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Abstract: Global warming and landscape fragmentation significantly affect the spatial distribution
pattern of bamboo forests. This study used high-resolution data and an optimized MaxEnt model to
predict the distribution of Phyllostachys edulis in China under current and future climatic conditions in
three climate scenarios (SSP126, SSP370, SSP585), and analyzed its land use landscape fragmentation
using landscape indices. The results indicate that Phyllostachys edulis currently has potentially
suitable habitats majorly distributed in East China, Southwest China, and Central South China.
The precipitation of the driest month (BIO14) and the precipitation seasonality (BIO15) are the key
environmental factors affecting the distribution of Phyllostachys edulis. In the next three scenarios,
the adaptive distribution area of Phyllostachys edulis is generally expanding. With an increase in CO2

concentration, the adaptive distribution of Phyllostachys edulis in the 2050s migrates towards the
southeast direction, and in the 2070s, the suitable habitat of Phyllostachys edulis migrates northward.
In the suitable habitat area of Phyllostachys edulis, cropland and forests are the main land use types.
With the passage of time, the proportion of forest area in the landscape pattern of the high-suitability
area for Phyllostachys edulis continues to increase. Under SSP370 and SSP585 scenarios, the cropland
in the Phyllostachys edulis high-suitability area gradually becomes fragmented, leading to a decrease in
the distribution of cropland. In addition, it is expected that the landscape of high-suitability areas will
become more fragmented and the quality of the landscape will decline in the future. This research
provides a scientific basis for understanding the response of Phyllostachys edulis to climate change, and
also provides theoretical guidance and data support for the management and planning of bamboo
forest ecosystems, which will help in managing bamboo forest resources rationally and balancing
carbon sequestration and biodiversity conservation.

Keywords: Phyllostachys edulis; global warming; landscape fragmentation; optimized MaxEnt model;
adaptive distribution

1. Introduction

Global warming has a great influence on the geographical distribution patterns of
vegetation [1]. The global mean temperature has increased by 0.85 ◦C in the past century,
and China’s warming rate is even higher than the global average [2,3]. Climate change and
changes in precipitation patterns may cause changes in the distribution areas of certain
species, habitat fragmentation, and rapid decline in global biodiversity [4–8]. In addition,
these changes may have a significant impact on the ability of China’s terrestrial ecosystems
to absorb and store carbon, and may even lead to the conversion of carbon sinks into
carbon sources, further accelerating global warming [9–11]. Therefore, predicting the
adaptive distribution of plant species to climate change and their future migration trends
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can provide a scientific basis for planning future plant introduction, ecological protection,
and management strategies [12].

Phyllostachys edulis, an important type of forest in southern China, has a long lifecycle,
grows rapidly, and has a strong carbon sequestration ability, which can effectively mitigate
climate change and is becoming more and more important for achieving the national goal of
carbon neutrality [13–16]. The carbon sequestration capacity of Phyllostachys edulis forests
far exceeds that of ordinary trees, and it is 1.46 times that of spruce forests and 1.33 times
that of tropical rainforests [17]. In the past thirty years, the area of Phyllostachys edulis
forest has grown rapidly, with an average growth rate of 3% per year [18]. This means
that Phyllostachys edulis is playing an increasingly important role in growing national and
global forest carbon sinks [19]. However, the expansion of Phyllostachys edulis can also lead
to a loss of biodiversity [20], and studying its fragmentation is beneficial for balancing
biodiversity conservation and improving forest carbon sinks. At present, research on
Phyllostachys edulis mainly centers on the influence of its invasion on the structure and
function of forest ecosystems under climate change [21–23]. There is relatively little research
on the influence of global change and landscape fragmentation on the distribution of
Phyllostachys edulis. Therefore, conducting research on the distribution of Phyllostachys
edulis driven by global warming and landscape fragmentation can provide a theoretical
understanding of the optimal control of Phyllostachys edulis ecosystems and achieve national
carbon neutrality goals.

In recent years, species distribution models (SDMs) have played a key role in exploring
species distribution patterns; they use known species distribution data and environmental
factors to simulate the geographic distribution of species and their response to climate
change through specific algorithms [3,24]. Among the SDMs, the MaxEnt model proposed
by Phillips and constructed based on the maximum entropy principle has been widely
adopted and applied in ecological research both domestically and internationally due to its
effectiveness and practicality [25–29]. The advantage of this method is its high prediction
accuracy, making it one of the most representative species distribution models. Even when
the sample size is small, it can still achieve good prediction results [30].

Based on existing research, the MaxEnt model usually predicts under the default pa-
rameters of the model, often neglecting the optimization of model parameters. The MaxEnt
model, which uses default parameters, is relatively complex and has some fitting bias,
which may cause overfitting and make the results difficult to explain [2,25,31–34]. To solve
this problem, Muscarella et al. [35] exploited the R package ENMeval to optimize model
parameters in 2014. This matter regulates the two parameters of the model, regularization
multiplier (RM) and feature combination (FC), compares the complexity of models gen-
erated by different parameter combinations, and selects the parameter combinations that
can achieve the same prediction effect with lower complexity to construct the model. This
method effectively alleviates the overfitting problem of using default parameter models
and improves the exactitude of the model.

This research integrated the distribution and influencing factors of Phyllostachys edulis
in China using an optimized MaxEnt model based on the geographic distribution of
vegetation, utilizing data on climate, terrain, soil, and human activities. Then, using the
theory of landscape patterns, we refined the suitable habitat area of Phyllostachys edulis and
analyzed the changes in landscape pattern fragmentation. The purpose of this research
was to (1) identify and analyze the main environmental factors limiting the distribution of
Phyllostachys edulis, (2) simulate and predict the adaptive distribution and centroid transfer
of Phyllostachys edulis under different periods and scenarios, and (3) evaluate the land
landscape patterns and the effects of landscape fragmentation on the distribution patterns
of Phyllostachys edulis’ adaptive distribution in different scenarios and periods, both current
and future. This research provides a scientific basis for understanding the response of
Phyllostachys edulis to climate change, and also provides theoretical guidance and data
support for the management and planning of bamboo forest ecosystems, which helps in
achieving the sustainable utilization of bamboo forest resources.
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2. Materials and Methods
2.1. Data Screening and Processing

The boundary data of the Chinese base map used in this research were from the
Resource and Environmental Science and Data Center of the Chinese Academy of Sciences
(RESDC, https://www.resdc.cn, accessed on 5 May 2024). The species point data were
sourced from the “Vegetation Atlas of China (1:1,000,000)” published by Science Press in
2001. Firstly, ArcGIS 10.8 was used to perform a series of spatial registration, vectorization,
and rasterization processes on the dataset, generating latitude and longitude data for
Phyllostachys edulis with a resolution of 1 km × 1 km. Secondly, the R software package
‘devtools’ was used to randomly grid the latitude and longitude information, retaining
only one distribution point every 5 km × 5 km (approximately 2.5′) area. The sample
points were evenly distributed, minimizing spatial autocorrelation of sample points, and
reducing errors in the model results. Finally, 2665 sample points were retained (Figure 1).
To construct the MaxEnt model, the species distribution point data were input into Excel
according to “the species name, longitude, latitude” and kept in “*. CSV” format.
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Figure 1. Distribution of occurrence points of Phyllostachys edulis in China.

This study selected 32 environmental factors (including 19 bioclimatic factors, 8 soil
factors, 3 terrain factors, and 2 human activity factors) as initial environmental variables
(Table S1). Data on the 19 bioclimatic and elevation factors were sourced from WordClim
(https//wordclim.org, accessed on 5 May 2024), including current (1970–2000) and future
(2050s: 2041–2060; 2070s: 2061–2080) bioclimatic data with a spatial resolution of 2.5′

(approximately 5 km). Slope and aspect data were extracted from elevation data using
the 3D analysis tool ArcGis10.8.2, with a spatial resolution of 2.5′. Data on the 8 soil
factors were sourced from the Harmonized World Soil Database (HWSD1.2) (HWSD, http:
//www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html, accessed
on 5 May 2024) constructed by the Food and Agriculture Organization (FAO) and the
International Institute for Applied Systems Analysis (IIASA), with a spatial resolution
of 1 km.

Land use data were sourced from the article by Zhang et al. [36], including current
(2020) and future (2050 and 2070) land use data, with a spatial resolution of 1 km. This
study selected simulated land use data from three shared socio-economic pathways (SSP126,
SSP370, and SSP585) in the future (2050 and 2070) for research. Human activity data came
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from socio-economic data and application centers (SEDAC, https//sedac.ciesin.columbia.
edu, accessed on 5 May 2024), with a spatial resolution of 1 km.

Future climate model selection: Beijing Climate Center Climate System Model Sec-
ond Edition (BCC-CSM2-MR) with CMIP6. The BCC-CSM2-MR model has shown high
accuracy and reliability in simulating extreme temperature indices and their trends in
China [37]. This study selected three shared socio-economic pathways (SSP126, SSP370,
and SSP585) simulated by the BCC-CSM2-MR model for research. Among them, SSP126
refers to a future development scenario where greenhouse gas emissions are low and
climate warming is relatively mild; SSP370 refers to a future development scenario where
greenhouse gas emissions are high, leading to severe climate warming; SSP585 refers to a
future development scenario characterized by high energy consumption, rapid economic
development, strong radiative forcing, and extremely high greenhouse gas emissions [31].
These three scenarios have been extensively used in the study of species distribution in
suitable habitats [38,39]. These scenarios represent different greenhouse gas emissions and
social development paths, providing diverse perspectives on future climate change and
socio-economic changes.

This study uses ArcGis10.8.2 software to extract, crop, resample, and project all
environmental factors into masks, matches their resolution with the resolution of species
point data, and unifies them to 5 km × 5 km (approximately 2.5′) and a unified projection
coordinate of WGS1984-UTM_Zone50N for subsequent analysis and modeling. In this
work, considering climate change scenarios, we anticipate that the impact of these factors
will be very limited. Therefore, we assume that terrain and soil conditions will remain
stable and unchanged over the next 100 years.

The multicollinearity between variables can lead to overfitting of species distribu-
tion models [40]. Therefore, before predicting species-suitable habitats, it is essential to
conduct a correlation analysis on various environmental factors to avoid the problem of
multicollinearity among environmental factors. Firstly, 32 environmental variable data
are screened, and the screening process is divided into two steps: (1) Incorporate 32 en-
vironmental variables and species distribution data into the MaxEnt model and run it,
removing environmental variables with a contribution rate less than 0.5% from the running
results. (2) Perform Pearson correlation analysis on the remaining environmental variables
using SPSS 27 software. If the correlation between two environmental variables is very
strong (with an absolute correlation coefficient greater than 0.85), we choose to remove the
environmental variable with a lower contribution rate. Ultimately, 8 environmental factors
involved in modeling are determined (Table S1).

2.2. Application of the MaxEnt Model

In order to select appropriate model parameters to simulate the potential habitable
zone of Phyllostachys edulis, this study first used a partitioning method to divide 2665
Phyllostachys edulis data into 4 equal groups, with 3 groups for training and 1 group for
testing [34]. Next, we set the RM values to range from 0.5 to 4, increasing in increments
of 0.5, resulting in 8 different RM parameters in all [41]. At the same time, this research
considered five aspects of feature combination (FC) parameters, namely linear (L), hinge
(H), product (P), quadratic (Q), and threshold (T). Based on these features, this study
constructed six different feature combinations: L, LQ, H, LQH, LQHP, and LQHPT [41].
Then, this study used the ENMeval software package to test the 48 parameter combinations
mentioned above. The Akaike information criterion (AICc) was used to evaluate the
complexity of the MaxEnt model and its fit to the data, with priority given to the model
with the smallest AICc value [35]. Ultimately, we found that the AICc value is minimized
when the modulation multiplier (RM) is 0.5 and the feature combination (FC) is LQHPT.
This indicated that the parameter settings of RM = 0.5 and FC of LQHPT provide the
optimal fitting effect for the model (Figure S1A).

Then, we imported species distribution data and environmental factors into the Max-
Ent model with RM = 0.5 and FC as LQHPT. In total, 75% of the samples were randomly

https//sedac.ciesin.columbia.edu
https//sedac.ciesin.columbia.edu
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selected from the species distribution point data for validation, while the remaining 25%
were used for testing. We set the default parameters and repeated the calculation 10 times
using the cross-validating method. The number of iterations and background points was set
to 500 and 10,000, respectively, the jackknife test option was used to obtain the percentage
contribution of each environmental variable, and response curves were obtained to analyze
the range of environmental variables suitable for Phyllostachys edulis growth. Universally,
when the probability value of an environmental variable reaches 0.5 or above, it indicates
that the environmental conditions are suitable for the growth of Phyllostachys edulis [42].
The relative importance of each variable was evaluated using the jackknife test, percentage
contribution rate, and permutation importance. The model evaluation used the receiver
operating characteristic (ROC) curve and the area enclosed by the x-axis (AUC value) to
assess the goodness of fit of the model. If the AUC value of the model is below 0.5, it is
considered that the predictive ability of the model is insufficient. When the predicted value
of the model reaches 0.75, it indicates that the model begins to have predictive ability. If the
predicted value of the model exceeds 0.78, it indicates that the predictive performance of
the model is good [43].

2.3. Classification of Adaptive Distribution and Calculation of Centroid Migration

At the beginning, it is necessary to import the result file of the MaxEnt model into
ArcGIS 10.8.2, and use the reclassification tool in the spatial analysis tool to classify the
simulation results using the Jenks natural breakpoint classification method. The model sim-
ulation results were classified into four classes (unsuitable habitat (0–0.1), poorly suitable
habitat (0.1–0.3), moderately suitable habitat (0.3–0.5) and highly suitable habitat (0.5–1)) to
obtain the possible geographical distribution areas of Phyllostachys edulis in China. Then, a
grid calculator was used to calculate the number of grids for each category and determine
the suitable habitat for different climates within each category. Then, the centroid of the
species’ suitable areas was obtained using the SDM module of ArcGis10.8.2 software, and
the migration distance and direction of the centroid of the species’ suitable areas under
future climate scenarios were calculated.

2.4. Calculation of Landscape Fragmentation

Firstly, we used land use data from three scenarios (SSP126, SSP370, and SSP585) in
2020, 2050, and 2070 to superimpose the adaptive distribution data of Phyllostachys edulis
onto the three scenarios (SSP126, SSP370, and SSP585) of the present, 2050s, and 2070s,
respectively, to obtain the landscape patterns of current (1970–2000) and future (2050s and
2070s) land use, so as to understand the concentration and connectivity of suitable habitats
for Phyllostachys edulis, and to specify the distribution of climate-suitable habitats for
Phyllostachys edulis. The landscape pattern index also explains the process of fragmentation
and degradation in local areas. Then, FragStats4.2 software was used to calculate the
landscape pattern index of Phyllostachys edulis’ climate-adaptive distribution [44], and
comprehensively considered five indicators to analyze the fragmentation of the land use
landscape of Phyllostachys edulis’ suitable habitats, including the total (class) area (CA),
number of patches (NP), patch density (PD), aggregation (AI), and the percentage of
landscape (PLAND). We analyzed the changes in the land use landscape fragmentation of
poorly, moderately, and highly suitable habitats for Phyllostachys edulis in three scenarios
of the present, 2050s, and 2070s. In landscape fragmentation analysis, CA was a measure
of landscape composition, NP represented the number of patches, and an increase in the
number of patches indicated a greater degree of landscape fragmentation. PD reflected
the patch density and to some extent, the degree of fragmentation. The larger the PD
value, the higher the degree of fragmentation. AI represented the degree of aggregation,
and the higher the AI value, the lower the degree of fragmentation. PLAND quantifies
the proportional abundance of each patch type in the landscape. These indicators can
effectively reflect the landscape pattern, showcasing its structural and spatial distribution
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characteristics. These analyses helped us explain the process of local fragmentation and
loss in Phyllostachys edulis.

3. Results
3.1. Adaptive Distribution and Driving Factors

Phyllostachys edulis currently has potential suitable habitats primarily distributed in
East China, Southwest China, and Central South China, with a total suitable habitat area
accounting for 10.36% of the entire study area (Figure 2). Under current climate conditions,
the centroid of suitable habitats of Phyllostachys edulis is situated in the western part of
East China, west of the Gan River (Figure 2). The highly suitable habitats are primarily
concentrated in the areas south of the Yangtze River in Eastern and Central Southern
China. They account for 4.96% of the entire study area and 47.86% of the overall adaptive
distribution. The moderately suitable habitats are mainly concentrated in the eastern part
of Southwest China and the eastern of Central South China, with a small distribution in the
southern and central parts of Central South China, and the central and southern parts of
East China. They occupy 2.00% of the total research area and 19.30% of the suitable habitat.
The poorly suitable habitats are mainly concentrated in the eastern part of Southwest China,
the central northern parts of Central South China, and a small part of the central northern
parts of East China. They occupy 3.40% of the entire research area and 32.84% of the total
suitable habitat (Figure 2).
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Figure 2. Adaptive distribution and current centroid of Phyllostachys edulis under current climate
conditions based on the MaxEnt model.

Among the eight environmental factors that influence the distribution of Phyllostachys
edulis, the precipitation of the driest month (BIO14) is the major limiting factor for the
potential distribution of Phyllostachys edulis, with a single factor contribution rate of 70.6%
(Figure 3A), followed by precipitation seasonality (BIO15), mean diurnal range (BIO2),
annual mean temperature (BIO1), and precipitation of the warmest quarter (BIO18), with a
contribution rate of 95.8% for the five environmental factors. The cumulative permutation
importance is 74.1% (Figure 3A). Based on the jackknife test (Figure 3B) using a single
environment variable, precipitation of the driest month (BIO14) ranked highest in terms of
the regularized training gain. Next are the precipitation seasonality (BIO15), mean diurnal
range (BIO2), precipitation of the warmest quarter (BIO18), and annual mean temperature
(BIO1). Comprehensive jackknife testing and percent contribution analysis show that the
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precipitation of the driest month (BIO14), precipitation seasonality (BIO15), mean diurnal
range (BIO2), annual mean temperature (BIO1), and precipitation of warmest quarter
(BIO18) are the dominant environmental factors affecting the distribution of Phyllostachys
edulis under current climate conditions. Based on the above analysis, it can be concluded
that precipitation factors have the greatest influence on the distribution of Phyllostachys
edulis, followed by the mean diurnal range (BIO2) and annual mean temperature (BIO1).
In contrast, soil and terrain factors, as well as human activities, have little impact on the
distribution of Phyllostachys edulis.
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In order to gain a deeper understanding of the adaptability of Phyllostachys edulis
to climate conditions and predict which regions may be suitable for Phyllostachys edulis
growth under the current climate background, we conducted an in-depth analysis of the
impact of five key environmental factors on the distribution of Phyllostachys edulis and
plotted response curves between these factors and the Phyllostachys edulis distribution
(Figure 4). Research has found that the suitable range for annual mean temperature
(BIO1) is 12.56–19.19 ◦C (Figure 4A), the suitable range for mean diurnal range (BIO2) is
7.18–8.90 ◦C (Figure 4B), the suitable range for precipitation of the driest month (BIO14)
is 32.20–52.70 mm (Figure 4C), the suitable range for precipitation seasonality (BIO15) is
44.54–62.73 mm (Figure 4D), and the suitable range for precipitation of the warmest quarter
(BIO18) is 449.95–678.18 mm (Figure 4E).
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3.2. Adaptive Distribution and Centroid Migration Driven by Global Warming

The overall pattern of the adaptive distribution for Phyllostachys edulis in the future is
relatively consistent in spatial distribution with the current period, with slight differences
in different scenarios (Figures 2 and 5A–F). The overall distribution area of Phyllostachys
edulis will expand in the future (Table S2). With an increase in CO2 concentration, the
total suitable habitats of Phyllostachys edulis continue to increase. With an increase in CO2
concentration, the suitable habitats of Phyllostachys edulis in the 2050s migrate towards the
southeast direction, and in the 2070s, the suitable habitats of Phyllostachys edulis migrate
northward (Figure 5A–F). The change area is located at the edge of the predicted suitable
growth area, which means that in the area south of the boundary line, the distribution
of Phyllostachys edulis is more fixed and less susceptible to environmental changes. The
new ranges are mainly spreading out from the current ranges into the surrounding areas,
with the abruptly emerging ranges being smaller in size. They gradually move towards
higher latitudes in the SSP370 and SSP585 scenarios. Most of the lost ranges are located in
the eastern part of Southwest China, and the central north and southern parts of Central
South China (Figure 5A–F and Table S2). With the passage of time, the amplitude of total
habitable areas under the SSP126 and SSP370 scenarios continues to increase, while the
amplitude of total habitable areas under the SSP585 scenario decreases. In the 2050s, the
comparison of the area of highly suitable habitats under various scenarios is as follows:
SSP126 > SSP370 > SSP585. Based on the SSP585 scenario, the total suitable habitats show
the largest increase of 16.92%. In the 2070s, the area of highly suitable habitats based on
the SSP585 scenario is the largest, and the increase in total suitable areas is the greatest.
The change in the area of the moderately suitable areas based on the SSP370 scenario is the
largest among all scenarios, accounting for 64.31% (Table S3).
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The future pattern changes of Phyllostachys edulis are closely related to the precipitation
of the driest month (BIO14) and the precipitation seasonality (BIO15). The precipitation of
the driest month (BIO14) and the precipitation seasonality (BIO15) are important climate
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variables that affect the potential distribution of suitable areas for Phyllostachys edulis in the
2050s and 2070s. The two variables have the highest contribution rates to the distribution
of suitable areas for Phyllostachys edulis in the future: both are above 85% (Figure 6A). The
contribution rates of other climate factors vary greatly under different scenarios in different
periods. In order to intuitively reflect the differences in the contribution rates of climate
factors under different scenarios in different periods, we removed the two factors with
the highest contribution rates and found that the contribution rates of the mean diurnal
range (BIO2) and annual mean temperature (BIO1) are higher in the SSP585 scenario in the
2050s than in other scenarios during other periods. The contribution rate of temperature
seasonality (BIO4) is higher in the SSP126 scenario in the 2050s than in other scenarios. The
contribution rate of the precipitation of the warmest quarter (BIO18) is higher in the SSP126
scenario in the 2070s than in other scenarios, and the contribution rate of the precipitation
of the wettest month (BIO13) is higher in the SSP370 scenario in the 2050s than in other
scenarios (Figure 6B).
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3.3. The Impact of Landscape Fragmentation on the Adaptive Distribution

Among the land use areas suitable for Phyllostachys edulis habitat, cropland and forests
account for the largest proportion (Figure 7A–C). The proportion of cropland and for-
est area in the poorly and moderately suitable areas of Phyllostachys edulis is mostly
cropland > forest (Figure 7A), while the proportion of cropland and forest area in the
highly suitable areas is forest > cropland (Figure 7B). In the SSP370 and SSP585 scenarios
of the present and the 2070s, as the suitable habitat for Phyllostachys edulis increases, the
distribution of forests gradually expands, while the distribution of cropland gradually
decreases. In other periods and scenarios, as the suitable habitat for Phyllostachys edulis
increases, the distribution of forests first shrinks and then expands, and the distribution
of cultivated land first expands and then shrinks (Figure 7A–C). The land use area of the
suitable habitat for the disappearance of bamboo is forest > cultivated land, indicating that
most of the disappeared bamboo is in the forest (Figure 8A–F). The proportion of newly
added suitable land use types for bamboo is cultivated land > forest (Figure 8G–L). The
area of suitable habitat for bamboo in the newly added forest is larger than the area of
disappearing suitable habitat.
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In the 2050s and 2070s, the total NP and PD values in the low- and moderate-
suitability areas decrease, while the corresponding values in the high-suitability areas
increase (Figure S2(A4,B5,C5)). This indicates that the fragmentation of Phyllostachys edulis’
high-suitability areas will continue to intensify in the future, leading to a decline in overall
landscape quality. In the 2050s, with an increase in CO2 content in the air, the PD value of
forests in highly suitable areas of Phyllostachys edulis will continue to rise, while the AI value
will continue to decrease (Figure 7D). This change indicates that with an increase in CO2
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content, the degree of forest fragmentation and aggregation in the highly suitable area of
Phyllostachys edulis is significantly reduced, further leading to a decline in forest landscape
quality. With the passage of time, under the SSP370 and SSP585 scenarios, the PD value
of cultivated land in the highly suitable area of Phyllostachys edulis continues to increase,
while the AI value continues to decrease, indicating that under these two scenarios, the
cropland in the highly suitable area of Phyllostachys edulis gradually becomes fragmented,
leading to a decrease in the distribution of cropland (Figures 7E and S2(A1)).
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4. Discussion

Previous studies have mostly used preset parameters in MaxEnt models, which may
cause overfitting and sampling bias issues, ultimately reducing the transferability of species
prediction results [45]. For the study of a species, adjusting the model settings for a specific
species yields more accurate results than using default settings [46]. In this study, the
ENMeval software package optimized the complexity of the MaxEnt model by integrating
multiple parameters, and compared to other software packages, it demonstrated more
advantages [47,48]. The optimization results show that when the RM was adjusted from 4
to 0.5 and the FC was changed from LQHP to LQHPT, the AICc decreased from 1288.062 to
0, indicating that the transferability of the default model is relatively low [49]. Moreover,
under fine-tuning settings, the response curve is smoother and the AUC value is higher,
at 0.887 ± 0.004 (>0.78). The fine-tuning model more reasonably reflects the response
of bamboo to environmental factors and accurately predicts the adaptive distribution of
Phyllostachys edulis [50].

Bamboo forest, with an important and unique role in forest ecosystems, is widely
distributed in tropical, subtropical, and warm temperature regions between 46◦N and
47◦S, as it grows better in warm and humid climates [13]. Phyllostachys edulis is the most
representative bamboo in southern China [51]. It reproduces asexually through its well-
developed underground rhizome system and expands its population by sprouting new
shoots from these rhizomes. However, the variation range of annual precipitation has a
significant impact on the growth and community development of plant seedlings. Therefore,
bamboo shoots can grow into adult bamboo plants, and the biomass produced by these
plants primarily depends on the mean rainfall and the extent of its variation over the
growing season [52,53].

But it is generally believed that temperature, precipitation, altitude, and soil factors all
have significant impacts on the distribution of bamboo [54–57]. The results of this study
particularly emphasize that precipitation and temperature are the main factors affecting the
distribution of Phyllostachys edulis. A recent study suggests that precipitation plays a more
important role in limiting the distribution of Phyllostachys edulis than temperature [51]. With
sufficient precipitation, temperature becomes a more important and limiting environmental
factor for the distribution of bamboo. However, in the central and northern regions
of China, due to the common occurrence of drought, precipitation has a more critical
impact on the distribution of Phyllostachys edulis than temperature. This means that in
these regions, the growth and distribution of Phyllostachys edulis are more limited by
precipitation conditions rather than temperature conditions [51]. These studies demonstrate
the importance of precipitation in the distribution of Phyllostachys edulis, which is consistent
with our research findings.

According to research estimates, the carbon sequestration of bamboo forest ecosystems
in China accounts for approximately 5.1% of the total forest carbon storage in the coun-
try [58]. Especially the Phyllostachys edulis forest, its annual fixed carbon content exceeds
the national average of forest vegetation [59,60]. This indicates that bamboo forests have a
greater potential for carbon sequestration than other forest species. There are also studies
indicating that with an increase in carbon dioxide concentration, the physiology and growth
patterns of bamboo, being a C3 plant, will change, not only because of the improvement of
water use efficiency but also because the fertilization effect significantly enhances photosyn-
thesis [61]. A study has found that with an increase in CO2 concentration, the threat posed
by climate change to bamboo decreases, as elevated CO2 increases the climate adaptability
of bamboo by 15%, which may lead to an increase in its potential distribution area. In the
RCP4.5 and RCP8.5 scenarios, the potential change trend of bamboo moves towards higher
latitudes [62]. These findings are consistent with the results of this study, which show that
as CO2 concentration increases, the suitable habitat for Phyllostachys edulis continues to
expand. With an increase in CO2 concentration, the suitable habitat of Phyllostachys edulis
in the 2050s migrates towards the southeast direction, and in the 2070s, the suitable habitat
of Phyllostachys edulis migrates northward. In the 2070s, the area of high-suitability areas
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based on the SSP585 scenario is the largest, and the increase in overall suitable areas is
the greatest.

However, our research shows that with an increase in CO2 content, the degree of
forest fragmentation and aggregation in the highly suitable area of Phyllostachys edulis is
significantly reduced. With the passage of time, under the SSP370 and SSP585 scenarios,
cropland in high-suitability areas for Phyllostachys edulis is gradually fragmented. Research
has found that during the decade from 2010 to 2020, the area of Phyllostachys edulis forests in
China rapidly increased. However, this expansion led to an increase in the discontinuity of
Phyllostachys edulis distribution and degradation of the overall Phyllostachys edulis landscape,
manifested as a decrease in landscape connectivity and ecological value [63]. This agrees
with the results of this research. Phyllostachys edulis has a powerful root system that
can rapidly grow and invade surrounding forests through asexual reproduction, leading
to continuous expansion of its area [64]. Therefore, the proportion of forest area in the
Phyllostachys edulis landscape pattern continues to increase and the area of newly suitable
habitat for bamboo in the forest is larger than the area of disappearing suitable habitat.
In addition, the high nutrient output and low nutrient input of Phyllostachys edulis forests
may lead to unsustainable long-term productivity levels [65,66]. This may cause the
fragmentation of the highly suitable habitat landscape for Phyllostachys edulis, resulting
in a decline in its landscape quality. However, it should be noted that the expansion of
bamboo forests can also cause the loss of forest plant diversity [20]. Therefore, balancing
the protection of biodiversity is a significant issue in the management of bamboo forests.

5. Conclusions

Phyllostachys edulis is one of the most significant forest resources with strong carbon
sequestration ability, which can effectively mitigate climate change. This research used the
adaptive distribution of an optimized MaxEnt model to predict influencing factors and
the centroid shift of Phyllostachys edulis in China under three current and future scenarios
(SSP126, SSP370, SSP585). Then, landscape indices were used to analyze the changes in
its landscape pattern. The results indicate the following: (1) Phyllostachys edulis currently
has potentially suitable habitats majorly distributed in East China, Southwest China, and
Central South China. Precipitation is a key factor affecting the distribution of Phyllostachys
edulis, with the precipitation of the driest month (BIO14) and precipitation seasonality
(BIO15) being the two most critical factors affecting the current and future distribution of
Phyllostachys edulis. (2) In the next three scenarios, the overall trend of Phyllostachys edulis’
suitable habitat is expanding. With an increase in CO2 concentration, the suitable habitat
of Phyllostachys edulis in the 2050s migrates towards the southeast direction, and in the
2070s, the suitable habitat of Phyllostachys edulis migrates northward. (3) In the future, the
high-suitability areas of Phyllostachys edulis will become more fragmented and the overall
landscape quality will decline. Among the land use areas suitable for Phyllostachys edulis,
cropland and forests account for the largest proportion. With the passage of time, the
proportion of forest area in the landscape pattern of highly suitable areas for Phyllostachys
edulis continues to increase, and with an increase in CO2 content, the degree of forest
fragmentation in highly suitable areas for Phyllostachys edulis is significant. Over time,
the cropland in Phyllostachys edulis’ high-suitability area under the SSP370 and SSP585
scenarios gradually becomes fragmented, leading to a decrease in the distribution of
cropland. Phyllostachys edulis forests play a significant role in carbon sequestration and
mitigating climate change. The results of this study provide theoretical support for future
rational planning of Phyllostachys edulis and balanced biodiversity conservation. Therefore,
further efforts should be made to curb the rampant expansion of Phyllostachys edulis forests
in order to balance carbon storage and food security, as well as protect biodiversity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/f15122231/s1, Figure S1: Delta.AICc of MaxEnt model under
different parameter combinations generated by ENMeval and AUC result of MaxEnt modeling.
Legend represents different categories of elements (L = linear, Q = quadratic, H = hinge, P = product
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and T = threshold); Figure S2: Fragmentation of Phyllostachys edulis land use landscape in different
climate suitable areas (A1–A4, poorly suitable habitat; B1–B5, moderately suitable habitat; C1–C5,
highly suitable habitat); Table S1: List of environmental variables used in the model development;
Table S2: Direction and distance of centroid migration in the suitable habitat area of Phyllostachys
edulis; Table S3: The area and changes in the suitable habitat for Phyllostachys edulis under different
current and future scenarios.
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