The Effects of Straw Burning Bans on the Use of Cooking Fuels in China
<p>The parallel trend test results. (<b>a</b>) The effects of COSB policies on the use of cleaner cooking fuels. (<b>b</b>) The effects of COSB policies on the use of firewood for cooking.</p> "> Figure 2
<p>The placebo trend test. (<b>a</b>) The impact of the early implementation of a fictitious COSB policy on clean cooking fuels. (<b>b</b>) The results of an in situ spatial placebo test for clean cooking fuel. (<b>c</b>) The results of an unrestricted mixed placebo test for clean cooking fuel. (<b>d</b>) The effects of the early implementation of a fictitious COSB policy on the use of firewood for cooking. (<b>e</b>) The results of an in situ spatial placebo test on the use of firewood for cooking. (<b>f</b>) The unrestricted mixed placebo test for clean cooking fuel.</p> "> Figure 3
<p>Heterogeneity test results. (<b>a</b>) Heterogeneity tests results of the effects of COSB policy implementation on clean cooking fuels. (<b>b</b>) The heterogeneity tests results of the effects of COSB policy implementation on the use of firewood for cooking.</p> "> Figure A1
<p>Results of Bacon decomposition for cleaner fuel.</p> "> Figure A2
<p>Results of Bacon decomposition for firewood cooking fuel.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.1.1. Cooking Fuel Data
2.1.2. COSB Treatment
2.1.3. Control Variables
2.1.4. Other Variables
2.2. Empirical Methods
3. Results
3.1. Effects of COSB on Household Cooking Fuel Use
3.2. Pre-Treatment Parallel Trend Test
3.3. Placebo Testing
3.4. Heterogeneity Analysis
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations and Future Research Directions
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Explained Variable: Cleaner Fuels | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DID | 0.092 ** | 0.088 *** | 0.074 ** | 0.072 ** | 0.07 ** |
(2.71) | (2.64) | (2.41) | (2.34) | (−2.36) | |
Household assets | −0.013 *** | −0.01 *** | −0.01 *** | −0.01 *** | |
(−4.28) | (−3.31) | (−3.32) | (−3.45) | ||
Household size | 0.002 | 0.002 | 0.002 | 0.002 | |
(0.74) | (0.65) | (0.72) | (0.7) | ||
Household income | 0.018 *** | 0.018 *** | 0.018 *** | 0.018 *** | |
(3.71) | (3.6) | (3.63) | (3.6) | ||
GDP per capita | 0.297 | 0.262 | 0.248 | ||
(1.32) | (1.11) | (1.04) | |||
Industrial structure | −1.179 ** | −0.221 ** | −0.212 ** | ||
(−2.01) | (−2.24) | (−2.14) | |||
Disposable income per capita | −1.176 * | −1.087 | −1.084 | ||
(−1.67) | (−1.46) | (−1.45) | |||
Agricultural mechanization | −0.073 | −0.073 | −0.075 | ||
(−1.54) | (−1.52) | (−0.112) | |||
Rural population share | −0.375 | −0.489 | −0.518 * | ||
(−1.23) | (−1.53) | (−1.68) | |||
Constant | 0.542 *** | 0.391 *** | 2.452 | 2.933 * | 3.042 ** |
(47.07) | (7.54) | (1.58) | (1.84) | (1.97) | |
Provincial factor control | No | No | Yes | Yes | Yes |
Family factor control | No | Yes | Yes | Yes | Yes |
Family fixed effects | Yes | Yes | Yes | Yes | Yes |
Province fixed effects | No | No | No | Yes | Yes |
Month fixed effects | No | No | No | No | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 19,806 | 19,806 | 19,806 | 19,806 | 19,806 |
R-squared | 0.625 | 0.627 | 0.63 | 0.631 | 0.632 |
Explained Variable: Firewood Cooking Fuel | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DID | −0.053 ** | −0.048 *** | −0.039 ** | −0.04 ** | −0.04 ** |
(−2.55) | (−2.48) | (−2.34) | (−2.35) | (−2.39) | |
Household assets | 0.013 *** | 0.011 *** | 0.011 *** | 0.01 *** | |
(5.16) | (4.56) | (4.57) | (4.52) | ||
Household size | −0.005 ** | −0.005 * | −0.005 ** | −0.005 ** | |
(−2.01) | (−1.95) | (−1.99) | (−2.05) | ||
Household income | −0.014 *** | −0.013 *** | −0.013 *** | −0.013 *** | |
(−3.2) | (−3.16) | (−3.12) | (−3.09) | ||
GDP per capita | −0.069 | −0.086 | −0.09 | ||
(−0.59) | (−0.7) | (−0.72) | |||
Industrial structure | 0.122 ** | 0.108 * | 0.108 * | ||
(2.29) | (1.8) | (1.81) | |||
Disposable income per capita | 0.731 ** | 0.795 ** | 0.811 ** | ||
(2.08) | (2.08) | (2.14) | |||
Agricultural mechanization | 0.0002 | 0.0001 | 0.0002 | ||
(0.01) | (0.01) | (0.01) | |||
Rural population share | 0.139 | 0.104 | 0.125 | ||
(0.89) | (0.62) | (0.75) | |||
Constant | 0.141 *** | 0.252 *** | −0.908 | −0.779 | −0.86 |
(19.96) | (5.74) | (−1.2) | (−0.98) | (−1.09) | |
Provincial factor control | No | No | Yes | Yes | Yes |
Family factor control | No | Yes | Yes | Yes | Yes |
Family fixed effects | Yes | Yes | Yes | Yes | Yes |
Province fixed effects | No | No | No | Yes | Yes |
Month fixed effects | No | No | No | No | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 19,806 | 19,806 | 19,806 | 19,806 | 19,806 |
R-squared | 0.502 | 0.504 | 0.508 | 0.508 | 0.509 |
Explained Variable: Coal Cooking Fuel | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DID | −0.014 | −0.012 | −0.006 | −0.007 | −0.005 |
(−0.86) | (−0.77) | (−0.45) | (−0.5) | (−0.4) | |
Household assets | 0.006 *** | 0.005 *** | 0.005 *** | 0.005 *** | |
(4.18) | (3.73) | (3.7) | (3.77) | ||
Household size | 0.004 ** | 0.004 ** | 0.003 ** | 0.003 ** | |
(2.18) | (2.15) | (2.05) | (2.03) | ||
Household income | −0.004 ** | −0.004 * | −0.004 * | −0.004 * | |
(−2.00) | (−1.89) | (−1.86) | (−1.84) | ||
GDP per capita | −0.115 | −0.124 | −0.115 | ||
(−1.03) | (−1.09) | (−1.00) | |||
Industrial structure | 0.12 ** | 0.112 ** | 0.106 ** | ||
(2.62) | (2.3) | (2.2) | |||
Disposable income per capita | 0.647 ** | 0.687 ** | 0.683 ** | ||
(2.03) | (2.09) | (2.09) | |||
Agricultural mechanization | −0.065 ** | −0.067 ** | −0.066 ** | ||
(−2.35) | (−2.39) | (−2.36) | |||
Rural population share | 0.292 ** | 0.272 * | 0.287 ** | ||
(2.21) | (1.97) | (2.07) | |||
Constant | 0.142 *** | 0.048 *** | −1.573 ** | −1.503 ** | −1.559 ** |
(7.17) | (2.26) | (−2.29) | (−2.11) | (−2.2) | |
Provincial factor control | No | No | Yes | Yes | Yes |
Family factor control | No | Yes | Yes | Yes | Yes |
Family fixed effects | Yes | Yes | Yes | Yes | Yes |
Province fixed effects | No | No | No | Yes | Yes |
Month fixed effects | No | No | No | No | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 19,806 | 19,806 | 19,806 | 19,806 | 19,806 |
R-squared | 0.388 | 0.389 | 0.396 | 0.397 | 0.398 |
Cooking Fuel | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rural | Urban | South | North | Major Agricultural Provinces | Non-Major Agricultural Provinces | High Environmental Expenditure | Low Environmental Expenditure | Yangtze Economic Belt | Non-Yangtze Economic Belt | High Agricultural Mechanization | Low Agricultural Mechanization | |
(1) | (2) | (3) | (4) | (5) | (6) | (1) | (2) | (3) | (4) | (5) | (6) | |
(a) Cleaner fuels | ||||||||||||
DID | 0.11 *** | 0.032 | 0.034 | 0.082 * | 0.024 | 0.074 ** | −0.002 | 0.092 * | 0.047 * | 0.074 * | −0.004 | 0.112 * |
(2.79) | (1.21) | (1.3) | (1.76) | (1.07) | (2.61) | (−0.11) | (1.88) | (1.8) | (1.98) | (−0.21) | (1.71) | |
0.593 | 0.643 | 0.664 | 0.609 | 0.712 | 0.764 | 0.772 | 0.618 | 0.662 | 0.621 | 0.739 | 0.695 | |
(b) Firewood | ||||||||||||
DID | −0.061 ** | −0.019 * | −0.063 *** | −0.013 | −0.019 | −0.025 * | 0.001 | −0.079 *** | −0.095 *** | −0.016 | −0.002 | −0.06 ** |
(−2.2) | (−1.76) | (−3.32) | (−0.56) | (−1.3) | (−1.75) | (0.03) | (−3.14) | (−4.04) | (−0.93) | (−0.14) | (−2.14) | |
0.54 | 0.464 | 0.469 | 0.538 | 0.667 | 0.575 | 0.753 | 0.473 | 0.494 | 0.513 | 0.711 | 0.516 | |
(c) Coal | ||||||||||||
DID | −0.021 | 0.006 | −0.001 | −0.016 | 0.002 | 0.005 | 0.001 | −0.012 | −0.005 | 0.002 | 0.003 | 0.006 |
(−1.16) | (0.011) | (−0.09) | (−0.69) | (0.17) | (0.32) | (0.22) | (−0.5) | (−0.62) | (0.14) | (0.22) | (0.27) | |
0.427 | 0.374 | 0.356 | 0.426 | 0.61 | 0.423 | 0.695 | 0.387 | 0.243 | 0.41 | 0.614 | 0.455 | |
Provincial factor control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Family factor control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Family fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Month fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 9220 | 10,513 | 10,314 | 9489 | 11,226 | 8579 | 9026 | 10,779 | 5315 | 14,489 | 10,019 | 9787 |
Appendix B
References
- Preez, C.C.D.; Steyn, J.T.; Kotze, E. Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol. Soil Tillage Res. 2001, 63, 25–33. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Shi, J.; Tian, X. Improving long-term crop productivity and soil quality throughintegrated straw-return and tillage strategies. Agron. J. 2022, 114, 887–1570. [Google Scholar] [CrossRef]
- Kaushal, L.A.; Prashar, A. Agricultural crop residue burning and its environmental impacts and potential causes—Case of northwest India. J. Environ. Plan. Manag. 2021, 64, 464–484. [Google Scholar] [CrossRef]
- Kholif, A.E.; Elghandour, M.M.Y.; Rodríguez, G.B.; Olafadehan, O.A.; Salem, A.Z.M. Anaerobic Ensiling of Raw Agricultural Waste with a Fibrolytic Enzyme Cocktail as a Cleaner and Sustainable Biological Product. J. Clean. Prod. 2017, 142, 2649–2655. [Google Scholar] [CrossRef]
- Cassou, E.; Jaffee, S.M.; Ru, J. The Challenge of Agricultural Pollution: Evidence from China, Vietnam, and the Philippines; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Huang, L.; Zhu, Y.; Liu, H.; Wang, Y.; Allen, D.T.; Ooi, M.C.G.; Manomaiphiboon, K.; Latif, M.T.; Chan, A.; Li, L. Assessing the contribution of open crop straw burning to ground-level ozone and associated health impacts in China and the effectiveness of straw burning bans. Environ. Int. 2023, 171, 107710. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D.K.; Singh, D.R.; Biswas, H.; Praveen, K.V.; Sharm, V. Estimating loss of ecosystem services due to paddy straw burning in North-west India. Int. J. Agric. Sustain. 2019, 17, 146–157. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Zhao, G.; Zhang, X.; Xiu, A. Carbonaceous gas and aerosol emissions from biomass burning in China from 2012 to 2021. J. Clean. Prod. 2022, 362, 132199. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Zhang, S.; Chen, W.; Tong, D.Q.; Xiu, A. Effects of Agricultural Biomass Burning on Regional Haze in China: A Review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef]
- Nguyen, M.N. Worldwide Bans of Rice Straw Burning Could Increase Human Arsenic Exposure. Environ. Sci. Technol. 2020, 54, 3725–4696. [Google Scholar] [CrossRef]
- Ahmed, W.; Tan, Q.; Ali, S.; Ahmad, N. Addressing environmental implications of crop stubble burning in Pakistan: Innovation platforms as an alternative approach. Int. J. Glob. Warm. 2019, 19, 76–93. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Liu, Z.; Wang, Y.; Allen, D.T.; Li, L. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Sci. Total Environ. 2021, 789, 147935. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, M.; Wang, L.; Cao, Q.; Qin, W. The evolution of open biomass burning during summer crop harvest in the North China Plain. Prog. Phys. Geogr. 2023, 47, 873–891. [Google Scholar] [CrossRef]
- IEA. Tracking SDG7: The Energy Progress Report 2023; IEA: New York, NY, USA, 2023. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality: Household Fuel Combustion; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Cao, G.; Zhang, X.; Wang, Y.; Zheng, F. Estimation of emissions from field burning of crop straw in China. Chin. Sci. Bull. 2008, 53, 784–790. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, D.; Yu, C.; Guo, Y.; Sun, D.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Schmidt, D.; et al. Impacts of solid fuel use versus smoking on life expectancy at age 30 years in the rural and urban Chinese population: A prospective cohort study. Lancet Reg. Health—West. Pac. 2023, 32, 100705. [Google Scholar] [CrossRef] [PubMed]
- WHO. Public Health, Environmental and Social Determinants of Health; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Yun, X.; Shen, G.; Shen, H.; Meng, W.; Chen, Y.; Xu, H.; Ren, Y.; Zhong, Q.; Du, W.; Ma, J.; et al. Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Sci. Adv. 2020, 6, eaba7621. [Google Scholar] [CrossRef]
- Wang, X.E.; Li, K.; Song, J.; Duan, H.; Wang, S. Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits. J. Clean. Prod. 2018, 190, 787–798. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, J.; He, K. Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China. Renew. Energy 2019, 138, 573–584. [Google Scholar] [CrossRef]
- Gu, J. Importance of neighbors in rural households’ conversion to cleaner cooking fuels: The impact and mechanisms of peer effects. J. Clean. Prod. 2022, 379, 134776. [Google Scholar] [CrossRef]
- Gu, J. Energy poverty and government subsidies in China. Energy Policy 2023, 180, 113652. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.; Zeng, Y. Households’ willingness to pay for energy utilization of crop straw in rural China: Based on an improved UTAUT model. Energy Policy 2020, 140, 111373. [Google Scholar] [CrossRef]
- Wang, S.; Yin, C.; Li, F.; Richel, A. Innovative incentives can sustainably enhance the achievement of straw burning control in China. Sci. Total Environ. 2023, 857, 159498. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Liu, Z. Developing a model of propagating the straw burning prohibition policy in Chinese rural communities and exploring its countermeasures. Energy Rep. 2024, 11, 2556–2564. [Google Scholar] [CrossRef]
- Rangel, M.A.; Vogl, T.S. Agricultural Fires and Health at Birth. Rev. Econ. Stat. 2019, 101, 616–630. [Google Scholar] [CrossRef]
- Gammans, M.; Ortiz-Bobea, A. A new look at agricultural fires and health: A replication of Rangel and Vogl (2019). Appl. Econ. Perspect. Policy 2023, 45, 1515–1528. [Google Scholar] [CrossRef]
- He, G.; Liu, T.; Zhou, M. Straw Burning, PM2.5 and Death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, H.; Gong, B. Rural income growth, ethnic differences, and household cooking fuel choice: Evidence from China. Energy Econ. 2022, 107, 105851. [Google Scholar] [CrossRef]
- Alem, Y.; Beyene, A.D.; Köhlin, G.; Mekonnen, A. Modeling household cooking fuel choice: A panel multinomial logit approach. Energy Econ. 2016, 59, 129–137. [Google Scholar] [CrossRef]
- Cunningham, S. Causal Inference: The Mixtape; Yale University Press: New York, NY, USA, 2021. [Google Scholar]
- Li, H.; Mu, W.; Chen, T.; Wu, J. A social network perspective on household cooking fuel transition: Evidence from China. Energy Econ. 2024, 131, 107314. [Google Scholar] [CrossRef]
- Lu, H.; Li, T.; Li, G.; Luo, Q.; Gao, M. Digital literacy and the rural cooking energy transition: Evidence from rural China. Energy Policy 2025, 198, 114451. [Google Scholar] [CrossRef]
- Imelda. Cooking that kills: Cleaner energy access, indoor air pollution, and health. J. Dev. Econ. 2020, 147, 102548. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, L.; Yin, C.; Lebailly, P.; Azadi, H. Urban residents’ willingness to pay for corn straw burning ban in Henan, China: Application of payment card. J. Clean. Prod. 2018, 193, 471–478. [Google Scholar] [CrossRef]
- Zhang, D. From ban to balance: How agricultural climate policies reshape rural asset allocation? J. Int. Money Financ. 2024, 149, 103205. [Google Scholar] [CrossRef]
- Adjei-Mantey, K.; Takeuchi, K. Risk aversion and cleaner cooking fuel choice: An empirical study in Ghana. Environ. Dev. Econ. 2023, 28, 130–148. [Google Scholar] [CrossRef]
- Zuo, Z.; Xiang, H.; Yang, H.; Gao, Y. Analysis of Characteristics and Meteorological Influencing Factors of Air Pollution in Luojiang District, Deyang City. Meteorol. Environ. Res. 2024, 15, 24–28. [Google Scholar]
- Stabridis, O.; van Gameren, E. Exposure to firewood: Consequences for health and labor force participation in Mexico. World Dev. 2018, 107, 382–395. [Google Scholar] [CrossRef]
- Teng, M.; Burke, P.J.; Liao, H. The demand for coal among China’s rural households: Estimates of price and income elasticities. Energy Econ. 2019, 80, 928–936. [Google Scholar] [CrossRef]
- Egami, N.; Yamauchi, S. Using Multiple Pretreatment Periods to Improve Difference-in-Differences and Staggered Adoption Designs. Political Anal. 2023, 31, 195–212. [Google Scholar] [CrossRef]
- Capano, G.; Woo, J.J. Resilience and robustness in policy design: A critical appraisal. Policy Sci. 2017, 50, 399–426. [Google Scholar] [CrossRef]
- Howlett, M. From the ‘old’ to the ‘new’ policy design: Design thinking beyond markets and collaborative governance. Policy Sci. 2014, 47, 187–207. [Google Scholar] [CrossRef]
- Esmark, A. Is there a behavioral revolution in policy design? A new agenda and inventory of the behavioral toolbox. Policy Soc. 2023, 42, 441–453. [Google Scholar] [CrossRef]
- Yu, K.; Lv, J.; Liu, G.; Yu, C.; Guo, Y.; Yang, L.; Chen, Y.; Wang, C.; Chen, Z.; Li, L.; et al. Cooking and future risk of all-cause and cardiopulmonary mortality. Nat. Hum. Behav. 2023, 7, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Sidney, M. What Is Next for Policy Design and Social Construction Theory? Policy Stud. J. 2009, 37, 103–119. [Google Scholar] [CrossRef]
- Makofske, M.P. Disclosure policy design and regulatory agent behavior. Am. J. Agric. Econ. 2024, 106, 118–144. [Google Scholar] [CrossRef]
- Adeeyo, R.O.; Edokpayi, J.N.; Volenzo, T.E.; Odiyo, J.O.; Piketh, S.J. Determinants of Solid Fuel Use and Emission Risks among Households: Insights from Limpopo, South Africa. Toxics 2022, 10, 67. [Google Scholar] [CrossRef]
- Grové, J.; Lant, P.A.; Greig, C.R.; Smart, S. Can coal-derived DME reduce the dependence on solid cooking fuels in India? Energy Sustain. Dev. 2017, 37, 51–59. [Google Scholar] [CrossRef]
- Howlett, M.; Lejano, R.P. Tales From the Crypt: The Rise and Fall (and Rebirth?) of Policy Design. Adm. Soc. 2013, 45, 357–381. [Google Scholar] [CrossRef]
- Lahat, L.; Sened, I. Behavioural knowledge for policy design: The connection between time use Behaviours and (or) desires and support for policy alternatives. Soc. Policy Adm. 2024, 58, 385–403. [Google Scholar] [CrossRef]
- Gupta, S.D.N. Innovation and Institutional Development for Public Policy: Complexity Theory, Design Thinking and System Dynamics Application; Springer: Singapore, 2024. [Google Scholar]
- Kim, H. Bridging principal-agent and mechanism design theories: An integrated conceptual framework for policy evaluation. Asia Pac. Educ. Rev. 2024, 25, 329–342. [Google Scholar] [CrossRef]
Year | Cleaner Fuels | Firewood | Coal |
---|---|---|---|
2010 | 0.18 | 0.006 | 0.015 |
2012 | 0.178 | 0.006 | 0.012 |
2014 | 0.693 | 0.243 | 0.064 |
2016 | 0.735 | 0.207 | 0.058 |
2018 | 0.791 | 0.167 | 0.042 |
2020 | 0.832 | 0.13 | 0.038 |
Experimental Group | Control Group | ||
---|---|---|---|
Provinces | Year of COSB Implementation | Corresponding Year of CFPS | Provinces |
Tianjin | 2013 | 2012 | Liaoning |
Hunan | 2013 | 2012 | Anhui |
Shanxi | 2013 | 2012 | Guangdong |
Jilin | 2013 | 2012 | Guangxi |
Jiangsu | 2013 | 2012 | Chongqing |
Beijing | 2014 | 2014 | Sichuan |
Shanghai | 2014 | 2014 | Guizhou |
Fujian | 2014 | 2014 | Yunnan |
Hebei | 2015 | 2014 | Shaanxi |
Henan | 2015 | 2014 | Gansu |
Hubei | 2015 | 2014 | |
Zhejiang | 2016 | 2016 | |
Shandong | 2016 | 2016 | |
Jiangxi | 2017 | 2016 | |
Heilongjiang | 2019 | 2018 |
Obs | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|
Cleaner fuels | 19,806 | 0.568 | 0.495 | 0.000 | 1.000 |
Firewood | 19,806 | 0.126 | 0.332 | 0.000 | 1.000 |
Coal | 19,806 | 0.038 | 0.191 | 0.000 | 1.000 |
DID | 19,806 | 0.283 | 0.450 | 0.000 | 1.000 |
Household assets | 19,806 | 4.033 | 5.623 | 0.000 | 14.407 |
Household size | 19,806 | 3.827 | 1.708 | 1.000 | 9.000 |
Household income | 19,806 | 10.598 | 1.113 | 7.004 | 12.900 |
GDP per capita | 19,806 | 1.524 | 0.491 | 0.253 | 2.798 |
Industrial structure | 19,806 | 1.904 | 1.009 | −1.286 | 3.230 |
Disposable income per capita | 19,806 | 0.730 | 0.485 | −0.325 | 1.977 |
Agricultural mechanization | 19,806 | −0.606 | 0.965 | −3.271 | 0.759 |
Rural population share | 19,806 | 3.622 | 0.477 | 2.369 | 4.193 |
Cooking Fuel | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
(a) Cleaner fuel | |||||
DID | 0.092 *** | 0.088 *** | 0.074 ** | 0.072 ** | 0.07 ** |
(2.71) | (2.64) | (2.41) | (2.34) | (2.36) | |
0.625 | 0.627 | 0.63 | 0.631 | 0.632 | |
(b) Firewood | |||||
DID | −0.053 ** | −0.049 ** | −0.039 ** | −0.04 ** | −0.04 ** |
(−2.55) | (−2.48) | (−2.34) | (−2.35) | (−2.39) | |
0.502 | 0.504 | 0.508 | 0.508 | 0.509 | |
(c) Coal | |||||
DID | −0.014 | −0.012 | −0.006 | −0.06 | −0.005 |
(−0.86) | (−0.77) | (−0.45) | (−0.5) | (−0.4) | |
0.388 | 0.389 | 0.396 | 0.397 | 0.398 | |
Provincial factor control | No | No | Yes | Yes | Yes |
Family factor control | No | Yes | Yes | Yes | Yes |
Family fixed effects | Yes | Yes | Yes | Yes | Yes |
Province fixed effects | No | No | No | Yes | Yes |
Month fixed effects | No | No | No | No | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes |
Observations | 19,806 | 19,806 | 19,806 | 19,806 | 19,806 |
Number of families | 3301 | 3301 | 3301 | 3301 | 3301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J. The Effects of Straw Burning Bans on the Use of Cooking Fuels in China. Energies 2024, 17, 6335. https://doi.org/10.3390/en17246335
Gu J. The Effects of Straw Burning Bans on the Use of Cooking Fuels in China. Energies. 2024; 17(24):6335. https://doi.org/10.3390/en17246335
Chicago/Turabian StyleGu, Jiafeng. 2024. "The Effects of Straw Burning Bans on the Use of Cooking Fuels in China" Energies 17, no. 24: 6335. https://doi.org/10.3390/en17246335
APA StyleGu, J. (2024). The Effects of Straw Burning Bans on the Use of Cooking Fuels in China. Energies, 17(24), 6335. https://doi.org/10.3390/en17246335