MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System
<p>Architecture of proposed scheme.</p> "> Figure 2
<p>Creation of N-grams for scenario 1.</p> "> Figure 3
<p>Flow diagram of proposed scheme.</p> "> Figure 4
<p>Box plot for malware API frequency distribution.</p> "> Figure 5
<p>Malware API N-gram frequency distribution.</p> "> Figure 6
<p>Malware API N-gram frequency distribution.</p> "> Figure 7
<p>Confusion matrix.</p> ">
Abstract
:1. Introduction
1.1. Malware Detection
1.2. Malware Analysis Techniques
1.2.1. Static Analysis Technique
1.2.2. Dynamic Analysis Technique
2. Related Work
N-Grams
3. Proposed Methodology
3.1. Outline of the Proposed Work
- Collection of the malicious and clean sample in PE file formats.
- Extracting the features from executables by performing dynamic analysis.
- Generating N-grams for n = () for both malware and benign samples.
- Reducing feature space by applying the feature reduction technique.
- Generating different N-grams models using the classifier e.g., Naive Bayes, Decision Tree, etc.
- Test samples are validated using each N-gram model. The standard evaluation metrics (True Positive Ratio—TPR, False Negative Ratio—FNR, True Negative Ratio—TNR, and False Positive Ratio—FPR ) were used to find the sensitivity and accuracy.
3.2. Stages of Proposed Methodology
- Monitoring stage
- Feature Engineering Stage
- Learning and Verification Stage
3.3. Proposed Algorithm
Algorithm 1: Methodology. |
4. Experimental Methodology and Steps
4.1. Dataset Collection
4.2. Dataset Preparation
4.3. Cloud-Based Virtual Lab
4.4. Pre-Processing and Feature Generation
4.5. Classification Algorithm and Evaluation Metrics
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
References
- Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic malware analysis in the modern era—A state of the art survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Barría, C.; Cordero, D.; Cubillos, C.; Palma, M. Proposed classification of malware, based on obfuscation. In Proceedings of the 2016 6th International Conference on Computers Communications and Control (ICCCC), Oradea, Romania, 10–14 May 2016; pp. 37–44. [Google Scholar]
- Bencsáth, B.; Pék, G.; Buttyán, L.; Félegyházi, M. Duqu: Analysis, detection, and lessons learned. In Proceedings of the ACM European Workshop on System Security (EuroSec), Bern, Switzerland, 10 April 2012. [Google Scholar]
- Stone, R. A Call to Cyber Arms. 2013. Available online: https://science.sciencemag.org/content/339/6123/1026 (accessed on 27 June 2020).
- Sonicwall. Sonicwall Cyber Threat Report: Threat Actors Pivot Toward More Targeted Attacks, Evasive Exploits. Available online: https://www.sonicwall.com/resources/2020-cyber-threat-report-pdf/ (accessed on 27 June 2020).
- Pandalabs. Panda Security Launches Its Threat Insights Report 2020. Available online: https://www.pandasecurity.com/emailhtml/2004-report-threath-20/Threat-Insights-Report-en.pdf (accessed on 27 June 2020).
- Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A Survey of Deep Learning-Based Network Anomaly Detection; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–13. [Google Scholar]
- Mohaisen, A.; Alrawi, O.; Mohaisen, M. Amal: High-fidelity, behavior-based automated malware analysis and classification. Comput. Secur. 2015, 52, 251–266. [Google Scholar] [CrossRef]
- Alam, S.; Horspool, R.N.; Traore, I.; Sogukpinar, I. A framework for metamorphic malware analysis and real-time detection. Comput. Secur. 2015, 48, 212–233. [Google Scholar] [CrossRef]
- Nauman, M.; Azam, N.; Yao, J. A three-way decision making approach to malware analysis using probabilistic rough sets. Inf. Sci. 2016, 374, 193–209. [Google Scholar] [CrossRef]
- Yakura, H.; Shinozaki, S.; Nishimura, R.; Oyama, Y.; Sakuma, J. Malware analysis of imaged binary samples by convolutional neural network with attention mechanism. In Eighth ACM Conference on Data and Application Security and Privacy; ACM: New York, NY, USA, 2018; pp. 127–134. [Google Scholar]
- Ming, J.; Xin, Z.; Lan, P.; Wu, D.; Liu, P.; Mao, B. Impeding behavior-based malware analysis via replacement attacks to malware specifications. J. Comput. Virol. Hacking Tech. 2017, 13, 193–209. [Google Scholar] [CrossRef]
- Vasiliadis, G.; Polychronakis, M.; Ioannidis, S. GPU-assisted malware. Int. J. Inf. Secur. 2015, 14, 289–297. [Google Scholar] [CrossRef]
- Kim, K.S.; Shin, H.J.; Kim, H.S. A Bit Vector Based Binary Code Comparison Method for Static Malware Analysis. JCP 2018, 13, 545–554. [Google Scholar] [CrossRef]
- Hassen, M.; Carvalho, M.M.; Chan, P.K. Malware classification using static analysis based features. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–7. [Google Scholar]
- Mithal, T.; Shah, K.; Singh, D.K. Case studies on intelligent approaches for static malware analysis. In Emerging Research in Computing, Information, Communication and Applications; Springer: Singapore, 2016; pp. 555–567. [Google Scholar]
- Nagano, Y.; Uda, R. Static analysis with paragraph vector for malware detection. In Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, IMCOM, Beppu, Japan, 5–7 January 2017; pp. 1–7. [Google Scholar]
- Seideman, J.D.; Khan, B.; Vargas, A.C. Malware biodiversity using static analysis. In International Conference on Future Network Systems and Security; Springer: Cham, Switzerland, 2015; pp. 139–155. [Google Scholar]
- Carlin, D.; O’Kane, P.; Sezer, S. Dynamic analysis of malware using run-time opcodes. In Data Analytics and Decision Support for Cybersecurity; Springer: Cham, Switzerland, 2017; pp. 99–125. [Google Scholar]
- Kakisim, A.G.; Nar, M.; Carkaci, N.; Sogukpinar, I. Analysis and evaluation of dynamic feature-based malware detection methods. In International Conference on Security for Information Technology and Communications; Springer: Cham, Switzerland, 2018; pp. 247–258. [Google Scholar]
- Vemparala, S.; Di Troia, F.; Corrado, V.A.; Austin, T.H.; Stamo, M. Malware detection using dynamic birthmarks. In Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics; ACM: New York, NY, USA, 2016; pp. 41–46. [Google Scholar]
- Fang, Y.; Yu, B.; Tang, Y.; Liu, L.; Lu, Z.; Wang, Y.; Yang, Q. A new malware classification approach based on malware dynamic analysis. In Australasian Conference on Information Security and Privacy; Springer: Cham, Switzerland, 2017; pp. 173–189. [Google Scholar]
- Liu, L.; Wang, B.S.; Yu, B.; Zhong, Q.X. Automatic malware classification and new malware detection using machine learning. Front. Inf. Technol. Electron. Eng. 2017, 18, 1336–1347. [Google Scholar] [CrossRef]
- Shijo, P.; Salim, A. Integrated static and dynamic analysis for malware detection. Procedia Comput. Sci. 2015, 46, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. arXiv 2018, arXiv:1811.01190. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.; Brezo, F.; Nieves, J.; Penya, Y.K.; Sanz, B.; Laorden, C.; Bringas, P.G. Idea: Opcode-sequence-based malware detection. In International Symposium on Engineering Secure Software and Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–43. [Google Scholar]
- Santos, I.; Devesa, J.; Brezo, F.; Nieves, J.; Bringas, P.G. Opem: A static-dynamic approach for machine-learning-based malware detection. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 271–280. [Google Scholar]
- Zhang, X.; Sun, M.; Wang, J.; Wang, J. Malware Detection Based on Opcode Sequence and ResNet. In International Conference on Security with Intelligent Computing and Big-Data Services; Springer: Berlin/Heidelberg, Germany, 2018; pp. 489–502. [Google Scholar]
- Lakhotia, A.; Kumar, E.U.; Venable, M. A method for detecting obfuscated calls in malicious binaries. IEEE Trans. Softw. Eng. 2005, 31, 955–968. [Google Scholar] [CrossRef]
- Brooks, R.A.; Maes, P. Artificial life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Anju, S.; Harmya, P.; Jagadeesh, N.; Darsana, R. Malware detection using assembly code and control flow graph optimization. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India; ACM: New York, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Vinod, P.; Laxmi, V.; Gaur, M.S.; Kumar, G.; Chundawat, Y.S. Static CFG analyzer for metamorphic Malware code. In Proceedings of the 2nd International Conference on Security of Information and Networks; ACM: New York, NY, USA, 2009; pp. 225–228. [Google Scholar]
- Altaher, A.; Ramadass, S.; Ali, A. Computer virus detection using features ranking and machine learning. Aust. J. Basic Appl. Sci. 2011, 5, 1482–1486. [Google Scholar]
- Moser, A.; Kruegel, C.; Kirda, E. Limits of static analysis for malware detection. In Proceedings of the Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430. [Google Scholar]
- Ab Razak, M.F.; Anuar, N.B.; Othman, F.; Firdaus, A.; Afifi, F.; Salleh, R. Bio-inspired for features optimization and malware detection. Arab. J. Sci. Eng. 2018, 43, 6963–6979. [Google Scholar] [CrossRef]
- Ali, M.; Shiaeles, S.; Papadaki, M.; Ghita, B.V. Agent-based vs agent-less sandbox for dynamic behavioral analysis. In Proceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25 October 2018; pp. 1–5. [Google Scholar]
- Ali, M.; Shiaeles, S.; Clarke, N.; Kontogeorgis, D. A proactive malicious software identification approach for digital forensic examiners. J. Inf. Secur. Appl. 2019, 47, 139–155. [Google Scholar] [CrossRef]
- Santos, I.; Penya, Y.K.; Devesa, J.; Bringas, P.G. N-grams-based File Signatures for Malware Detection. ICEIS (2) 2009, 9, 317–320. [Google Scholar]
- Nakazato, J.; Song, J.; Eto, M.; Inoue, D.; Nakao, K. A novel malware clustering method using frequency of function call traces in parallel threads. IEICE Trans. Inf. Syst. 2011, 94, 2150–2158. [Google Scholar] [CrossRef] [Green Version]
- Liangboonprakong, C.; Sornil, O. Classification of malware families based on n-grams sequential pattern features. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013; pp. 777–782. [Google Scholar]
- Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 2006, 7, 2721–2744. [Google Scholar]
- Shabtai, A.; Moskovitch, R.; Feher, C.; Dolev, S.; Elovici, Y. Detecting unknown malicious code by applying classification techniques on opcode patterns. Secur. Inf. 2012, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Moskovitch, R.; Feher, C.; Tzachar, N.; Berger, E.; Gitelman, M.; Dolev, S.; Elovici, Y. Unknown malcode detection using opcode representation. In European Conference on Intelligence and Security Informatics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 204–215. [Google Scholar]
- Ben-Haim, Y.; Tom-Tov, E. A Streaming Parallel Decision Tree Algorithm. J. Mach. Learn. Res. 2010, 11, 849–872. [Google Scholar]
- Zhu, L.; XU, Y. Application of C4.5 algorithm in unknown malicious code identification. J. Shenyang Univ. Chem. Technol 2013, 27, 78–82. [Google Scholar]
- Tian, R.; Islam, R.; Batten, L.; Versteeg, S. Differentiating malware from cleanware using behavioural analysis. In Proceedings of the 2010 5th International Conference on Malicious and Unwanted Software, Nancy, Lorraine, France, 19–20 October 2010; pp. 23–30. [Google Scholar]
- Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv. (CSUR) 2008, 44, 1–42. [Google Scholar] [CrossRef]
- VirusShare. Malware Repository Platform. Available online: https://virusshare.com (accessed on 6 December 2019).
- Salehi, Z.; Ghiasi, M.; Sami, A. A Miner for Malware Detection Based on API Function Calls and Their Arguments. In Proceedings of the 16th CSI International Symposium on Artificial Intelligence and Signal Processing, Shiraz, Fars, Iran, 2–3 May 2012; pp. 563–568. [Google Scholar]
- Okamoto, K.; Tamada, H.; Nakamura, M.; Monden, A.; Matsumoto, K.I. Dynamic software birthmarks based on API calls. IEICE Trans. Inf. Syst. 2006, 89, 1751–1763. [Google Scholar]
- Sami, A.; Yadegari, B.; Rahimi, H.; Peiravian, N.; Hashemi, S.; Hamze, A. Malware detection based on mining API calls. In Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March 2010; ACM: New York, NY, USA, 2010; pp. 1020–1025. [Google Scholar]
- Pektaş, A.; Eriş, M.; Acarman, T. Proposal of n-gram based algorithm for malware classification. In Proceedings of the Fifth International Conference on Emerging Security Information, Systems and Technologies, Nice/Saint Laurent du Var, France, 21–27 August 2011; pp. 7–13. [Google Scholar]
- Raff, E.; Zak, R.; Cox, R.; Sylvester, J.; Yacci, P.; Ward, R.; Tracy, A.; McLean, M.; Nicholas, C. An investigation of byte n-gram features for malware classification. J. Comput. Virol. Hacking Tech. 2018, 14, 1–20. [Google Scholar] [CrossRef]
- Sayfullina, L.; Eirola, E.; Komashinsky, D.; Palumbo, P.; Miche, Y.; Lendasse, A.; Karhunen, J. Efficient detection of zero-day android malware using normalized bernoulli naive bayes. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 198–205. [Google Scholar]
- Garg, V.; Yadav, R.K. Malware Detection based on API Calls Frequency. In Proceedings of the 4th International Conference on Information Systems and Computer Networks, Mathura, India, 21–22 November 2019; pp. 400–404. [Google Scholar]
- Salehi, Z.; Sami, A.; Ghiasi, M. Using feature generation from API calls for malware detection. Comput. Fraud Secur. 2014, 9, 9–18. [Google Scholar] [CrossRef]
- Kumar, B.J.; Naveen, H.; Kumar, B.P.; Sharma, S.S.; Villegas, J. Logistic regression for polymorphic malware detection using ANOVA F-test. In Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, India, 17–18 March 2017; pp. 1–5. [Google Scholar]
- Devesa, J.; Santos, I.; Cantero, X.; Penya, Y.K.; Bringas, P.G. Automatic Behaviour-based Analysis and Classification System for Malware Detection. ICEIS 2010, 2, 395–399. [Google Scholar]
API Calls | Count |
---|---|
ZwOpenFile | 42 |
ZwCreateSection | 33 |
ZwFlushInstructionCache | 22 |
ZwWriteFile | 12 |
ZwOpenKeyEx | 59 |
ZwCreateUserProcess | 2 |
ZwTerminateProcess | 1 |
Class | 1-Gram | 2-Gram | 3-Gram | … | 6-Gram |
---|---|---|---|---|---|
Malware | 1 | 0 | 1 | … | 1 |
clean | 0 | 1 | 0 | … | 0 |
Classifiers | Model Accuracy | Study [54] | Study [55,56,57] | Study [58] | Study [49] |
---|---|---|---|---|---|
Naive Bayes | 92.91% | 91.6% | 91% | 89% | |
Decision Tree | 97.64% | 84% | |||
Random Forest | 97.64% | 96.65% | 94.9 % | 96.2 | 91% |
Logistic Regression | 98.43% | 97.7% |
Classifiers | Model Accuracy | Precision | Recall | f1 Score |
---|---|---|---|---|
Naive Bayes | 82.83% | 0.98 | 0.73 | 0.84 |
Decision Tree | 78.79% | 0.80 | 0.87 | 0.83 |
Random Forest | 79.8% | 0.80 | 0.89 | 0.84 |
Logistic Regression | 84.5% | 0.81 | 0.97 | 0.89 |
Category | Virus Name | Type: Spy-Steal Data | C and C | Backdoor | Stealth | |
---|---|---|---|---|---|---|
1 | Trojan | Trojan.Generic.pafish | X | |||
2 | Trojan | Trojan.Win32win32.duqu | ||||
3 | Trojan | Trojan.Generic.Cerber.exe | X | |||
4 | Trojan | Trojan. Win32Mole.exe | X | |||
5 | Trojan | Trojan. Win32.Spora.exe | X | |||
6 | Trojan | Trojan.Win32GrandCrab-01.exe | X | |||
7 | Trojan | Trojan. Win32.Delf.xo | X | |||
8 | Trojan | Trojan. Win32.DarkTequila.exe | ||||
9 | Trojan | Trojan. Win32.psiphon.exe | X | |||
10 | Trojan | Trojan.Generic.yigzwl | X | |||
11 | Trojan | Trojan.Generic.Vcffipzmnipbxzdl | X | |||
12 | Worm | Win32.Gamarue | X | X | X | |
13 | Worm | W32.Cridex.A.worm | X | X | X | |
14 | Worm | Worm.VBS.Agent | X | |||
15 | Worm | Worm.Win32.3DStars | X | X | ||
16 | Worm | Worm.Generic3.PEM | X | |||
17 | Worm | Worm.Win32.Mira.A | X | |||
18 | Worm | Worm.Generic2.CMVO | X | X | ||
19 | Worm | Worm.Win32.Cake | X | |||
20 | Worm | Worm.Win32.Fever | X | X | ||
21 | Worm | Worm.Win32.Monkey.exe | X | |||
22 | Worm | Worm.Win32.Mydoom.a.exe | X | X | ||
23 | Worm | Worm.Win32.Pikachu.exe | X | |||
24 | Worm | Worm.Win32.Postman.exe | X | |||
25 | Worm | Worm.Win32.Sharpei.a.exe | X | |||
26 | Worm | Worm.Win32.Silver.exe | X | |||
27 | Worm | Worm.Win32.Sobig.exe | X | X | ||
28 | Worm | Worm.KOOBFCE.SMC | X | X | ||
29 | Worm | W32/Wabot | X | X | ||
30 | Worm | Worm.vid.exe | X | |||
31 | Worm | Email-Worm.Win32.Mydoom.l | X | X | ||
32 | Worm | Email-Worm.Win32.Naked | X | |||
33 | Worm | Worm.Christmas-wishes.doc | X | |||
34 | Worm | Win32.WannaCry.EXE | X | X | X | |
35 | Worm | Win32.F7F105F9.exe | ||||
36 | Worm | Win32.2tetup.exe | X | |||
37 | Worm | Win32.GrandCrab-01.exe | X | |||
38 | Worm | Win32.GlobeImposter.exe | X | |||
39 | Botnet | Win32.Lolbot.aoi | X | |||
40 | Botnet | WORM/IrcBot.tlq | X | X | X | |
41 | Botnet | W32.JorikLolbot.O!tr | X | X | ||
42 | Botnet | Win32.SdBot.aamk | X | X | X | |
43 | Botnet | W32.ZBot.42352 | X | X | X | |
44 | Botnet | Win32.Jorik.SdBot.e | X | |||
45 | Botnet | MSIL.NanoBot.ibh | X | |||
46 | Botnet | Win32.Zbot.vtii | X | X | X | |
47 | Botnet | Win32.Ngrbot.anak | X | |||
48 | Botnet | Win32.Alinaos.G | X | X | ||
49 | Botnet | GenericKD.2143403 | X | |||
50 | Botnet | Win32/ChkBot.A | X | |||
51 | Botnet | MSIL/Lizarbot.A | X | X | X | |
52 | Botnet | Win32.Jorik.Lolbot.f | X | X | X | |
53 | Botnet | Win32.Zbot.sbdj | X | X | X | |
54 | Botnet | MSIL.NanoBot.bi | X | X | ||
55 | Botnet | Win32.Ngrbot.uyk | X | |||
56 | Botnet | Win32.Boht.qo | X | X | ||
57 | Botnet | W32/Zbot.AJJU!tr | X | X | X | |
58 | Botnet | Win32.VBInject | X | |||
59 | Botnet | Trickbot | X | |||
60 | Botnet | obfuscated.js | X |
Category | Sample Name | Type | |
---|---|---|---|
1 | Normal | grammarlyaddinsetup.pe32 | Executable |
2 | Normal | Poweriso6-x64. | Executable |
3 | Normal | Vlc-2-2-1-win32 | Executable |
4 | Normal | Wireshark-win64-2.6.5 | Executable |
5 | Normal | ProtonVPN.exe | Executable |
6 | Normal | Notepad.exe | Executable |
7 | Normal | McAfeeWebAdvisor.exe | Executable |
8 | Normal | Putty2.exe | Executable |
9 | Normal | FTPDesktopClient.exe | Executable |
10 | Normal | SQLiteStudio-3.2.1.exe | Executable |
11 | Normal | KeePass-2.40-Setup | Executable |
12 | Normal | LinuxLiveUSB Creator 2.9.4.exe | Executable |
13 | Normal | flashplayer32-install.exe | Executable |
14 | Normal | Firefox Setup 14.0.1 | Executable |
15 | Normal | 7za.EXE | Executable |
16 | Normal | GoogleUpdateSetup.exe | Executable |
17 | Normal | Epson512523eu.exe | Executable |
18 | Normal | Microsoft-Toolkit.exe | Executable |
19 | Normal | Googlewebdesigner-win.exe | Executable |
20 | Normal | PDFSAMInstaller.exe | Executable |
21 | Normal | FoxitReader-Setup.exe | Executable |
22 | Normal | TeamViewer-Setup.exe | Executable |
23 | Normal | Internet.Download.Manager.exe | Executable |
24 | Normal | TrueCrypt.exe | Executable |
25 | Normal | SkypeSetup.exe | Executable |
26 | Normal | HottNotes4.1Setup.exe | Executable |
27 | Normal | Normal TorchSetup | Executable |
28 | Normal | GitHubDesktopSetup | Executable |
29 | Normal | Nektar Bolt v1.0 CE.exe | Executable |
30 | Normal | ForkInstaller.exe | Executable |
31 | Normal | hashcat32.exe | Executable |
32 | Normal | AdobePatchInstaller.exe | Executable |
33 | Normal | TWUploader.exe | Executable |
34 | Normal | vmnat.exe | Executable |
35 | Normal | SenseDriver.exe | Executable |
36 | Normal | ISSetup.dll | DLL |
37 | Normal | SrvCtl.dll | DLL |
38 | Normal | panfinder.exe | Executable |
39 | Normal | strings.exe | Executable |
40 | Normal | procexp.exe | Executable |
41 | Normal | games.exe | Executable |
42 | Normal | acc.exe | Executable |
43 | Normal | KutoolsforExcelSetup.exe | Executable |
44 | Normal | DTools.exe | Executable |
45 | Normal | winsdkweb.exe | Executable |
46 | Normal | ClipboardHistory.exe | Executable |
47 | Normal | MEGAsync.exe | Executable |
48 | Normal | AnyDesk.exe | Executable |
49 | Normal | npp.7.6.Installer.exe | Executable |
50 | Normal | CVHP.exe | Executable |
51 | Normal | WinSCP-5.13.6-Setup.exe | Executable |
52 | Normal | coreftplite64.exe | Executable |
53 | Normal | eagleget-setup.exe | Executable |
54 | Normal | NetAssemblyInfo.exe | Executable |
55 | Normal | angrybird.exe | Executable |
56 | Normal | fdminst-lite.exe | Executable |
57 | Normal | sigcheck.exe | Executable |
58 | Normal | RBInternetEncodings500.dll | DLL |
59 | Normal | cryptolibcps-5.0.43.exe | Executable |
60 | Normal | Truecrypt.exe | Executable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Shiaeles, S.; Bendiab, G.; Ghita, B. MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System. Electronics 2020, 9, 1777. https://doi.org/10.3390/electronics9111777
Ali M, Shiaeles S, Bendiab G, Ghita B. MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System. Electronics. 2020; 9(11):1777. https://doi.org/10.3390/electronics9111777
Chicago/Turabian StyleAli, Muhammad, Stavros Shiaeles, Gueltoum Bendiab, and Bogdan Ghita. 2020. "MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System" Electronics 9, no. 11: 1777. https://doi.org/10.3390/electronics9111777
APA StyleAli, M., Shiaeles, S., Bendiab, G., & Ghita, B. (2020). MALGRA: Machine Learning and N-Gram Malware Feature Extraction and Detection System. Electronics, 9(11), 1777. https://doi.org/10.3390/electronics9111777