261. [Google Scholar]
- Zhang, H.; Yao, J.; Zhao, D.; Liu, H.; Li, J.; Guo, M. Changes in Chemical Composition of Alxa Bactrian Camel Milk During Lactation. J. Dairy Sci. 2005, 88, 3402–3410. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Meisel, H.; Bockelmann, W. Bioactive Peptides Encrypted in Milk Proteins: Proteolytic Activation and Thropho-functional Properties. Antonie Van Leeuwenhoek 1999, 76, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.J.; Lillian, A.; Hazum, E.; Cuatrecasas, P.; Chang, J.K. Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A Potent and Specific Agonist for Morphine (mu) Receptors. Science 1981, 212, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Fiat, A.M.; Migliore-Samour, D.; Jollès, P.; Drouet, L.; Bal dit Sollier, C.; Caen, J. Biologically Active Peptides from Milk Proteins with Emphasis on Two Examples Concerning Antithrombotic and Immunomodulating Activities. J. Dairy Sci. 1993, 76, 301–310. [Google Scholar] [CrossRef]
- Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the Bactericidal Domain of Lactoferrin. Biochim. Biophys. Acta 1992, 1121, 130–136. [Google Scholar] [CrossRef]
- Hata, Y.; Yamamoto, M.; Ohni, M.; Nakajima, K.; Nakamura, Y.; Takano, T. A Placebo-controlled Study of the Effect of Sour Milk on Blood Pressure in Hypertensive Subjects. Am. J. Clin. Nutr. 1996, 64, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Sato, R.; Noguchi, T.; Naito, H. Casein Phosphopeptide (CPP) Enhances Calcium Absorption from the Ligated Segment of Rat Small Intestine. J. Nutr. Sci. Vitam. 1986, 32, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Alhaider, A.; Abdelgader, A.G.; Turjoman, A.A.; Newell, K.; Hunsucker, S.W.; Shan, B.; Ma, B.; Gibson, D.S.; Duncan, M.W. Through the Eye of an Electrospray Needle: Mass Spectrometric Identification of the Major Peptides and Proteins in the Milk of the One-humped Camel (Camelus Dromedarius). J. Mass Spectr. 2013, 48, 779–794. [Google Scholar] [CrossRef]
- Moslehishad, M.; Ehsani, M.R.; Salami, M.; Mirdamadi, S.; Ezzatpanah, H.; Naslaji, A.N.; Moosavi-Movahedi, A.A. The Comparative Assessment of ACE-inhibitory and Antioxidant Activities of Peptide Fractions Obtained from Fermented Camel and Bovine Milk by Lactobacillus Rhamnosus PTCC 1637. Int. Dairy J. 2013, 29, 82–87. [Google Scholar] [CrossRef]
- Mati, A.; Senoussi-Ghezali, C.; Zennia, S.S.A.; Almi-Sebbane, D.; El-Hatmi, H.; Girardet, J.-M. Dromedary Camel Milk Proteins, a Source of Peptides Having Biological Activities—A Review. Int. Dairy J. 2017, 73, 25–37. [Google Scholar] [CrossRef]
- Beja-Pereira, A.; England, P.R.; Ferrand, N.; Jordan, S.; Bakhiet, A.O.; Abdalla, M.A.; Mashkour, M.; Jordana, J.; Taberlet, P.; Luikart, G. Africans Origins of the Domestic Donkey. Science 2004, 304, 1781. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Zhang, H.; Zhang, B.; Zhang, L. Mare Milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 275–296. [Google Scholar]
- Wang, J.; Chen, X.; Liu, W.; Yang, M.; Airidengcaicike; Zhang, H. Identification of Lactobacillus from Koumiss by Conventional and Molecular Methods. Eur. Food Res. Technol. 2008, 227, 1555–1561. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Chen, Y.; Liu, Y.; Zhang, H.; Sun, T. Identification of Angiotensin I-converting Enzyme inhibitory Peptides from Koumiss, a Traditional Fermented Mare’s Milk. J. Dairy Sci. 2010, 93, 884–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugwu, C.P.; Abarshi, M.M.; Mada, S.B.; Sanusi, B.; Nzelibe, H.C. Camel and Horse Milk Casein Hydrolysates Exhibit Angiotensin Converting Enzyme Inhibitory and Antioxidant Effects in Vitro and in Silico. Int. J. Pept. Res. Ther. 2019, 25, 1595–1604. [Google Scholar] [CrossRef]
- Song, J.J.; Wang, Q.; Du, M.; Ji, X.M.; Mao, X.Y. Identification of Dipeptidyl Peptidase-IV Inhibitory Peptides from Mare Whey Protein Hydrolysates. J. Dairy Sci. 2017, 100, 6885–6894. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk Bioactive Peptide Database: A Comprehensive Database of Milk Protein-derived Bioactive Peptides and Novel Visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Edman, P. A Method for the Determination of Amino Acid Sequence in Peptides. Arch. Biochem. 1949, 22, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauciullo, A.; Shuiep, E.S.; Cosenza, G.; Ramunno, L.; Erhardt, G. Molecular Characterization and Genetic Variability at κ-Casein Gene (CSN3) in Camels. Gene 2013, 513, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Kohmura, M.; Nio, N.; Ariyoshi, Y. Inhibition of Angiotensin-converting Enzyme by Synthetic Peptide Fragments of Various β-Caseins. Agric. Biol. Chem. 1990, 54, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Hassan, Z.; Abu Bakar, F.; Saari, N. Identification of Antifungal Peptides Produced by Lactobacillus Plantarum IS10 Grown in the MRS Broth. Food Control 2016, 59, 27–30. [Google Scholar] [CrossRef]
- Elbarbary, H.A.; Abdou, A.M.; Nakamura, Y.; Park, E.Y.; Mohamed, H.A.; Sato, K. Identification of Novel Antibacterial Peptides Isolated from a Commercially Available Casein Hydrolysate by Autofocusing Technique. Biofactors 2012, 38, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rival, S.G.; Boeriu, C.G.; Wichers, H.J. Caseins and Casein Hydrolysates. 2. Antioxidative Properties and Relevance to Lipoxygenase Inhibition. J. Agric. Food Chem. 2001, 49, 295–302. [Google Scholar] [CrossRef]
- Maruyama, S.; Nakagomi, K.; Tomizuka, N.; Suzuki, H. Angiotensin I-converting Enzyme Inhibitor Derived from an Enzymatic Hydrolysate of Casein. II. Isolation and Bradykinin-potentiating Activity on the Uterus and the Ileum of Rats. Agric. Biol. Chem. 1985, 49, 1405–1409. [Google Scholar]
- Lu, Y.; Govindasamy-Lucey, S.; Lucey, J.A. Angiotensin-I-converting Enzyme-inhibitory Peptides in Commercial Wisconsin Cheddar Cheeses of Different Ages. J. Dairy Sci. 2016, 99, 41–52. [Google Scholar] [CrossRef]
- Kayser, H.; Meisel, H. Stimulation of Human Peripheral Blood Lymphocytes by Bioactive Peptides Derived from Bovine Milk Proteins. FEBS Lett. 1996, 383, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Almaas, H.; Eriksen, E.; Sekse, C.; Comi, I.; Flengsrud, R.; Holm, H.; Jensen, E.; Jacobsen, M.; Langsrud, T.; Vegarud, G.E. Antibacterial Peptides Derived from Caprine Whey Proteins, by Digestion with Human Gastrointestinal Juice. Br. J. Nutr. 2011, 106, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem. 2015, 63, 8819–8828. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive Effect of the Peptides Derived from Casein by an Extracellular Proteinase from Lactobacillus Helveticus CP790. J. Dairy Sci. 1994, 77, 917–922. [Google Scholar] [CrossRef]
- El-Agamy, E.I. Bioactive Components in Camel Milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 159–194. [Google Scholar]
- Hill, R.J.; Wake, R.G. Further Studies on the Origin and Nature of the Bovine Para-κ-Casein Components. Biochim. Biophys. Acta 1969, 175, 419–426. [Google Scholar] [CrossRef]
- Plowman, J.E.; Creamer, L.K. Restrained Molecular Dynamics Study of the Interaction Between Bovine κ-Casein Peptide 98-111 and Bovine Chymosin and Porcine Pepsin. J. Dairy Res. 1995, 62, 451–467. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.T. The Composition, Structure and Origin of Proteose-peptone Component 5 of Bovine Milk. Eur. J. Biochem. 1978, 90, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lasky, L.A.; Singer, M.S.; Dowbenko, D.; Imai, Y.; Henzel, W.; Fennie, C.; Watson, S.; Rosen, S.D. Glycosylation-dependent Cell Adhesion Molecule 1: A Novel Mucin-like Adhesion Ligand for L-selectin. Cold Spring Harb. Symp. Quant. Biol. 1992, 57, 259–269. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Isono, H.; Miyata, T. Potential Antioxidant Bioactive Peptides from Camel Milk Proteins. Anim. Nutr. 2018, 4, 273–280. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A.; Rokka, T.; Korhonen, H. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Bovine Milk Proteins. Int. Dairy J. 1998, 8, 325–331. [Google Scholar] [CrossRef]
- Schmelzer, C.E.H.; Schöps, R.; Reynell, L.; Ulbrich-Hofmann, R.; Neubert, R.H.H.; Raith, K. Peptic Digestion of β-Casein: Time Course and Fate of Possible Bioactive Peptides. J. Chromatogr. A 2007, 1166, 108–115. [Google Scholar] [CrossRef]
- Phelan, M.; Aherne, A.; FitzGerald, R.J.; O’Brien, N.M. Casein-derived Bioactive Peptides: Biological Effects, Industrial Uses, Safety Aspects and Regulatory Status. Int. Dairy J. 2009, 19, 643–654. [Google Scholar] [CrossRef]
- Tsopmp, A.; Romanowski, A.; Banda, L.; Lavoie, J.C.; Jenssen, H.; Friel, J.K. Novel Anti-oxidant Peptides from Enzymatic Digestion of Human Milk. Food Chem. 2011, 126, 1138–1143. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Quirós, A.; Amigo, L.; Recio, I. Identification of Bioactive Peptides After Digestion of Human Milk and Infant Formula with Pepsin and Pancreatin. Int. Dairy J. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Wali, A.; Yanhua, G.; Ishimov, U.; Yili, A.; Aisa, H.A.; Salikhov, S. Isolation and Identification of Three Novel Antioxidant Peptides from the Bactrian Camel Milk Hydrolysates. Int. J. Pept. Res. Ther. 2020, 26, 641–650. [Google Scholar] [CrossRef]
- Ledesma-Martínez, E.; Aguíñiga-Sánchez, I.; Weiss-Steider, B.; Rivera-Martínez, A.R.; Santiago-Osorio, E. Casein and Peptides Derived from Casein as Antileukaemic Agents. J. Oncol. 2019, 2019, 8150967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak ID | Observed m/z by MS | Theoretical Mass * | Sequence Estimated by MS/MS * | Origin | Potential Bioactivity [Reference] |
---|---|---|---|---|---|
C3–1 | 597.363 | 596.400 | IRIPV | n.d. | |
C3–2 | 597.321 | 596.400 | IRIPV | n.d. | |
C3–3 | 711.386 | 710.440 | NLRLPV | n.d. | |
754.362 | 753.420 | HLLQPF | n.d. | ||
1021.522 | 1020.520 | R76HQNQNPK83 | Lactophorin | ||
1232.775 | n.d. | n.d. | n.d. | ||
C3–4 | 1335.659 | n.d. | n.d. | n.d. | |
1177.576 | 1176.620 | R75RHQNQNPK83 | Lactophorin | ||
C3–5 | 1098.615 | 1097.470 | T65RNEPTEDH73 | αs1-CN | |
1213.633 | 1212.500 | D64TRNEPTEDH73 | αs1-CN | ||
1798.079 | n.d. | n.d. | n.d. | ||
C3–6 | 865.548 | 864.500 | R110PRPRPS116 | k-CN | |
C3–7 | 865.548 | 864.500 | R110PRPRPS116 | k-CN | |
C3–8 | 674.370 | 673.350 | H221PVPQP226 | β-CN | ACE inhibitory [23] Antimicrobial [24] |
966.588 | 948.540 | P212VPDPVRGL220 | β-CN | ||
1309.692 | 1308.580 | NNASHNGNNSAPI | n.d. | ||
C3–9 | 759.415 | 758.410 | V194PYPQR199 | β-CN | Antimicrobial [24,25] Antioxidant [26] ACE inhibitory [27] |
1544.925 | 1543.800 | P104PTVERPARNRHD116 | k-CN | ||
C3–10 | 929.574 | 928.560 | R16PKYPLR22 | αs1-CN | Antimicrobial [24] |
C3–11 | 1019.540 | 1035.530 | Q210 ** EPVPDPVR218 | β-CN | ACE inhibitory [28] Antimicrobial [24] Immunomodulative [29] |
1076.616 | n.d. | n.d. | n.d. |
Peak ID | Observed m/z by MS | Theoretical Mass * | Sequence Estimated by MS/MS * | Origin | Potential Bioactivity |
---|---|---|---|---|---|
H1–1 | 790.394 | 789.390 | E107VSQAKE113 | β-CN | |
816.432 | 815.420 | R55EVERQ60 | β-CN | ||
H1–2 | 951.458 | 950.450 | K16HNMEHR22 | αs2-CN | |
1206.619 | n.d. | n.d. | n.d. | ||
H1–3 | 823.490 | 822.480 | A128IHAQRK134 | αs1-CN | |
927.470 | 944.020 | Q54**REVERQ60 | β-CN | ||
944.491 | 943.480 | Q54REVERQ60 | β-CN | ||
H1–4 | 1129.575 | 1128.570 | K46FKHEGQQQ54 | β-CN | |
1157.581 | 1156.570 | F47KHEGQQQR55 | β-CN | ||
H1–5 | 872.090 | n.d. | n.d. | n.d. | |
1241.665 | n.d. | n.d. | n.d. | ||
H1–6 | 1129.575 | 1128.570 | K46FKHEGQQQ54 | β-CN | |
1157.581 | 1156.570 | F47KHEGQQQR55 | β-CN | ||
H1–7 | 826.388 | 825.380 | M157HQVPQS163 | β-CN | |
1024.578 | n.d. | n.d. | n.d. | ||
H1–8 | 739.356 | 738.350 | M157HQVPQ162 | β-CN | Antimicrobial [30] DPP-IV inhibitory [31] |
786.410 | 785.400 | R196DTPVQA202 | β-CN | ||
851.517 | n.d. | n.d. | n.d. | ||
1396.762 | n.d. | n.d. | n.d. | ||
H1–9 | 727.519 | n.d. | n.d. | n.d. | |
2062.080 | 797.460 | QGRRGKP | n.d. | ||
1255.721 | n.d. | n.d. | n.d. | ||
H1–10 | 871.484 | 870.470 | R65FVQPQP71 | β-CN | |
H1–11 | 871.425 | n.d. | n.d. | n.d. | |
H1–12 | 1046.504 | n.d. | n.d. | n.d. | |
1232.561 | n.d. | n.d. | n.d. | ||
H1–13 | 506.406 | n.d. | n.d. | n.d. | |
675.222 | 674.280 | Q74HMPY78 | κ-CN | ||
697.237 | n.d. | n.d. | n.d. | ||
713.227 | n.d. | n.d. | n.d. | ||
866.317 | n.d. | n.d. | n.d. | ||
1050.508 | 1049.510 | E49YINELNR56 | αs1-CN | ||
1171.640 | n.d. | n.d. | n.d. | ||
1398.713 | n.d. | n.d. | n.d. | ||
1980.967 | n.d. | n.d. | n.d. | ||
2262.040 | n.d. | n.d. | n.d. | ||
H1–14 | 785.358 | 784.370 | W176FHPAQ181 | αs1-CN | |
805.487 | 804.430 | KVPMPPH | n.d. | ||
933.512 | 932.470 | R196DTPVQAF203 | β-CN | ACE inhibitory [32] | |
1195.652 | 1267.660 | P185FPQPVVPYPQ195 | β-CN | ||
1611.978 | n.d. | n.d. | n.d. | ||
2067.045 | n.d. | n.d. | n.d. | ||
H1–15 | 734.443 | n.d. | n.d. | n.d. | |
1021.563 | n.d. | n.d. | n.d. | ||
1460.719 | n.d. | n.d. | n.d. | ||
H1–16 | 1618.056 | n.d. | n.d. | n.d. | |
1954.955 | n.d. | n.d. | n.d. | ||
H1–17 | 1442.653 | n.d. | n.d. | n.d. | |
2069.022 | n.d. | n.d. | n.d. | ||
2085.990 | n.d. | n.d. | n.d. | ||
H1–18 | 1798.163 | n.d. | n.d. | n.d. | |
1815.285 | n.d. | n.d. | n.d. | ||
H1–19 | 711.451 | 710.440 | N145LRLPV150 | β-CN | ACE inhibitory [23] |
1797.000 | 1797.070 | K137LIPTPN***GRSLRLPVH151 | β-CN | ||
H1–20 | 3084.609 | 3083.660 | M169LPSQPVLSPPQSKVAPFPQPVPYPQR196 | β-CN | |
3624.809 | 3623.920 | M169LPSQPVLSPPQSKVAPFPQPVPYPQRDTPVQ201 | β-CN | ||
H1–21 | 2928.835 | 2927.560 | M169LPSQPVLSPPQSKVAPFPQPVPYPQ195 | β-CN | |
H1–22 | 683.468 | 682.410 | P95PILPF100 | β-CN | |
716.920 | n.d. | n.d. | n.d. | ||
3652.638 | 3651.951 | M169LPSQPVLSPPQSKVAPFPQPVPYPQRDTPVQ201 | β-CN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganzorig, K.; Urashima, T.; Fukuda, K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods 2020, 9, 1817. https://doi.org/10.3390/foods9121817
Ganzorig K, Urashima T, Fukuda K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods. 2020; 9(12):1817. https://doi.org/10.3390/foods9121817
Chicago/Turabian StyleGanzorig, Khuukhenbaatar, Tadasu Urashima, and Kenji Fukuda. 2020. "Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads" Foods 9, no. 12: 1817. https://doi.org/10.3390/foods9121817
APA StyleGanzorig, K., Urashima, T., & Fukuda, K. (2020). Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods, 9(12), 1817. https://doi.org/10.3390/foods9121817