Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves
"> Figure 1
<p>PRISMA 2020 flow diagram adopted for the systematic review presented [<a href="#B22-environments-11-00238" class="html-bibr">22</a>].</p> "> Figure 2
<p>Identikit of the most representative micro-particles detected in water samples collected in natural caves according to the (<b>a</b>) type, (<b>b</b>) polymer (anthropogenic cellulose = natural cellulose with the presence of chemicals such as dyes, PE = polyethylene, PP = polypropylene, PET = polyethylene terephthalate, PVC = polyvinyl chloride, polyester), (<b>c</b>) color, and (<b>d</b>) class of size. na = not available. Graphs created with Infogram (<a href="https://infogram.com/" target="_blank">https://infogram.com/</a>, accessed on 20 October 2024).</p> "> Figure 3
<p>Identikit of the most representative micro-particles detected in sediment samples collected in natural caves according to the (<b>a</b>) type, (<b>b</b>) polymer (anthropogenic cellulose, PE = polyethylene, PP = polypropylene, PET = polyethylene terephthalate, copolymer), (<b>c</b>) color, and (<b>d</b>) class of size. na = not available. Graphs created with Infogram (<a href="https://infogram.com/" target="_blank">https://infogram.com/</a>, accessed on 20 October 2024).</p> "> Figure 4
<p>Maximum levels of micro-particle/plastic pollution in (<b>a</b>) sediment and (<b>b</b>) water collected worldwide in cave systems. For the correct interpretation of the reference ID, refer to <a href="#environments-11-00238-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Geographical distribution of studies performed on microplastics in cave systems. A special focus on the Italian and Slovenian Karst regions (the most studied areas). Data are shown as percentage of contamination with respect to the maximum (for sediments: Balestra et al. 2024b [<a href="#B32-environments-11-00238" class="html-bibr">32</a>], reference ID = 10; for waters: Sforzi et al. 2024 [<a href="#B24-environments-11-00238" class="html-bibr">24</a>], reference ID = 2). The graphs have been placed inside boxes of different colors, corresponding to the different sub-regions. Numbers in the global map and in bar plots refer to paper ID in <a href="#environments-11-00238-t001" class="html-table">Table 1</a>.</p> "> Figure 6
<p>Ranges (min–max) of particle concentrations in water and sediment from marine (including brackish and estuarine systems), lake (including lakes, ponds, and reservoirs), riverine (including canal, streams, and rivers), soil (water: groundwater including aquifer and wells; sediment: agricultural, urban, and rural soil), and cave environmental compartments. Numbers in brackets indicate the approximate average concentration. For each environmental matrix in each compartment, the most common type of particles, polymers, and colors are also shown (for types of particles and colors, two symbols indicate an almost equal contribution). Data are from the following sources—marines: [<a href="#B48-environments-11-00238" class="html-bibr">48</a>,<a href="#B50-environments-11-00238" class="html-bibr">50</a>,<a href="#B51-environments-11-00238" class="html-bibr">51</a>,<a href="#B52-environments-11-00238" class="html-bibr">52</a>,<a href="#B53-environments-11-00238" class="html-bibr">53</a>,<a href="#B54-environments-11-00238" class="html-bibr">54</a>,<a href="#B55-environments-11-00238" class="html-bibr">55</a>,<a href="#B56-environments-11-00238" class="html-bibr">56</a>,<a href="#B57-environments-11-00238" class="html-bibr">57</a>,<a href="#B58-environments-11-00238" class="html-bibr">58</a>]; lakes: [<a href="#B48-environments-11-00238" class="html-bibr">48</a>,<a href="#B51-environments-11-00238" class="html-bibr">51</a>,<a href="#B59-environments-11-00238" class="html-bibr">59</a>,<a href="#B60-environments-11-00238" class="html-bibr">60</a>,<a href="#B61-environments-11-00238" class="html-bibr">61</a>]; rivers: [<a href="#B48-environments-11-00238" class="html-bibr">48</a>,<a href="#B51-environments-11-00238" class="html-bibr">51</a>,<a href="#B58-environments-11-00238" class="html-bibr">58</a>,<a href="#B60-environments-11-00238" class="html-bibr">60</a>,<a href="#B61-environments-11-00238" class="html-bibr">61</a>,<a href="#B62-environments-11-00238" class="html-bibr">62</a>,<a href="#B63-environments-11-00238" class="html-bibr">63</a>,<a href="#B64-environments-11-00238" class="html-bibr">64</a>]; soil: [<a href="#B48-environments-11-00238" class="html-bibr">48</a>,<a href="#B49-environments-11-00238" class="html-bibr">49</a>,<a href="#B51-environments-11-00238" class="html-bibr">51</a>,<a href="#B65-environments-11-00238" class="html-bibr">65</a>,<a href="#B66-environments-11-00238" class="html-bibr">66</a>,<a href="#B67-environments-11-00238" class="html-bibr">67</a>,<a href="#B68-environments-11-00238" class="html-bibr">68</a>]; caves: this study.</p> ">
Abstract
:1. Introduction
- (i)
- Critically examine technical aspects such as sampling strategies, extraction protocols, and chemical analyses, with a matrix-by-matrix focus on water, sediment, and biota;
- (ii)
- Provide a detailed identification of the most representative plastic particles;
- (iii)
- Outline the levels of pollution by geographical areas and compare them with other ecosystems;
- (iv)
- Summarize the potential sources of contamination;
- (v)
- Discuss the ecological implications and outline future research avenues in this field.
2. Research Methodology
3. Results and Discussion
3.1. Sampling, Protocol of Extraction, and Chemical Analysis
3.1.1. Waters
3.1.2. Sediments
3.1.3. Biota
3.2. Methodological Considerations
3.3. Microplastic Identikit
3.3.1. Water
3.3.2. Sediments
3.3.3. Biota
3.4. Fibers: The Most Common Type
3.5. Variations in Pollution Levels
3.5.1. Geographic Variations
3.5.2. Comparison with Other Ecosystems
4. Knowledge Gaps and Future Research Needs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plastic Europe. Plastics—The Fast Facts 2023; Plastic Europe: Brussels, Belgium, 2023. [Google Scholar]
- Plastic Europe. Plastics—The Facts 2013; Plastic Europe: Brussels, Belgium, 2013. [Google Scholar]
- OECD. Global Plastics Outlook: Plastic Leakage to the Environment—Projections; OECD Environment Statistics (Database); OECD: Paris, France, 2024. [Google Scholar] [CrossRef]
- Su, L.; Xiong, X.; Zhang, Y.; Wu, C.; Xu, X.; Sun, C.; Shi, H. Global transportation of plastics and microplastics: A critical review of pathways and influences. Sci. Total Environ. 2022, 831, 154884. [Google Scholar] [CrossRef] [PubMed]
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, 4501. [Google Scholar] [CrossRef]
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer Open: London, UK, 2015. [Google Scholar]
- Tan, F.; Young, H.; Xu, X.; Fang, Z.; Xu, H.; Shi, Q.; Zhang, X.; Wang, G.; Lin, L.; Zhou, S.; et al. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Sci. Total Environ. 2020, 725, 138383. [Google Scholar] [CrossRef] [PubMed]
- Imhof, H.K.; Sigl, R.; Brauer, E.; Feyl, S.; Giesemann, P.; Klink, S.; Leupolz, K.; Löder, M.G.J.; Löschel, L.A.; Missun, J.; et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull. 2017, 116, 340–347. [Google Scholar] [CrossRef]
- Padha, S.; Kumar, R.; Dhar, A.; Sharma, P. Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas. Environ. Res. 2022, 207, 112232. [Google Scholar] [CrossRef]
- Pastorino, P.; Anselmi, S.; Esposito, G.; Bertoli, M.; Pizzul, E.; Barceló, D.; Elia, A.C.; Dondo, A.; Prearo, M.; Renzi, M. Microplastics in biotic and abiotic compartments of high-mountain lakes from Alps. Ecol. Indic. 2023, 150, 110215. [Google Scholar] [CrossRef]
- Citterich, F.; Giudice, A.L.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Manna, C.; Jain, M. Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Sci. Total Environ. 2021, 782, 146695. [Google Scholar] [CrossRef]
- Malard, F.; Griebler, C.; Rètaux, S. Groundwater Ecology and Evolution, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Mammola, S.; Cardoso, P.; Culver, D.C.; Deharveng, L.; Ferreira, R.L.; Fišer, C.; Galassi, D.M.P.; Griebler, C.; Halse, S.; Humphreys, W.F. Scientists’ Warning on the Conservation of Subterranean Ecosystems. Bioscience 2019, 69, 641–650. [Google Scholar] [CrossRef]
- Chiarini, V.; Duckeck, J.; De Waele, J. A Global Perspective on Sustainable Show Cave Tourism. Geoheritage 2022, 14, 82. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report 2015; UNESCO: Paris, France, 2015. [Google Scholar]
- Bergsvik, K.A.; Skeates, R. The Cultural Significance of Caves and Rockshelters in Europe; Oxbow Books: Oxford, UK, 2012. [Google Scholar]
- White, W.B. Cave sediments and paleoclimate. J. Cave Karst Stud. 2007, 69, 76–93. [Google Scholar]
- Pettyjohn, W.A.; Hounslow, A.W. Organic compounds and ground-water pollution. Groundw. Monit. Remediat. 1983, 3, 41–47. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. Res. Methods Report. 2021, 372, n160. [Google Scholar] [CrossRef]
- Balestra, V.; Bellopede, R. Microplastic pollution in show cave sediments: First evidence and detection technique. Environ. Pollut. 2022, 292, 118261. [Google Scholar] [CrossRef]
- Sforzi, L.; Tabilio Di Camillo, A.; Di Lorenzo, T.; Galassi, D.M.P.; Balestra, V.; Piccini, L.; Cabigliera, S.B.; Ciattini, S.; Laurati, M.; Chelazzi, D. (Micro-)Plastics in Saturated and Unsaturated Groundwater Bodies: First Evidence of Presence in Groundwater Fauna and Habitats. Sustainability 2024, 16, 2532. [Google Scholar] [CrossRef]
- Hernandez-Milian, G.; Tsangaris, C.; Anestis, A.; Fossi, M.C.; Baini, M.; Caliani, I.; Panti, C.; Bundone, L.; Panou, A. Monk seal faeces as a non-invasive technique to monitor the incidence of ingested microplastics and potential presence of plastic additives. Mar. Pollut. Bull. 2023, 193, 115227. [Google Scholar] [CrossRef]
- Bergamin, L.; Di Bella, L.; Romano, E.; D’Ambrosi, A.; Di Fazio, M.; Gaglianone, G.; Medeghini, L.; Pierdomenico, M.; Pierfranceschi, G.; Provenzani, C.; et al. Habitat partitioning and first microplastic detection in the Argentarola marine cave (Tyrrhenian Sea, Italy). Reg. Stud. Mar. Sci. 2024, 74, 103547. [Google Scholar] [CrossRef]
- Valencic, L.; Kozel, P.; Pipan, T. Microplastic pollution in vulnerable karst environments: Case study from the Slovenian classical karst region. Acta Carsol. 2022, 51, 79–92. [Google Scholar] [CrossRef]
- Balestra, V.; Vigna, B.; De Costanzo, S.; Bellopede, R. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. J. Contam. Hydrol. 2023, 252, 104117. [Google Scholar] [CrossRef]
- Balestra, V.; Bellopede, R. Microplastics in caves: A new threat in the most famous geo-heritage in the world. Analysis and comparison of Italian show caves deposits. J. Environ. Manag. 2023, 342, 118189. [Google Scholar] [CrossRef] [PubMed]
- Balestra, V.; Galbiati, M.; Lapadula, S.; Zampieri, V.; Cassarino, F.; Gajdošová, M.; Barzaghi, B.; Manenti, R.; Ficetola, G.F.; Bellopede, R. Microplastic pollution calls for urgent investigations in stygobiont habitats: A case study from Classical karst. J. Environ. Manag. 2024, 356, 120672. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Bergamin, L.; Di Bella, L.; Baini, M.; Berto, D.; D’Ambrosi, A.; DI Fazio, M.; Galli, M.; Medeghini, L.; Panti, C.; et al. First record of microplastic in the environmental matrices of a Mediterranean marine cave (Bue Marino, Sardinia, Italy). Mar. Pollut. Bull. 2023, 186, 114452. [Google Scholar] [CrossRef]
- Balestra, V.; Galbiati, M.; Lapadula, S.; Barzaghi, B.; Manenti, R.; Ficetola, G.F.; Bellopede, R. The problem of anthropogenic microfibres in karst systems: Assessment of water and submerged sediments. Chemosphere 2024, 363, 142811. [Google Scholar] [CrossRef]
- Hasenmueller, E.A.; Baraza, T.; Hernandez, N.F.; Finegan, C.R. Cave sediment sequesters anthropogenic microparticles (including microplastics and modified cellulose) in subsurface environments. Sci. Total Environ. 2023, 893, 164690. [Google Scholar] [CrossRef]
- Baraza, T.; Hasenmueller, E.A. Floods enhance the abundance and diversity of anthropogenic microparticles (including microplastics and treated cellulose) transported through karst systems. Water Res. 2023, 242, 120204. [Google Scholar] [CrossRef]
- An, X.; Li, W.; Lan, J.; Adnan, M. Preliminary Study on the Distribution, Source, and Ecological Risk of Typical Microplastics in Karst Groundwater in Guizhou Province, China. Int. J. Environ. Res. Public Health 2022, 19, 14751. [Google Scholar] [CrossRef]
- Jeong, E.; Kim, Y.-I.; Lee, J.-Y.; Raza, M. Microplastic contamination in groundwater of rural area, eastern part of Korea. Sci. Total Environ. 2023, 895, 165006. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, T.; Chen, B.; Booth, A.M.; Liu, S.; Wang, R.; Zhu, L.; Zhao, X.; Qu, K.; Xia, B. Factors influencing the occurrence and distribution of microplastics in coastal sediments: From source to sink. J. Hazard. Mater. 2021, 410, 124982. [Google Scholar] [CrossRef]
- Rodrigues, D.; Antunes, J.; Pais, J.; Pequeno, J.; Sá Caetano, P.; Rocha, F.; Sobrai, P.; Costa, M.H. Distribution patterns of microplastics in subtidal sediments from the Sado river estuary and the Arrábida marine park, Portugal. Front. Environ. Sci. 2022, 10, 998513. [Google Scholar] [CrossRef]
- Piccardo, M.; Priamo, G.S.; Anselmi, S.; Bevilacqua, S.; Renzi, M. Intra-Laboratory Calibration Exercise for Quantification of Microplastic Particles in Fine-Grained Sediment Samples: Special Focus on the Influence of User Experience. Microplastics 2022, 1, 440–455. [Google Scholar] [CrossRef]
- Giardino, M.; Balestra, V.; Janner, D.; Bellopede, R. Automated method for routine microplastic detection and quantification. Sci. Total Environ. 2023, 859, 160036. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, A.W. The Fiber Year 2020–Deceleration Along the Textile Chain. 2020. Available online: https://fiberjournal.com/the-fiber-year-2020-deceleration-along-the-textile-chain/ (accessed on 20 September 2024).
- Smith, J.; Vignieri, S. A devil’s bargain. Science 2021, 373, 34–35. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, T.; Mitrano, D.M.; Heugerger, M.; Hufenus, R.; Nowack, B. Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environ. Sci. Technol. 2020, 54, 4847–4855. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, R.P.; Rath, C.C.; Das, A.P. Synthetic microfibers: Source, transport and their remediation. J. Water Process Eng. 2020, 38, 101612. [Google Scholar] [CrossRef]
- Kim, J.; Haque, M.N.; Lee, S.; Lee, D.-H.; Rhee, J.-S. Exposure to environmentally relevant concentrations of polystyrene microplastics increase hexavalent Chromium toxicity in aquatic animals. Toxics 2022, 10, 563. [Google Scholar] [CrossRef]
- Hamid, F.S. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Manag. Res. 2018, 36, 873–897. [Google Scholar] [CrossRef]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastics pollution research—What have we learned. Science 2024, 386, eadl2746. [Google Scholar] [CrossRef]
- Lee, J.Y.; Cha, J.; Ha, K.; Viaroli, S. Microplastic pollution in groundwater: A systematic review. Environ. Pollut. Bioavailab. 2024, 36, 2299545. [Google Scholar] [CrossRef]
- Bohdan, K. Estimating global marine surface microplastic abundance: Systematic literature review. Sci. Total Environ. 2022, 832, 155064. [Google Scholar] [CrossRef] [PubMed]
- D’Avignon, G.; Gregory-Eaves, I.; Ricciardi, A. Microplastics in lakes and rivers: An issue of emerging significance to limnology. Environ. Rev. 2022, 30, 228–244. [Google Scholar] [CrossRef]
- Harris, P.T. The fate of microplastic in marine sedimentary environments: A review and synthesis. Mar. Pollut. Bull. 2020, 158, 111398. [Google Scholar] [CrossRef] [PubMed]
- Martí, E.; Martin, C.; Galli, M.; Echevarría, F.; Duarte, C.M.; Cózar, A. The Colors of the Ocean Plastics. Environ. Sci. Technol. 2020, 54, 6594–6601. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Lusher, A.; Thompson, R.C.; Morley, A. Sediments and Bottom Water from the Irish Continental Shelf. Sci. Rep. 2017, 7, 10772. [Google Scholar] [CrossRef]
- Van Cawemberge, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef]
- Perumal, K.; Muthuramalingam, S. Global sources, abundance, size, and distribution of microplastics in marine sediments—A critical review. Estuar. Coast. Shelf Sci. 2022, 264, 107702. [Google Scholar] [CrossRef]
- Mutuku, J.; Yanotti, M.; Tocock, M.; MacDonald, D.H. The Abundance of Microplastics in theWorld’s Oceans: A Systematic Review. Oceans 2024, 5, 398–428. [Google Scholar] [CrossRef]
- Kye, H.; Kim, J.; Ju, S.; Lee, J.; Lim, C.; Yoon, Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon 2023, 9, e14359. [Google Scholar] [CrossRef]
- Pan, T.; Liao, H.; Yang, F.; Sun, F.; Guo, F.; Yang, H.; Feng, D.; Zhou, X.; Wang, Q. Review of microplastics in lakes: Sources, distribution characteristics, and environmental effects. Carbon Res. 2023, 2, 25. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, A.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 15, 155–410. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.-T.; Wang, G.; Yue, W.; Kong, X.; Zhu, J. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic Contamination in Freshwater Environments: A Review, Focusing on Interactions with Sediments and Benthic Organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Sa’adu, I.; Farsang, A. Plastic contamination in agricultural soils: A review. Environ. Sci. Eur. 2023, 35, 13. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef] [PubMed]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastics in soils—A review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Wang, C.; Tang, J.; Yu, H.; Wang, Y.; Li, H.; Xu, S.; Li, G.; Zhou, Q. Microplastic Pollution in the Soil Environment: Characteristics, Influencing Factors, and Risks. Sustainability 2022, 14, 13405. [Google Scholar] [CrossRef]
- Guimarães, A.T.B.; Charlie-Silva, I.; Malafaia, G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. J. Hazard. Mater. 2021, 407, 24833. [Google Scholar] [CrossRef]
- Opitz, T.; Benítez, S.; Fernández, C.; Osores, S.; Navarro, J.M.; Rodríguez-Romero, A.; Lohrmann, K.B.; Lardies, M.A. Minimal impact at current environmental concentrations of microplastics on energy balance and physiological rates of the giant mussel Choromytilus chorus. Mar. Pollut. Bull. 2021, 162, 111834. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goohead, R.; Moder, J.; Galloway, T.S. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine invertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Remy, F.; Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Lepoint, G. When microplastic is not plastic: The ingestion of artificial cellulose fibers by macrofauna living in macrophytodetritus. Environ. Sci. Technol. 2015, 49, 11158–11166. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cabigliera, S.B.; Martellini, T.; Laurati, M.; Chelazzi, D.; Galassi, D.M.P.; Cininelli, A. Ingestion of microplastic and textile cellulose particles by some meiofaunal taxa of an urban stream. Chemosphere 2023, 310 Pt A, 136830. [Google Scholar] [CrossRef]
SAMPLING STRATEGY | PROTOCOL OF EXTRACTION | CHEMICAL ANALYSIS | |||||||
---|---|---|---|---|---|---|---|---|---|
Matrix | Volume of Samples and Sampling Technique | Procedural Steps | Density Seperation | Digestion | Filtration (Pore Size) | Analysis Performed? | Technique | % Items Analysed | Reference ID |
sediment | 300 g of sediment from the upper 5 cm of soil | drying, density separation, settling, filtration, drying, filter digestion | NaCl | 15% H2O2 | 1.2 µm | NO | - | - | [1] |
sediment | 150 g of sediment | drying, density separation, settling, filtration, drying, filter digestion | NaCl | 15–30% H2O2 | 1.2 µm | YES | µ-FTIR | <10% | [7] |
water | water collected from spring with an automatic sampler | filtration | not performed | not performed | 0.45 µm | YES | µ-FTIR | 10% | [12] |
water | 500 L of water collected with a peristaltic pump | filtration, digestion, filtration | LiWO4 | not performed | 20 µm | YES | µ-FTIR | na | [14] |
water | 2 L of grab samples | filtration, digestion, density separation, settling, filtration | NaCl | 30% H2O2 | 1 µm | YES | µ RAMAN | na | [13] |
water | flowing water from pools and springs | filtration, drying, digestion | na | 15% H2O2 | 0.8 µm | YES | µ-FTIR | 10% | [6] |
sediment and water | 400 g of sediment from the upper 2 cm of soil; 1 L of grab sample or water collected with a plankton net (100 µm mesh) used for 60 min | density separation, settling, filtration; filtration | NaCl | not performed | 8 µm | YES | µ-FTIR | all > 200 µm | [9] |
sediment and water | 250 g of sediment from the upper 5 cm of soil; 500–1150 L of water bulk samples from springs | drying, digestion, drying, density separation, settling, filtration, drying | NaCl | 30% H2O2 | 1.2 µm | YES | µ-FTIR | 15% | [8] |
sediment and water | 0.5–1 kg of sediment from the upper 5 cm of soil; water from puddles and pools | drying, 2 mm sieving, density separation, filtration; filtration | not performed | not performed | 12–20 µm | YES | µ-FTIR | na | [5] |
sediment and water | submerged sediment; 1 L of water bulk sample from puddles and still waters | drying, digestion, drying, density separation, settling, filtration, drying | NaCl | 30% H2O2 | 1.2 µm | YES | µ-FTIR | <10% | [10] |
sediment and water | sediment from the upper 5 cm of soil; 1 L of water | density separation, settling, filtration; filtration | NaCl | not performed | 0.45 µm | YES | µ-FTIR | 22–42% | [11] |
water and biota | max 2 L of grab sample of water; for biota: brushes, net, immersion pump, and net | digestion, density separation, settling, filtration; digestion, filtration, Nile red | NaCl | 30% H2O2 | 1.2 µm | YES | µ-FTIR flµorescence microscopy | na | [2] |
sediment and biota | 400 g of grab sample of sediment | digestion, filtration, density separation, filtration | NaBr | 10% H2O2 | 1.6 µm | YES | µ-FTIR | all | [4] |
biota | grab samples of feces | sieved, digestion, density separation | NaCl and NaI | 10% KOH | na | YES | ATR-FTIR | na | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccardo, M.; Bevilacqua, S. Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves. Environments 2024, 11, 238. https://doi.org/10.3390/environments11110238
Piccardo M, Bevilacqua S. Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves. Environments. 2024; 11(11):238. https://doi.org/10.3390/environments11110238
Chicago/Turabian StylePiccardo, Manuela, and Stanislao Bevilacqua. 2024. "Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves" Environments 11, no. 11: 238. https://doi.org/10.3390/environments11110238
APA StylePiccardo, M., & Bevilacqua, S. (2024). Lost in the Dark: Current Evidence and Knowledge Gaps About Microplastic Pollution in Natural Caves. Environments, 11(11), 238. https://doi.org/10.3390/environments11110238