Global Warming and Landscape Fragmentation Drive the Adaptive Distribution of Phyllostachys edulis in China
<p>Distribution of occurrence points of <span class="html-italic">Phyllostachys edulis</span> in China.</p> "> Figure 2
<p>Adaptive distribution and current centroid of <span class="html-italic">Phyllostachys edulis</span> under current climate conditions based on the MaxEnt model.</p> "> Figure 3
<p>(<b>A</b>) Percentage contribution and permutation importance of environmental factors; (<b>B</b>) jackknife test for a single environmental variable.</p> "> Figure 4
<p>Response curve of the main environmental factors (<b>A</b>–<b>E</b>).</p> "> Figure 5
<p>Change in distribution area and migration of centroid in the adaptive distribution of <span class="html-italic">Phyllostachys edulis</span> (<b>A</b>–<b>F</b>).</p> "> Figure 6
<p>(<b>A</b>) Comparison chart of climate factor contribution rates; (<b>B</b>) Comparison of contribution rates after removing the two environmental factors with the highest contribution rates.</p> "> Figure 7
<p>Analysis results of land use landscape pattern (current, 2050s, 2070s) in different climate-suitable areas for <span class="html-italic">Phyllostachys edulis</span>: (<b>A</b>) poorly suitable habitat; (<b>B</b>) moderately suitable habitat; (<b>C</b>) highly suitable habitat; (<b>D</b>) PD values in highly suitable habitat; (<b>E</b>) PD value of suitable habitat.</p> "> Figure 8
<p>(<b>A</b>–<b>F</b>) Land use types in suitable habitats for the disappearance of <span class="html-italic">Phyllostachys edulis</span> and (<b>G</b>–<b>L</b>) newly added land use types suitable for <span class="html-italic">Phyllostachys edulis</span> growing areas.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Screening and Processing
2.2. Application of the MaxEnt Model
2.3. Classification of Adaptive Distribution and Calculation of Centroid Migration
2.4. Calculation of Landscape Fragmentation
3. Results
3.1. Adaptive Distribution and Driving Factors
3.2. Adaptive Distribution and Centroid Migration Driven by Global Warming
3.3. The Impact of Landscape Fragmentation on the Adaptive Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Cao, J.; Xu, J.; Pan, X.; Monaco, T.A.; Zhao, K.; Wang, D.; Rong, Y. Potential impact of climate change on the global geographical distribution of the invasive species, Cenchrus spinifex (Field sandbur, Gramineae). Ecol. Indic. 2021, 131, 108204. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, L.; Deng, Y.; Yu, D.; Zhang, Q. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Eng. J. Wuhan Univ. 2021, 54, 46–57+81. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrio-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.-C.; Gegout, J.-C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Ostad-Ali-Askar, K.; Su, R.; Liu, L. Water resources and climate change. J. Water Clim. Chang. 2018, 9, 239. [Google Scholar] [CrossRef]
- Huang, R.; Yu, T.; Zhao, H.; Zhang, S.; Jing, Y.; Li, J. Prediction of suitable distribution area of the endangered plant Acercatalpifolium under the background of climate change in China. J. Beijing For. Univ. 2021, 43, 33–43. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P.; et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Ballantyne, A.P.; Smith, W.K.; Majkut, J.; Rabin, S.; Beaulieu, C.; Birdsey, R.; Dunne, J.P.; Houghton, R.A.; Myneni, R.B.; et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA 2015, 112, 15591–15596. [Google Scholar] [CrossRef]
- Duffy, K.A.; Schwalm, C.R.; Arcus, V.L.; Koch, G.W.; Liang, L.L.; Schipper, L.A. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 2021, 7, eaay1052. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Ciais, P.; Li, Q.; Xiang, W.; Xiao, W.; Zhou, G.; Deng, L. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 2020, 6, eaaw5790. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, F.; Liu, Z.; Huang, Q.; Zhang, G.; Pan, H. Structural variability and differentiation of niches in the rhizosphere and endosphere bacterial microbiome of moso bamboo (Phyllostachys edulis). Sci. Rep. 2021, 11, 1574. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cai, C. Physiological integration improves nitrogen use efficiency of moso bamboo: An isotopic (15N) assessment. For. Ecol. Manag. 2023, 542, 121073. [Google Scholar] [CrossRef]
- Yen, T.; Lee, J. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For. Ecol. Manag. 2011, 261, 995–1002. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, H.; Cai, Z.; Zhou, X.; Peng, C. The response of the net primary production of Moso bamboo forest to the On and Off-year management: A case study in Anji County, Zhejiang, China. For. Ecol. Manag. 2018, 409, 1–7. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Ni, H.; Gai, X.; Huang, Z.; Du, X.; Zhong, Z. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China. Sci. Total Environ. 2021, 752, 142333. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Tang, Z.; Wang, T.; Li, W.; Wang, X.; Cui, H.; Hu, X.; Qi, L. Moso bamboo (Phyllostachys edulis) expansion enhances soil pH and alters soil nutrients and microbial communities. Sci. Total Environ. 2024, 912, 169346. [Google Scholar] [CrossRef] [PubMed]
- Okutomi, K.; Shinoda, S.; Fukuda, H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J. Veg. Sci. 1996, 7, 723–728. [Google Scholar] [CrossRef]
- Bai, S.; Zhou, G.; Wang, Y.; Liang, Q.; Shen, R. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodivers. Sci. 2013, 21, 288–295. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, P.; Wang, Z. The effects of Phyllostachys pubescens expansion on soil fertility in National Nature Reserve of Mount Tianmu. Acta Agric. Univ. Jiangxiensis 2008, 30, 689–692. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Zou, H. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar] [CrossRef]
- Garcia, K.; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 2013, 44, 12–22. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Momblanch, A.; Beevers, L.; Srinivasalu, P.; Kulkarni, A.; Holman, I.P. Enhancing production and flow of freshwater ecosystem services in a managed Himalayan river system under uncertain future climate. Clim. Chang. 2020, 162, 343–361. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, M.; Lai, W.; Yang, M.; Fan, H.; Zhang, G.; Chen, S.; Liu, B. Prediction of potential suitable distribution of Phoebe bournei based on MaxEnt optimization model. Acta Ecol. Sin. 2021, 41, 8135–8144. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Chen, G. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, C.; Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 2023, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zou, H.; Zhang, B.; Zhang, X.; Jin, X.; Wang, C.; Zhang, X. Distribution pattern and change prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecol. Indic. 2022, 143, 109311. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, P.; Zou, H.; Ji, X.; Wang, Z.; Liu, Z. Adaptive distribution and vulnerability assessment of endangered maple species on the Tibetan Plateau. Forests 2024, 15, 491. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zou, H.; Wang, Z.; Zhu, X.; Zhang, Y.; Liu, Z. Distribution pattern of suitable areas and corridor identification of endangered Ephedra species in China. Plants Basel 2024, 13, 890. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yin, Q.; Sang, Z.; Zhu, Z.; Jia, Z.; Ma, L. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 2021, 127, 107762. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, X.; Xiang, W.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Ma, C.; Fan, Z.; Zheng, J. Analysis of potential habitat of Torreya yunnanensis based on MaxEnt and ArcGIS. Acta Ecol. Sin. 2022, 42, 4485–4493. [Google Scholar] [CrossRef]
- Peavey, L.E. Predicting Pelagic Habitat with Presence-Only Data Using Maximum Entropy for Olive Ridley Sea Turtles in the Eastern Tropical Pacific. Master’s Thesis, Nicholas School, Environment of Duke University, Durham, NC, USA, 2010. [Google Scholar]
- Guga, S.; Xu, J.; Riao, D.; Li, K.; Han, A.; Zhang, J. Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecol. Indic. 2021, 131, 108152. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Jin, H.; Zhao, Y.; Liu, L.; Chen, Q.; Li, B.; Xiao, Y.; Yin, H. Assessing the suitable distribution area of pinus koraiensis based on an optimized MaxEnt model. Chin. J. Ecol. 2019, 38, 2570–2576. [Google Scholar] [CrossRef]
- Anderson, R.P.; Gonzalez, I., Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 2011, 222, 2796–2811. [Google Scholar] [CrossRef]
- Fan, J.; Yuan, X.; Yang, Z.; Li, M.; Zhu, G. Ecological dimensions and potential distributions of two mirid predators, Cyrtorhinus lividipennis and Tytthus chinensis, in China. J. Plant Prot. 2019, 46, 159–166. [Google Scholar] [CrossRef]
- Deka, M.A.; Morshed, N. Mapping disease transmission risk of Nipah virus in South and Southeast Asia. Trop. Med. Infect. Dis. 2018, 3, 57. [Google Scholar] [CrossRef]
- Gengping, Z.; Huijie, Q.J.B.S. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Li, S.; Yi, Z.; Liao, J.; Xiao, L. Prediction of temporal and spatial distribution of suitable areas of Miscanthus nepalensis based on MaxEnt. J. Hunan Agric. Univ. 2020, 46, 176–183. [Google Scholar] [CrossRef]
- Shi, P.; Preisler, H.K.; Quinn, B.K.; Zhao, J.; Huang, W.; Roell, A.; Cheng, X.; Li, H.; Hoelscher, D. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Glob. Ecol. Conserv. 2020, 22, e00924. [Google Scholar] [CrossRef]
- Gherardi, L.A.; Sala, O.E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl. Acad. Sci. USA 2015, 112, 12735–12740. [Google Scholar] [CrossRef] [PubMed]
- Groves, A.M.; Brudvig, L.A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 2019, 27, 128–137. [Google Scholar] [CrossRef]
- Takano, K.T.; Hibino, K.; Numata, A.; Oguro, M.; Aiba, M.; Shiogama, H.; Takayabu, I.; Nakashizuka, T. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5–4.0 °C global warming. Ecol. Evol. 2017, 7, 9848–9859. [Google Scholar] [CrossRef]
- Liang, T. Types and geographical flora characteristics of bamboo forest in China. J. Bamboo Res. 1990, 9, 1–16. [Google Scholar]
- Jin, J.; Jiang, H.; Peng, W.; Zhang, L.; Lu, X.; Xu, J.; Zhang, X.; Wang, Y. Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model. Chin. J. Plant Ecol. 2013, 37, 631–640. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Yu, F.; Yang, G.; Zhang, W. Potential distribution and dynamic prediction of Phyllostachys edulis under the scenarios of climate change. World Bamboo Ratt. 2021, 19, 5–14. [Google Scholar]
- Guo, Q.; Yang, G.; Du, T.; Shi, J. Carbon character of Chinese bamboo forest. World Bamboo Ratt. 2005, 3, 25–28. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Z.; Xia, Y. Organic carbon storage in soils of Southeast China. Nutr. Cycl. Agroecosyst. 1997, 49, 229–234. [Google Scholar] [CrossRef]
- Yuan, Z.; Tian, D.; Wu, C.; Yun, S.; Fu, S. Computing model for carbon storage in forest ecosystem and the estimation of annual storage in area of Changsha Zhuzhou and Xiangtan. Hunan For. Sci. Technol. 2004, 31, 1–5. [Google Scholar]
- Grombone-Guaratini, M.T.; Gaspar, M.; Oliveira, V.F.; Torres, M.A.M.G.; do Nascimento, A.; Aidar, M.P.M. Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. N. Z. J. Bot. 2013, 51, 275–285. [Google Scholar] [CrossRef]
- Zhang, M.; Keenan, T.F.; Luo, X.; Serra-Diaz, J.M.; Li, W.; King, T.; Cheng, Q.; Li, Z.; Andriamiarisoa, R.L.; Raherivelo, T.N.A.N.; et al. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar. Sci. Total Environ. 2022, 810, 152235. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wei, J.; Li, D.; Zhong, Y.; Zhang, Z. Explaining landscape levels and drivers of Chinese moso bamboo forests based on the Plus Model. Forests 2023, 14, 397. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, G.; Song, Q.; Shi, J.; Ouyang, M.; QI, H.; Fang, X. Ecological studies on bamboo expansion: Process, consequence and mechanism. Chin. J. Plant Ecol. 2015, 39, 110–124. [Google Scholar] [CrossRef]
- Su, W.; Fan, S.; Zhao, J.; Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 2019, 453, 117632. [Google Scholar] [CrossRef]
- Mera, F.; Xu, C. Plantation management and bamboo resource economics in China. Cienc. Tecnol. 2014, 7, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, P.; Zhang, Y.; Wang, Z.; Liu, Z. Global Warming and Landscape Fragmentation Drive the Adaptive Distribution of Phyllostachys edulis in China. Forests 2024, 15, 2231. https://doi.org/10.3390/f15122231
Zhang H, Liu P, Zhang Y, Wang Z, Liu Z. Global Warming and Landscape Fragmentation Drive the Adaptive Distribution of Phyllostachys edulis in China. Forests. 2024; 15(12):2231. https://doi.org/10.3390/f15122231
Chicago/Turabian StyleZhang, Huayong, Ping Liu, Yihe Zhang, Zhongyu Wang, and Zhao Liu. 2024. "Global Warming and Landscape Fragmentation Drive the Adaptive Distribution of Phyllostachys edulis in China" Forests 15, no. 12: 2231. https://doi.org/10.3390/f15122231
APA StyleZhang, H., Liu, P., Zhang, Y., Wang, Z., & Liu, Z. (2024). Global Warming and Landscape Fragmentation Drive the Adaptive Distribution of Phyllostachys edulis in China. Forests, 15(12), 2231. https://doi.org/10.3390/f15122231