Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System
<p>The general process for implementing ML-assisted MFI, where CDF: cumulative distribution function; AH: amplitude histogram; CD: constellation diagram; ED: eye diagram. A solid line represents the training process and a dotted line represents the recognition process.</p> "> Figure 2
<p>The discriminator of conditional generative adversarial nets algorithm block diagram. Among them, the three colors of red, yellow, and blue represent the three primary color data obtained through three channels of the neural network. And 128 × 128 represents the pixel value of the data.</p> "> Figure 3
<p>Discriminator workflow, in which the input signal is scaled from the original size of <math display="inline"><semantics> <mrow> <mn>891</mn> <mo>×</mo> <mn>656</mn> </mrow> </semantics></math> to a <math display="inline"><semantics> <mrow> <mn>128</mn> <mo>×</mo> <mn>128</mn> </mrow> </semantics></math> square at the image center.</p> "> Figure 4
<p>The 1000-km coherent optical fiber transmission system, where AWG: arbitrary waveform generator; ECL: external cavity laser; DVOA: digitally variable optical attenuator; PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: erbium-doped fiber amplifier; ICR: integrated coherent receiver; DPO: digital phosphor oscilloscope. Blue represents electrical signals and green represents light signals.</p> "> Figure 5
<p>The 1000 km fiber transmission experimental platform.</p> "> Figure 6
<p>The constellation diagram is processed by general DSP. QPSK, 8PSK, 16QAM, 32QAM and 64QAM are randomly selected from the training dataset from top to bottom. From left to right, the processing processes are orthogonal imbalance compensation, dispersion compensation, timing recovery, polarization demultiplexing, frequency offset estimation, and phase recovery.</p> "> Figure 7
<p>The variation curve of recognition accuracy of each modulation format as the training level deepens.</p> "> Figure 8
<p>Performance comparison between this scheme and traditional machine learning schemes, where DT: decision tree; SVM: support vector machine; CGAN: conditional generative adversarial network.</p> "> Figure 9
<p>Recognition accuracy of various modulation formats under different OSNR indicators.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conditional Generative Adversarial Network
2.2. Discriminator Network Structure
2.3. Optical Communication System Platform Construction
2.4. Experimental Data Credibility Verification
2.5. Dataset Creation Principles
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MFI | Modulation format identification |
ML | Machine learning |
I/Q | In-phase and quadrature |
CGAN | Conditional generative adversarial network |
OSNR | Optical signal-to-noise ratio |
GAN | Generative adversarial network |
AI | Artificial intelligence |
AWG | Arbitrary waveform generator |
DVOA | Digitally variable optical attenuator |
EDFA | Erbium-doped fiber amplifier |
DSP | Digital signal processing |
References
- Yaqoob, I.; Hashem, I.A.T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S. Enabling communication technologies for smart cities. IEEE Commun. Mag. 2017, 55, 112–120. [Google Scholar] [CrossRef]
- Marom, D.M.; Blau, M. Switching solutions for WDM-SDM optical networks. IEEE Commun. Mag. 2015, 53, 60–68. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Salleh, M.F.M.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 2020, 9, 7353–7373. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Gao, S.; Shi, Y.; Dai, T.; Yu, H.; Tsang, H.K.; Dai, D. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett. 2017, 42, 2802–2805. [Google Scholar] [CrossRef] [PubMed]
- López, V.; Velasco, L. Elastic optical networks. In Architectures, Technologies, and Control; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- De Miguel, I.; Durán, R.J.; Jiménez, T.; Fernández, N.; Aguado, J.C.; Lorenzo, R.M.; Caballero, A.; Monroy, I.T.; Ye, Y.; Tymecki, A.; et al. Cognitive dynamic optical networks. J. Opt. Commun. Netw. 2013, 5, A107–A118. [Google Scholar] [CrossRef]
- O’Mahony, M.J.; Politi, C.; Klonidis, D.; Nejabati, R.; Simeonidou, D. Future optical networks. J. Light. Technol. 2006, 24, 4684–4696. [Google Scholar] [CrossRef]
- Nag, A.; Tornatore, M.; Mukherjee, B. Optical network design with mixed line rates and multiple modulation formats. J. Light. Technol. 2009, 28, 466–475. [Google Scholar] [CrossRef]
- Li, G. Recent advances in coherent optical communication. Adv. Opt. Photonics 2009, 1, 279–307. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Guo, D.; Dong, Z.; Zhu, L.; Chang, H.; Zhou, S.; Wang, Y.; Tian, Q.; Tian, F.; et al. Unscented Kalman Filter with Joint Decision Scheme for Phase Estimation in Probabilistically Shaped QAM Systems. Electronics 2023, 12, 4075. [Google Scholar] [CrossRef]
- Xiang, M.; Zhuge, Q.; Qiu, M.; Zhou, X.; Tang, M.; Liu, D.; Fu, S.; Plant, D.V. RF-pilot aided modulation format identification for hitless coherent transceiver. Opt. Express 2017, 25, 463–471. [Google Scholar] [CrossRef]
- Xiang, M.; Zhuge, Q.; Qiu, M.; Zhou, X.; Zhang, F.; Tang, M.; Liu, D.; Fu, S.; Plant, D.V. Modulation format identification aided hitless flexible coherent transceiver. Opt. Express 2016, 24, 15642–15655. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Xu, Z.; Lu, J.; Jiang, H.; Wu, Q.; Hu, Z.; Tang, M.; Liu, D.; Chan, C.C.K. Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver. Opt. Express 2018, 26, 7288–7296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Nandi, A.K. Automatic Modulation Classification: Principles, Algorithms and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hameed, F.; Dobre, O.A.; Popescu, D.C. On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 2009, 8, 5884–5892. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, M.; Chen, W.; Ye, Y.; Ma, Y.; Yan, Y.; Ren, H.; Shen, G. Blind and noise-tolerant modulation format identification. IEEE Photonics Technol. Lett. 2018, 30, 1850–1853. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, L.; Yi, A.; Pan, Y.; Hao, M.; Pan, W.; Luo, B. An effective modulation format identification based on intensity profile features for digital coherent receivers. J. Light. Technol. 2019, 37, 5067–5075. [Google Scholar] [CrossRef]
- Lu, J.; Tan, Z.; Lau, A.P.T.; Fu, S.; Tang, M.; Lu, C. Modulation format identification assisted by sparse-fast-Fourier-transform for hitless flexible coherent transceivers. Opt. Express 2019, 27, 7072–7086. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, A.; Guo, P.; Tang, W. A modulation format identification method based on amplitude deviation analysis of received optical communication signal. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, H.; Bai, S.; Bai, C. Modulus mean square-based blind hybrid modulation format recognition for orthogonal frequency division multiplexing-based elastic optical networking. Opt. Commun. 2019, 445, 284–290. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, L.; Yi, A.; Pan, Y.; Hao, M.; Pan, W.; Luo, B. Blind optical modulation format identification assisted by signal intensity fluctuation for autonomous digital coherent receivers. Opt. Express 2020, 28, 302–313. [Google Scholar] [CrossRef]
- Zhuge, Q.; Zeng, X.; Lun, H.; Cai, M.; Liu, X.; Yi, L.; Hu, W. Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks. J. Light. Technol. 2019, 37, 3055–3063. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, C.; Wang, D.; Chen, X.; Wang, L.; Yang, T.; Du, J. Low-complexity and nonlinearity-tolerant modulation format identification using random forest. IEEE Photonics Technol. Lett. 2019, 31, 853–856. [Google Scholar] [CrossRef]
- Khan, F.N.; Zhong, K.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Modulation format identification in coherent receivers using deep machine learning. IEEE Photonics Technol. Lett. 2016, 28, 1886–1889. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, W.; Gao, M.; Ma, Y.; Zhao, Y.; Shen, G. Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm. Opt. Express 2018, 26, 18684–18698. [Google Scholar] [CrossRef]
- Eltaieb, R.A.; Farghal, A.E.; HossamEl-din, H.A.; Saif, W.S.; Ragheb, A.; Alshebeili, S.A.; Shalaby, H.M.; Abd El-Samie, F.E. Efficient classification of optical modulation formats based on singular value decomposition and radon transformation. J. Light. Technol. 2020, 38, 619–631. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. Available online: https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html (accessed on 22 September 2024).
- Salimans, T.; Karpathy, A.; Chen, X.; Kingma, D.P. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv 2017, arXiv:1701.05517. [Google Scholar]
- Frey, B.J.; Hinton, G.E.; Dayan, P. Does the wake-sleep algorithm produce good density estimators? Adv. Neural Inf. Process. Syst. 1995, 8. [Google Scholar]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng. 2021, 35, 3313–3332. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Donahue, J.; Krahenbuhl, P.; Darrell, T. Adversarially learned inference. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1–18. [Google Scholar]
- Perarnau, G.; Van De Weijer, J.; Raducanu, B.; Álvarez, J.M. Invertible conditional gans for image editing. arXiv 2016, arXiv:1611.06355. [Google Scholar]
- Saito, M.; Matsumoto, E.; Saito, S. Temporal generative adversarial nets with singular value clipping. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2830–2839. [Google Scholar]
- Sricharan, K.; Bala, R.; Shreve, M.; Ding, H.; Saketh, K.; Sun, J. Semi-supervised conditional gans. arXiv 2017, arXiv:1708.05789. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, B.; Zhu, X.; Ren, J.; Mao, Y.; Han, S.; Chen, S.; Li, M.; Tian, F.; Guo, Z. Multiple Stokes Sectional Plane Image Based Modulation Format Recognition with a Generative Adversarial Network. Opt. Express 2021, 29, 31836–31848. [Google Scholar] [CrossRef]
- Shieh, W.; Djordjevic, I. OFDM for Optical Communications; Academic Press: Cambridge, MA, USA, 2009; Google-Books-ID: ViPrzMHnY8EC. [Google Scholar]
- Oerder, M.; Meyr, H. Digital filter and square timing recovery. IEEE Trans. Commun. 1988, 36, 605–612. [Google Scholar] [CrossRef]
- Tao, L.; Ji, Y.; Liu, J.; Lau, A.P.T.; Chi, N.; Lu, C. Advanced modulation formats for short reach optical communication systems. IEEE Netw. 2013, 27, 6–13. [Google Scholar] [CrossRef]
- Jiang, X.; Hao, M.; Yan, L.; Jiang, L.; Xiong, X. Blind and Low-complexity Modulation Format Identification Based on Signal Envelope Flatness for Autonomous Digital Coherent Receivers. Appl. Opt. 2022, 61, 5991–5997. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Q.; Xin, X.; Gao, R.; Wang, X.; Tian, F.; Tian, Q.; Liu, B.; Wang, Y. Blind Modulation Format Identification Based on Principal Component Analysis and Singular Value Decomposition. Electronics 2022, 11, 612. [Google Scholar] [CrossRef]
- Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing 2021, 461, 370–403. [Google Scholar] [CrossRef]
- Cai, G.; Li, J.; Liu, X.; Chen, Z.; Zhang, H. Learning and compressing: Low-rank matrix factorization for deep neural network compression. Appl. Sci. 2023, 13, 2704. [Google Scholar] [CrossRef]
- Pal, C.; Pankaj, S.; Akram, W.; Acharyya, A.; Biswas, D. Modified Huffman based compression methodology for deep neural network implementation on resource constrained mobile platforms. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
Number | Optical Fiber Type | Length (km) | Attenuation (dB) |
---|---|---|---|
01 | G.654E | 101.04 | 16.98 |
02 | G.654E | 100.99 | 16.87 |
03 | G.654E | 101.26 | 16.86 |
04 | G.654E | 101.04 | 16.98 |
05 | G.654E | 100.95 | 17.69 |
06 | G.654E | 100.95 | 16.93 |
07 | G.654E | 101.08 | 17.03 |
08 | G.654E | 100.29 | 16.79 |
09 | G.654E | 101.08 | 17.18 |
10 | G.654E | 100.35 | 16.71 |
OSNR (dB) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QPSK 32 G | 8.81 | 9.47 | 10.12 | 10.75 | 11.37 | 12.03 | 12.74 | 13.34 | 14.02 | 14.6 | |||||
QPSK 16 G | 8.94 | 9.61 | 10.23 | 10.81 | 11.51 | 12.16 | 12.84 | 13.53 | 14.17 | 14.78 | 15.41 | 16.17 | 16.75 | ||
QPSK 8 G | 8.89 | 9.46 | 10.14 | 10.67 | 11.25 | 11.94 | 12.61 | 13.16 | 13.80 | 14.43 | 15.06 | 15.65 | 16.37 | 16.98 | 17.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Tian, Q.; Xin, X.; Pan, Y.; Wang, F.; Lázaro, J.A.; Fàbrega, J.M.; Zhou, S.; Wang, Y.; Zhang, Q. Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System. Electronics 2024, 13, 3833. https://doi.org/10.3390/electronics13193833
Yang F, Tian Q, Xin X, Pan Y, Wang F, Lázaro JA, Fàbrega JM, Zhou S, Wang Y, Zhang Q. Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System. Electronics. 2024; 13(19):3833. https://doi.org/10.3390/electronics13193833
Chicago/Turabian StyleYang, Fangxu, Qinghua Tian, Xiangjun Xin, Yiqun Pan, Fu Wang, José Antonio Lázaro, Josep M. Fàbrega, Sitong Zhou, Yongjun Wang, and Qi Zhang. 2024. "Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System" Electronics 13, no. 19: 3833. https://doi.org/10.3390/electronics13193833
APA StyleYang, F., Tian, Q., Xin, X., Pan, Y., Wang, F., Lázaro, J. A., Fàbrega, J. M., Zhou, S., Wang, Y., & Zhang, Q. (2024). Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System. Electronics, 13(19), 3833. https://doi.org/10.3390/electronics13193833