Graph Neural Network-Based Modeling with Subcategory Exploration for Drug Repositioning
<p>Illustration of the proposed PSCE pipeline. The middle part of this diagram shows the main process of the entire pipeline. (<b>a</b>) The proposed prototype-based feature enhancement mechanism (PFEM), (<b>b</b>) the feature concatenation and split steps, and (<b>c</b>) the proposed drug–disease dual-task classification head (D3TC).</p> "> Figure 2
<p>Bar chart of performance that compares our PSCE and six existing methods. The <span style="color: #0000FF">blue</span> and <span style="color: #00FF00">green</span> bars represent the performances according to the AUROC and AUPRC metrics, respectively.</p> "> Figure 3
<p>Visualization of performance generated by our PSCE and existing methods. Top and bottom represent the scatter plot of performances according to AUROC and AUPRC metrics, respectively.</p> "> Figure 4
<p>The effects of different combinations of the proposed PFEM and D3TC on four datasets. The top and bottom represent the line charts of performances with AUROC and AUPRC metrics, respectively.</p> ">
Abstract
:1. Introduction
- This paper presents a prototype-based feature-enhancement mechanism (PFEM) by making full use of the potential knowledge of subcategories for model training, based on which the classification performance in the drug-repositioning task can be significantly improved.
- For the proposed PFEM, we propose a drug–disease dual-task classification head (D3TC) of the model for subcategory exploration to learn the potential feature representation of subcategories by building additional constraints to improve the performance of the drug–disease association predictions.
- Experimental comparisons showed that the PSCE could achieve state-of-the-art performance with respect to the best existing drug-repositioning methods on four datasets.
2. Materials and Methods
2.1. Datasets
2.2. Overview
2.3. Model Architecture
2.4. Prototype-Based Feature-Enhancement Mechanism
2.5. Drug–Disease Dual-Task Classification Head
3. Results
3.1. Implementation Details
3.2. Evaluation Metrics
3.3. Comparison with Existing Methods
3.4. Ablation Study on the Proposed PFEM and D3TC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morgan, S.; Grootendorst, P.; Lexchin, J.; Cunningham, C.; Greyson, D. The cost of drug development: A systematic review. Health Policy 2011, 100, 4–17. [Google Scholar] [CrossRef]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. J. Cheminformatics 2020, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Dai, X.; Xu, Y.; Xing, G.; Liu, H.; Lu, T.; Chen, Y.; Zhang, Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur. J. Med. Chem. 2022, 234, 114239. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.L.; Dai, Q.Q.; Li, G.B. Deep learning in target prediction and drug repositioning: Recent advances and challenges. Drug Discov. Today 2022, 27, 1796–1814. [Google Scholar] [CrossRef] [PubMed]
- Dang, Q.; Liang, Y.; Ouyang, D.; Miao, R.; Ling, C.; Liu, X.; Xie, S. Improved Computational Drug-Repositioning by Self-Paced Non-Negative Matrix Tri-Factorization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1953–1962. [Google Scholar] [CrossRef]
- Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H. Patch-based convolutional neural network for whole slide tissue image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2424–2433. [Google Scholar]
- Peska, L.; Buza, K.; Koller, J. Drug-target interaction prediction: A Bayesian ranking approach. Comput. Methods Programs Biomed. 2017, 152, 15–21. [Google Scholar] [CrossRef]
- Ceddia, G.; Pinoli, P.; Ceri, S.; Masseroli, M. Matrix factorization-based technique for drug repurposing predictions. IEEE J. Biomed. Health Inform. 2020, 24, 3162–3172. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, S.; Liu, X.; Zhou, Y.; Nussinov, R.; Cheng, F. deepDR: A network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019, 35, 5191–5198. [Google Scholar] [CrossRef]
- Xuan, P.; Ye, Y.; Zhang, T.; Zhao, L.; Sun, C. Convolutional neural network and bidirectional long short-term memory-based method for predicting drug–disease associations. Cells 2019, 8, 705. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, M.; Arnold, C. Toward heterogeneous information fusion: Bipartite graph convolutional networks for in silico drug repurposing. Bioinformatics 2020, 36, i525–i533. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Huang, F.; Zhao, X.; Xiao, W.; Zhang, W. Predicting drug–disease associations through layer attention graph convolutional network. Briefings Bioinform. 2021, 22, bbaa243. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.G.; Zhou, X.H. MNBDR: A Module Network Based Method for Drug Repositioning. Genes 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, W.; Konukoglu, E.; Van Gool, L. Rethinking semantic segmentation: A prototype view. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2582–2593. [Google Scholar]
- Zhu, X.; Toisoul, A.; Perez-Rua, J.M.; Zhang, L.; Martinez, B.; Xiang, T. Few-shot action recognition with prototype-centered attentive learning. arXiv 2021, arXiv:2101.08085. [Google Scholar]
- Rymarczyk, D.; Struski, Ł.; Górszczak, M.; Lewandowska, K.; Tabor, J.; Zieliński, B. Interpretable image classification with differentiable prototypes assignment. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 351–368. [Google Scholar]
- Gottlieb, A.; Stein, G.Y.; Ruppin, E.; Sharan, R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 2011, 7, 496. [Google Scholar] [CrossRef]
- Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016, 32, 2664–2671. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, P.; Yan, L.; Fu, Y.; Peng, F.; Qu, L.; Shao, M.; Chen, Y.; Chen, Z. LRSSL: Predict and interpret drug–disease associations based on data integration using sparse subspace learning. Bioinformatics 2017, 33, 1187–1196. [Google Scholar] [CrossRef]
- Yang, M.; Luo, H.; Li, Y.; Wang, J. Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 2019, 35, i455–i463. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cheng, F.; Li, J. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding. PLOS Comput. Biol. 2020, 16, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Liu, T.; Ning, C.; Zhang, Z.; Zhou, W. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 2020, 36, 2538–2546. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Lu, C.; Xu, J.; Meng, Y.; Wang, P.; Fu, X.; Zeng, X.; Su, Y. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Briefings Bioinform. 2021, 22, bbab319. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, C.; Jin, M.; Xu, J.; Zeng, X.; Yang, J. A weighted bilinear neural collaborative filtering approach for drug repositioning. Briefings Bioinform. 2022, 23, bbab581. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Miao, J.; Zhu, W. Precision–recall curve (PRC) classification trees. Evol. Intell. 2022, 15, 1545–1569. [Google Scholar] [CrossRef]
Methods | Metrics | Performance on Datasets (Mean ± Sd) | ||||
---|---|---|---|---|---|---|
Gdataset | Cdataset | LRSSL | Ldataset | Avg | ||
MBiRW [22] | AUROC | 0.896 ± 0.014 | 0.920 ± 0.008 | 0.893 ± 0.015 | 0.765 ± 0.007 | 0.868 |
AUPRC | 0.106 ± 0.019 | 0.161 ± 0.019 | 0.030 ± 0.004 | 0.032 ± 0.003 | 0.082 | |
BNNR [24] | AUROC | 0.937 ± 0.010 | 0.952 ± 0.010 | 0.922 ± 0.012 | 0.866 ± 0.004 | 0.919 |
AUPRC | 0.328 ± 0.029 | 0.431 ± 0.020 | 0.226 ± 0.021 | 0.142 ± 0.007 | 0.282 | |
iDrug [25] | AUROC | 0.905 ± 0.019 | 0.926 ± 0.010 | 0.900 ± 0.008 | 0.838 ± 0.005 | 0.892 |
AUPRC | 0.167 ± 0.027 | 0.250 ± 0.027 | 0.070 ± 0.009 | 0.086 ± 0.004 | 0.143 | |
NIMCGCN [26] | AUROC | 0.821 ± 0.011 | 0.827 ± 0.017 | 0.777 ± 0.012 | 0.843 ± 0.001 | 0.817 |
AUPRC | 0.123 ± 0.028 | 0.174 ± 0.071 | 0.087 ± 0.010 | 0.117 ± 0.002 | 0.125 | |
DRHGCN [27] | AUROC | 0.948 ± 0.011 | 0.964 ± 0.005 | 0.961 ± 0.006 | 0.851 ± 0.007 | 0.931 |
AUPRC | 0.490 ± 0.041 | 0.580 ± 0.035 | 0.384 ± 0.022 | 0.498 ± 0.012 | 0.488 | |
DRWBNCF [28] | AUROC | 0.923 ± 0.013 | 0.941 ± 0.011 | 0.935 ± 0.011 | 0.824 ± 0.005 | 0.906 |
AUPRC | 0.484 ± 0.027 | 0.559 ± 0.021 | 0.349 ± 0.034 | 0.419 ± 0.006 | 0.453 | |
PSCE (ours) | AUROC | 0.953 ± 0.014 | 0.964 ± 0.011 | 0.952 ± 0.016 | 0.877 ± 0.004 | 0.936 |
AUPRC | 0.535 ± 0.036 | 0.582 ± 0.028 | 0.443 ± 0.032 | 0.568 ± 0.008 | 0.532 |
Setting | Performance with AUROC Metric on Datasets (Mean ± Sd) | |||||
---|---|---|---|---|---|---|
PFEM | D3TC | Gdataset | Cdataset | LRSSL | Ldataset | Avg |
√ | 0.922 ± 0.015 | 0.945 ± 0.009 | 0.932 ± 0.014 | 0.850 ± 0.008 | 0.912 | |
√ | 0.924 ± 0.008 | 0.946 ± 0.014 | 0.940 ± 0.011 | 0.866 ± 0.005 | 0.919 | |
√ | √ | 0.953 ± 0.014 | 0.964 ± 0.011 | 0.952 ± 0.016 | 0.877 ± 0.004 | 0.936 |
Setting | Performance with AUPRC Metric on Datasets (Mean ± Sd) | |||||
---|---|---|---|---|---|---|
PFEM | D3TC | Gdataset | Cdataset | LRSSL | Ldataset | Avg |
√ | 0.396 ± 0.027 | 0.458 ± 0.016 | 0.382 ± 0.018 | 0.513 ± 0.011 | 0.437 | |
√ | 0.453 ± 0.044 | 0.488 ± 0.033 | 0.401 ± 0.025 | 0.541 ± 0.009 | 0.470 | |
√ | √ | 0.535 ± 0.036 | 0.582 ± 0.028 | 0.443 ± 0.032 | 0.568 ± 0.008 | 0.532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, R.; Liang, Y.; Lin, J.; Chen, Y. Graph Neural Network-Based Modeling with Subcategory Exploration for Drug Repositioning. Electronics 2024, 13, 3835. https://doi.org/10.3390/electronics13193835
Lu R, Liang Y, Lin J, Chen Y. Graph Neural Network-Based Modeling with Subcategory Exploration for Drug Repositioning. Electronics. 2024; 13(19):3835. https://doi.org/10.3390/electronics13193835
Chicago/Turabian StyleLu, Rong, Yong Liang, Jiatai Lin, and Yuqiang Chen. 2024. "Graph Neural Network-Based Modeling with Subcategory Exploration for Drug Repositioning" Electronics 13, no. 19: 3835. https://doi.org/10.3390/electronics13193835
APA StyleLu, R., Liang, Y., Lin, J., & Chen, Y. (2024). Graph Neural Network-Based Modeling with Subcategory Exploration for Drug Repositioning. Electronics, 13(19), 3835. https://doi.org/10.3390/electronics13193835