Comparison of Different Machine Learning Algorithms to Classify Epilepsy Seizure from EEG Signals †
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Pre-Processing
2.3. Machine Learning Classification Models
2.3.1. K-Nearest Neighbor
2.3.2. Naive Bayes
2.3.3. Random Forest
2.3.4. Gradient Boost
2.3.5. Extreme Gradient Boost
2.3.6. Extra Tree Classifier
2.4. Performance Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subrahmanya, S.V.; Shetty, D.K.; Patil, V.; Hameed, B.M.; Paul, R.; Smriti, K.; Naik, N.; Somani, B.K. The role of Data Science in healthcare advancements: Applications, benefits, and future prospects. Ir. J. Med. Sci. (1971-) 2021, 191, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, P.; Shanthagiri, V.; Kumar, A. Recognition of violent activity response using machine learning methods with wearable sensors. J. Adv. Res. Dyn. Control Syst. 2019, 11, 592–601. [Google Scholar] [CrossRef]
- Rakhade, S.N.; Jensen, F.E. Epileptogenesis in the immature brain: Emerging mechanisms. Nat. Rev. Neurol. 2009, 5, 380. [Google Scholar] [CrossRef] [PubMed]
- Mardini, W.; Yassein, M.M.B.; Al-Rawashdeh, R.; Aljawarneh, S.; Khamayseh, Y.; Meqdadi, O. Enhanced Detection of Epileptic Seizure Using EEG Signals in Combination with Machine Learning Classifiers. IEEE Access 2020, 8, 24046–24055. [Google Scholar] [CrossRef]
- Almustafa, K.M. Classification of epileptic seizure dataset using different machine learning algorithms. Inform. Med. Unlocked 2020, 21, 100444. [Google Scholar] [CrossRef]
- Natu, M.; Bachute, M.; Gite, S.; Kotecha, K.; Vidyarthi, A. Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches. Comput. Math. Methods Med. 2022, 2022, 7751263. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, D. Crow Search Algorithm Based Ensemble of Machine Learning Classifiers for Epileptic Seizures Detection. In Proceedings of the 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Masum, M.; Shahriar, H.; Haddad, H.M. Epileptic Seizure Detection for Imbalanced Datasets Using an Integrated Machine Learning Approach. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5416–5419. [Google Scholar] [CrossRef]
- Zeljković, V.; Valev, V.; Tameze, C.; Bojic, M. Pre-Ictal phase detection algorithm based on one dimensional EEG signals and two dimensional formed images analysis. In Proceedings of the 2013 International Conference on High Performance Computing & Simulation (HPCS), Helsinki, Finland, 1–5 July 2013; pp. 607–614. [Google Scholar] [CrossRef]
- Ferrell, S.; Mathew, V.; Refford, M.; Tchiong, V.; Ahsan, T.; Obeid, I.; Picone, J. The Temple University Hospital EEG corpus. Electrode Location and labels. Inst. Signal Inf. Process. Rep. 2020, 1, 1–9. [Google Scholar]
- Guerrero, M.C.; Parada, J.S.; Espitia, H.E. Principal Components Analysis of EEG Signals for Epileptic Patient Identification. Computation 2021, 9, 133. [Google Scholar] [CrossRef]
- Vandecasteele, K.; De Cooman, T.; Chatzichristos, C.; Cleeren, E.; Swinnen, L.; Macea Ortiz, J.; Van Huffel, S.; Dümpelmann, M.; Schulze-Bonhage, A.; De Vos, M.; et al. The power of ECG in multimodal patient-specific seizure monitoring: Added value to an EEG-based detector using limited channels. Epilepsia 2021, 62, 2333–2343. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, K.; Qayyum, A.; Qadir, J.; Sivathamboo, S.; Kwan, P.; Kuhlmann, L.; O’Brien, T.; Razi, A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev. Biomed. Eng. 2020, 14, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma, L.A.; Molinas, M. EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization. Front. Neurosci. 2020, 14, 593. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.U.; Mumtaz, W.; Subhani, A.R.; Saad, M.N.; Malik, A.S. Classification of EEG Signals Based on Pattern Recognition Approach. Front. Comput. Neurosci. 2017, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Majkowski, A.; Rak, R.J.; Świderski, B.; Rysz, A. System for automatic heart rate calculation in epileptic seizures. Australas. Phys. Eng. Sci. Med. 2017, 40, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Lasefr, Z.; Ayyalasomayajula, S.S.V.N.R.; Elleithy, K. Epilepsy seizure detection using EEG signals. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 162–167. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Feng, L.; Zheng, C.; Zhang, W. Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification. Comput. Math. Methods Med. 2017, 2017, 6849360. [Google Scholar] [CrossRef] [PubMed]
- Ubeyli, E.D. Statistics over features: EEG signals analysis. Comput. Biol. Med. 2009, 39, 733–741. [Google Scholar] [CrossRef] [PubMed]
Sr No | Dataset Name | Year of Release | Sampling Rate | No. of Channels | Duration of Recordings | Processed |
---|---|---|---|---|---|---|
1. | Epileptic EEG Dataset, Mendeley data | 2021 | 500 Hz | 21 | - | NO (mat and EDF files) |
2. | Pediatric EEG dataset | 2021 | 2000 Hz | 52 | - | NO (contains EDF files) |
3. | Siena Scalp EEG Database | 2020 | 512 Hz | 34 | Total 128 h | NO (contains EDF format files) |
4. | The Bonn-Barcelona micro- and macro- EEG database | 2020 | - | 16 | 32 s each | NO (contain MATLAB-files) |
Class Name | Class Label | Number of Instances |
---|---|---|
Epileptic Seizure | 1 | 2300 |
Non-Seizure | 0 | 9200 |
Methods | F1 Score | Recall | Specificity | Precision | Accuracy |
---|---|---|---|---|---|
RF | 0.943 | 0.928 | 0.990 | 0.958 | 0.977 |
XGB | 0.933 | 0.897 | 0.993 | 0.972 | 0.974 |
ETC | 0.930 | 0.894 | 0.993 | 0.969 | 0.973 |
NB | 0.899 | 0.887 | 0.979 | 0.912 | 0.960 |
GB | 0.889 | 0.861 | 0.981 | 0.920 | 0.957 |
KNN | 0.768 | 0.625 | 0.999 | 0.995 | 0.924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunekar, P.; Kumawat, C.; Lande, V.; Lokhande, S.; Mandhana, R.; Kshirsagar, M. Comparison of Different Machine Learning Algorithms to Classify Epilepsy Seizure from EEG Signals. Eng. Proc. 2023, 59, 166. https://doi.org/10.3390/engproc2023059166
Kunekar P, Kumawat C, Lande V, Lokhande S, Mandhana R, Kshirsagar M. Comparison of Different Machine Learning Algorithms to Classify Epilepsy Seizure from EEG Signals. Engineering Proceedings. 2023; 59(1):166. https://doi.org/10.3390/engproc2023059166
Chicago/Turabian StyleKunekar, Pankaj, Chanchal Kumawat, Vaishnavi Lande, Sushant Lokhande, Ram Mandhana, and Malhar Kshirsagar. 2023. "Comparison of Different Machine Learning Algorithms to Classify Epilepsy Seizure from EEG Signals" Engineering Proceedings 59, no. 1: 166. https://doi.org/10.3390/engproc2023059166
APA StyleKunekar, P., Kumawat, C., Lande, V., Lokhande, S., Mandhana, R., & Kshirsagar, M. (2023). Comparison of Different Machine Learning Algorithms to Classify Epilepsy Seizure from EEG Signals. Engineering Proceedings, 59(1), 166. https://doi.org/10.3390/engproc2023059166