Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors
"> Figure 1
<p>Location of the study site and the nearest TCEQ C-43.</p> "> Figure 2
<p>Floor plan of the residence, along with the installation of the low-cost sensors in the bedroom and kitchen.</p> "> Figure 3
<p>FEM instruments used for the colocation with the LCSs during the calibration period: (<b>a</b>) Q-Trak™ Indoor Air Quality Monitor, Model: 7575 [<a href="#B56-environments-11-00237" class="html-bibr">56</a>]; and (<b>b</b>) GRIMM Portable Aerosol Spectrometer, Model: 11-D [<a href="#B57-environments-11-00237" class="html-bibr">57</a>].</p> "> Figure 4
<p>(<b>a</b>) Scatterplots showing the comparison between the 1 h PM<sub>2.5</sub> (μg/m<sup>3</sup>) from GRIMM (<span class="html-italic">X</span>-axis) and TSI AirAssure (<span class="html-italic">Y</span>-axis). (<b>b</b>) Scatterplots showing the comparison between the 1 h CO<sub>2</sub> (ppm) from Q-Trak (<span class="html-italic">X</span>-axis) and TSI AirAssure (<span class="html-italic">Y</span>-axis).</p> "> Figure 5
<p>Time series of the PM<sub>2.5</sub> and CO<sub>2</sub> concentrations during the calibration period: comparison of LCS, FEM (GRIMM, Q-Trak), and corrected values.</p> "> Figure 6
<p>Time series showing the 1 h averaged PM<sub>2.5</sub> and CO<sub>2</sub> for the kitchen and bedroom obtained from the LCSs during a 1-month study period. The highlighted section represents the days when the house was unoccupied.</p> "> Figure 7
<p>Hourly boxplots of the PM<sub>2.5</sub> and CO<sub>2</sub> for the kitchen and bedroom, including the primary sources during the 1-month study period.</p> "> Figure 8
<p>Time series showing the 1 h averaged PM<sub>2.5</sub> for the kitchen and bedroom during the 1-month study period, including the ambient PM<sub>2.5</sub> obtained from Mission C-43 (Note: C-43 does not monitor CO<sub>2</sub>). The highlighted section represents the days when the house was unoccupied.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Instrumentation
2.3. Statistical Data Analysis
3. Results and Discussion
3.1. Collocation Between LCSs and FEMs
3.2. 1 h Averaged Indoor Concentration
3.3. Comparison Between Indoor and Ambient PM2.5
3.4. Health Risk Assessment of Indoor PM2.5
4. Limitations and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, S.; Li, X. A Cost-effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications. Procedia Comput. Sci. 2014, 34, 165–171. [Google Scholar] [CrossRef]
- Chen, X.-C.; Chow, J.C.; Ward, T.J.; Cao, J.-J.; Lee, S.-C.; Watson, J.G.; Lau, N.-C.; Yim, S.H.L.; Ho, K.-F. Estimation of personal exposure to fine particles (PM2.5) of ambient origin for healthy adults in Hong Kong. Sci. Total Environ. 2019, 654, 514–524. [Google Scholar] [CrossRef]
- Lolli, F.; Coruzzolo, A.M.; Marinello, S.; Traini, A.; Gamberini, R. A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments. Sustainability 2022, 14, 10108. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Coruzzolo, A.M.; Gamberini, R. Exposure to Air Pollution in Transport Microenvironments. Sustainability 2023, 15, 11958. [Google Scholar] [CrossRef]
- USEPA. Why Indoor Air Quality is Important to Schools|US EPA. 2023. Available online: https://www.epa.gov/iaq-schools/why-indoor-air-quality-important-schools (accessed on 15 August 2024).
- Afroz, R.; Guo, X.; Cheng, C.-W.; Delorme, A.; Duruisseau-Kuntz, R.; Zhao, R. Investigation of indoor air quality in university residences using low-cost sensors. Environ. Sci. Atmos. 2023, 3, 347–362. [Google Scholar] [CrossRef]
- WHO Household Air Pollution and Health. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health#:~:text=Household%20air%20pollution%20was%20responsible (accessed on 15 August 2024).
- Colbeck, I.; Nasir, Z.A. Indoor Air Pollution. In Environmental Pollution; Springer: Dordrecht, The Netherland, 2010; pp. 41–72. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with indoor air quality and sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Armijos, R.; Weigel, M.; Echanique, P.; Racines, M.; Pingitore, N.; Li, W.-W. Evaluation of Sources and Patterns of Elemental Composition of PM2.5 at Three Low-Income Neighborhood Schools and Residences in Quito, Ecuador. Int. J. Environ. Res. Public Health 2017, 14, 674. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 2016, 560–561, 150–159. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Sensors for indoor air quality monitoring and assessment through Internet of Things: A systematic review. Environ. Monit. Assess. 2021, 193, 66. [Google Scholar] [CrossRef]
- Wu, F.; Jacobs, D.; Mitchell, C.; Miller, D.; Karol, M.H. Improving Indoor Environmental Quality for Public Health: Impediments and Policy Recommendations. Environ. Health Perspect. 2007, 115, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; Creekmore, A. Emissions and exposure to NOx, CO, CO2, and PM2.5 from a Gas Stove Using Reference and Low-Cost Sensors. Atmos. Environ. 2024, 331, 120564. [Google Scholar] [CrossRef]
- Pinakana, S.D.; Patlan, C.G.; Mendez, E.; Raysoni, A.U. A Pilot Study on Particulate Matter Concentrations from Cooking and its Effects on Indoor Air Pollution in a Mexican American Household in Mission, South Texas, USA. Case Stud. Chem. Environ. Eng. 2024, 9, 100757. [Google Scholar] [CrossRef]
- Sun, L.; Singer, B.C. Cooking method and kitchen ventilation availability, usage, perceived performance and potential in Canadian homes. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 439–447. [Google Scholar] [CrossRef]
- Lachowicz, J.I.; Milia, S.; Jaremko, M.; Oddone, E.; Cannizzaro, E.; Cirrincione, L.; Malta, G.; Campagna, M.; Lecca, L.I. Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere 2022, 14, 12. [Google Scholar] [CrossRef]
- Li, Y.-C.; Shu, M.; Ho, S.S.H.; Wang, C.; Cao, J.-J.; Wang, G.-H.; Wang, X.-X.; Wang, K.; Zhao, X.-Q. Characteristics of PM2.5 emitted from different cooking activities in China. Atmos. Res. 2015, 166, 83–91. [Google Scholar] [CrossRef]
- Liu, Q.; Son, Y.J.; Li, L.; Wood, N.; Senerat, A.M.; Pantelic, J. Healthy home interventions: Distribution of PM2.5 emitted during cooking in residential settings. Build. Environ. 2022, 207, 108448. [Google Scholar] [CrossRef]
- Balmes, J.R.; Holm, S.M.; McCormack, M.C.; Hansel, N.H.; Gerald, L.B.; Krishnan, J.A. Cooking with Natural Gas: Just the Facts, Please. Am. J. Respir. Crit. Care Med. 2023, 207, 996–997. [Google Scholar] [CrossRef]
- Farmer, D.K.; Vance, M.E.; Abbatt, J.P.D.; Abeleira, A.; Alves, M.R.; Arata, C.; Boedicker, E.; Bourne, S.; Cardoso-Saldaña, F.; Corsi, R.; et al. Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environ. Sci. Process. Impacts 2019, 21, 1280–1300. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.D.; Finnegan, C.; Ouyang, Z.; Jackson, R.B. Correction to “Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes". Environ. Sci. Technol. 2022, 56, 2529–2539. [Google Scholar] [CrossRef] [PubMed]
- Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S. Source identification and mitigation of indoor air pollution using monitoring data—Current Trends. Environ. Technol. Innov. 2024, 33, 103534. [Google Scholar] [CrossRef]
- Singer, B.C.; Pass, R.Z.; Delp, W.W.; Lorenzetti, D.M.; Maddalena, R.L. Pollutant concentrations and emission rates from natural gas cooking burners without and with range hood exhaust in nine California homes. Build. Environ. 2017, 122, 215–229. [Google Scholar] [CrossRef]
- Seppanen, O.; Fisk, W. Summary of Human Responses to Ventilation Permalink. 2004. Available online: https://escholarship.org/uc/item/64k2p4dc (accessed on 19 August 2024).
- Zenissa, R.; Syafei, A.D.; Surahman, U.; Sembiring, A.C.; Pradana, A.W.; Ciptaningayu, T.; Ahmad, I.S.; Assomadi, A.F.; Boedisantoso, R.; Hermana, J. The Effect of Ventilation and Cooking Activities Indoor Fine Particulates in Apartments Towards. Civ. Environ. Eng. 2020, 16, 238–248. [Google Scholar] [CrossRef]
- Demanega, I.; Mujan, I.; Singer, B.C.; Anđelković, A.S.; Babich, F.; Licina, D. Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build. Environ. 2021, 187, 107415. [Google Scholar] [CrossRef]
- US EPA. NAAQS Table|US EPA. 2024. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 18 August 2024).
- Fongsodsri, K.; Chamnanchanunt, S.; Desakorn, V.; Thanachartwet, V.; Sahassananda, D.; Rojnuckarin, P.; Umemura, T. Particulate Matter 2.5 and Hematological Disorders from Dust to Diseases: A Systematic Review of Available Evidence. Front. Med. 2021, 8, 692008. [Google Scholar] [CrossRef]
- Nabizadeh, R.; Yousefian, F.; Moghadam, V.K.; Hadei, M. Characteristics of cohort studies of long-term exposure to PM2.5: A systematic review. Environ. Sci. Pollut. Res. 2019, 26, 30755–30771. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. Cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef]
- Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 2006, 17, 279–287. [Google Scholar] [CrossRef]
- Di, Q.; Dai, L.; Wang, Y.; Zanobetti, A.; Choirat, C.; Schwartz, J.D.; Dominici, F. Association of Short-term Exposure to Air Pollution with Mortality in Older Adults. JAMA 2017, 318, 2446. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B.A.; Koutrakis, P.; Melly, S.J.; Schwartz, J.D. Low-Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study. Environ. Health Perspect. 2016, 124, 46–52. [Google Scholar] [CrossRef]
- Bell, M.L.; Ebisu, K.; Belanger, K. Ambient Air Pollution and Low Birth Weight in Connecticut and Massachusetts. Environ. Health Perspect. 2007, 115, 1118–1124. [Google Scholar] [CrossRef]
- Lowther, S.D.; Dimitroulopoulou, S.; Foxall, K.; Shrubsole, C.; Cheek, E.; Gadeberg, B.; Sepai, O. Low-Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. Environments 2021, 8, 125. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Fisk, W.J.; Satish, U.; Mendell, M.J.; Hotchi, T.; Sullivan, D. Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish Decision-Making Performance. Ashrae J. 2013, 55, 1171812. Available online: https://www.osti.gov/servlets/purl/1171812#:~:text=Because%20humans%20produce%20and%20exhale (accessed on 24 August 2024).
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Abbass, R.A.; Nogueira, T.; Brand, V.S.; Wu, H.-W.; Abulude, F.O.; Adelodun, A.A.; de Fatima Andrade, M.; Asfaw, A.; et al. CO2 exposure, ventilation, thermal comfort, and health risks in low-income home kitchens of twelve global cities. J. Build. Eng. 2022, 61, 105254. [Google Scholar] [CrossRef]
- Baldelli, A. Evaluation of a low-cost multi-channel monitor for indoor air quality through a novel, low-cost, and reproducible platform. Meas. Sens. 2021, 17, 100059. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- deSouza, P.; Kahn, R.; Stockman, T.; Obermann, W.; Crawford, B.; Wang, A.; Crooks, J.; Li, J.; Kinney, P. Calibrating networks of low-cost air quality sensors. Atmos. Meas. Tech. 2022, 15, 6309–6328. [Google Scholar] [CrossRef]
- Holstius, D.M.; Pillarisetti, A.; Smith, K.R.; Seto, E. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Pinakana, S.D.; Mendez, E.; Wladyka, D.; Sepielak, K.; Temby, O. A Review of Literature on the Usage of Low-Cost Sensors to Measure Particulate Matter. Earth 2023, 4, 168–186. [Google Scholar] [CrossRef]
- TSI AirAssure. 2023. Available online: https://Tsi.com/Getmedia/8335ca71-7966-48f2-B697-902c52b54017/AirAssure_IAQ_Op_Maint_Mnl_6015658H-Web?Ext=.Pdf (accessed on 10 August 2024).
- AQ-SPEC; South Coast Air Quality Management District. South Coast Air Quality Management District Air Quality Sensor Performance Evaluation Reports. 2017. Available online: https://www.aqmd.gov/aq-spec/evaluations (accessed on 10 August 2024).
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491500. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Q-Trak Model: 7575. Q-Trak TM Multi-Function Indoor Air Quality Monitor. 2024. Available online: https://tsi.com/getmedia/db7dccc1-e049-4ddc-813d-e7fc33a148ce/7575_QTrak_US_5001355-web?ext=.pdf (accessed on 10 August 2024).
- GRIMM11-D. 2024. Available online: https://www.durag.com/mediafiles/stream/?id=4/1/5/a/415ae9786003f185440db854e09cf07880128d21_Datasheet_11_D_en_final.pdf (accessed on 10 August 2024).
- Venkatraman Jagatha, J.; Klausnitzer, A.; Chacón-Mateos, M.; Laquai, B.; Nieuwkoop, E.; van der Mark, P.; Vogt, U.; Schneider, C. Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research. Sensors 2021, 21, 3960. [Google Scholar] [CrossRef]
- McFarlane, C.; Isevulambire, P.K.; Lumbuenamo, R.; Murphy, A.; Dhammapala, R.; Jin, X.; McNeill, V.F.; Malings, C.; Subramanian, R.; Westervelt, D.M. First Measurements of Ambient PM2.5 in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo Using Field-calibrated Low-cost Sensors. Aerosol Air Qual. Res. 2021, 21, 200619. [Google Scholar] [CrossRef]
- Akteruzzaman, M.; Rahman, M.A.; Rabbi, F.M.; Asharof, S.; Rofi, M.M.; Hasan, M.K.; Muktadir Islam, M.A.; Khan, M.A.R.; Rahman, M.M.; Rahaman, M.H. The impacts of cooking and indoor air quality assessment in the southwestern region of Bangladesh. Heliyon 2023, 9, e12852. [Google Scholar] [CrossRef] [PubMed]
- Adîncu, D.A.; Popescu, A.; Atanasiu, M. Experimental measurements of CO2 concentrations in sleeping rooms. IOP Conf. Ser. Mater. Sci. Eng. 2020, 997, 012137. [Google Scholar] [CrossRef]
- Yan, Y.; Lan, L.; Kang, M.; Zhang, H.; Fan, X.; Wyon, D.P.; Wargocki, P. Emission rate of carbon dioxide by older adults while sleeping. Build. Environ. 2023, 236, 110299. [Google Scholar] [CrossRef]
- Texas Commission on Environmental Quality. Air. 2024. Available online: https://www.tceq.texas.gov/agency/air_main.html (accessed on 10 August 2024).
- Zaman, S.U.; Yesmin, M.; Pavel, M.R.S.; Jeba, F.; Salam, A. Indoor air quality indicators and toxicity potential at the hospitals’ environment in Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 37727–37740. [Google Scholar] [CrossRef]
- Chamseddine, A.; Alameddine, I.; Hatzopoulou, M.; El-Fadel, M. Seasonal variation of air quality in hospitals with indoor–outdoor correlations. Build. Environ. 2019, 148, 689–700. [Google Scholar] [CrossRef]
- WHO AQG. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Executive Summary; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef]
Indoor Pollutants | Raw Data | Corrected Data (MLR) |
---|---|---|
PM2.5 (μg/m3) | RMSE = 2.73 μg/m3 MAE = 2.27 R2 = 0.75 | RMSE = 1.57 μg/m3 MAE = 1.05 R2 = 0.79 PM2.5,corrected = −13.23 + 1.48 × PM2.5, LCS +0.06 × TLCS + 0.23 × RHLCS |
CO2 (ppm) | RMSE = 203.62 ppm MAE = 198.02 R2 = 0.59 | RMSE = 40.33 ppm MAE = 30.98 R2 = 0.64 CO2,corrected = −30.89 + 0.65 × CO2, LCS +13.42 × TLCS − 4.86 × RHLCS |
Pollutant & Environment | Site | N Total | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
PM2.5 (μg/m3)—Indoor | Kitchen | 695 | 3.34 | 7.29 | 0.01 | 118.45 |
Bedroom | 755 | 3.00 | 3.99 | 0.01 | 72.63 | |
PM2.5 (μg/m3)—Ambient | Mission (C-43) | 749 | 11.91 | 6.22 | 2.10 | 39.10 |
CO2 (ppm)—Indoor | Kitchen | 755 | 606.56 | 113.73 | 369.80 | 826.42 |
Bedroom | 755 | 644.64 | 154.90 | 381.93 | 1149.73 |
Microenvironments | Mean ± SD (TP Values) | Range (TP Value) |
---|---|---|
Kitchen | 0.21 ± 0.14 | 0.03 to 0.56 |
Bedroom | 0.20 ± 0.09 | 0.04 to 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.B.; Kim, D.; Pinakana, S.D.; Hobosyan, M.; Montes, A.; Raysoni, A.U. Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors. Environments 2024, 11, 237. https://doi.org/10.3390/environments11110237
Shah KB, Kim D, Pinakana SD, Hobosyan M, Montes A, Raysoni AU. Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors. Environments. 2024; 11(11):237. https://doi.org/10.3390/environments11110237
Chicago/Turabian StyleShah, Kabir Bahadur, Dylan Kim, Sai Deepak Pinakana, Mkhitar Hobosyan, Armando Montes, and Amit U. Raysoni. 2024. "Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors" Environments 11, no. 11: 237. https://doi.org/10.3390/environments11110237
APA StyleShah, K. B., Kim, D., Pinakana, S. D., Hobosyan, M., Montes, A., & Raysoni, A. U. (2024). Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors. Environments, 11(11), 237. https://doi.org/10.3390/environments11110237