Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle
<p>Schematic diagram of combined solar TORC and TCO<sub>2</sub> system.</p> "> Figure 2
<p>T-s diagram of combined solar TORC and TCO<sub>2</sub> system.</p> "> Figure 3
<p>Variation of COP for combined solar TORC and TCO<sub>2</sub> system.</p> "> Figure 4
<p>Variation of exergy efficiency for combined solar TORC and TCO<sub>2</sub> system.</p> "> Figure 5
<p>Variation of ARC for combined solar TORC and TCO<sub>2</sub> system.</p> "> Figure 5 Cont.
<p>Variation of ARC for combined solar TORC and TCO<sub>2</sub> system.</p> ">
Abstract
:1. Introduction
2. System Description
- (1)
- The entire system operates in a stable state.
- (2)
- Pressure drops and heat losses within the system are neglected.
- (3)
- The output power of the turbine is fully employed to drive the operation of the compressor.
3. Workpiece Selection
4. Computational Modeling
5. Results and Discussion
6. Conclusions
- (1)
- In the combined solar TORC and TCO2 system, the optimal scheme was R600 + CO2. It achieved a maximum net output power of 1531.31 kW and a maximum COP of 3.16 under the conditions P2 = 4.5 MPa, T2 = 445 K, P8 = 8.8 MPa, and T7 = 273.15 K.
- (2)
- In the combined solar TORC and TCO2 system, the comprehensive decision evaluation based on the three-level index ranked the schemes as follows:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- BP. BP World Energy Outlook. 2023. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html?_ga=2.59297197.1009417931.1689672254-825680902.1689672254 (accessed on 10 June 2023.).
- National Development and Reform Commission. Renewable Energy Development Plan for the 14th Five-Year Plan; National Energy Administration: Beijing, China, 2022.
- Pei, G.; Li, J.; Ji, J. Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle. Appl. Therm. Eng. 2010, 30, 998–1004. [Google Scholar] [CrossRef]
- Shahverdi, K.; Loni, R.; Ghobadian, B.; Monem, M.J.; Gohari, S.; Marofi, S.; Najafi, G. Energy harvesting using solar ORC system and Archimedes Screw Turbine (AST) combination with different refrigerant working fluids. Energy Convers. Manag. 2019, 187, 205–220. [Google Scholar] [CrossRef]
- Feng, J.S.; Gao, G.T.; Dabwan, Y.N.; Pei, G.; Dong, H. Thermal performance evaluation of subcritical organic Rankine cycle for waste heat recovery from sinter annular cooler. J. Iron Steel Res. Int. 2020, 27, 248–258. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Gadalla, M.A.; El Sayed, A.R.; Meliha, E.M.; Abosheiasha, H.F. Aspen Plus simulation of a low capacity organic Rankine cycle heated by solar energy. Energy Rep. 2022, 8, 416–421. [Google Scholar] [CrossRef]
- Li, Y.R.; Du, M.T.; Wu, C.M.; Wu, S.Y.; Liu, C.; Xu, J.L. Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis. Energy 2014, 68, 238–247. [Google Scholar] [CrossRef]
- Bufi, E.A.; Camporeale, S.; Fornarelli, F.; Fortunato, B.; Pantaleo, A.M.; Sorrentino, A.; Torresi, M. Parametric multi-objective optmization of an Organic Rankine Cycle with thermal energy storage for distributed generation. Energy Procedia 2017, 126, 429–436. [Google Scholar] [CrossRef]
- Biao, M.; Zhaoliang, J.; Xianbi, L.; Yakang, F. Research progress of carbon dioxide trans-critical cycle refrigeration. Vac. Cryog. 2007, 26, 173–177. [Google Scholar]
- Prigmore, D.; Barber, R. Cooling with the Sun’s Heat Design Considerations and Test Data for a Rankine Cycle Prototype. Sol. Energy 1975, 17, 185–192. [Google Scholar] [CrossRef]
- Jeong, J.; Kang, Y.T. Analysis of a Refrigeration Cycle Driven by Refrigerant Steam Turbine. Int. J. Refrig. 2004, 27, 33–41. [Google Scholar] [CrossRef]
- Aphornratana, S.; Sriveerakul, T. Analysis of a Combined Rankine-Vapour-Compression Refrigeration Cycle. Energy Convers. Manag. 2010, 51, 2557–2564. [Google Scholar] [CrossRef]
- Wu, D.; Aye, L.; Ngo, T.; Mendis, P. Optimisation and Financial Analysis of an Organic Rankine Cycle Cooling System Driven by Facade Integrated Solar Collectors. Appl. Energy 2017, 185, 172–182. [Google Scholar] [CrossRef]
- Moloney, F.; Almatrafi, E.; Goswami, D.Y. Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium solar reservoir temperatures. Renew. Energy 2020, 147, 2874–2881. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance analysis and working fluid selection of a supercritical organic Rankine cycle for low grade waste heat recovery. Energies 2012, 5, 3233–3247. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Hu, R.; Chen, Z. Working fluid selection for supercritical organic Rankine cycle. J. Eng. Thermophys. 2014, 35, 1045–1048. [Google Scholar]
- Wang, X.; Levy, E.K.; Pan, C.; Romero, C.E.; Banerjee, A.; Rubio-Maya, C.; Pan, L. Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a solar reservoir. Appl. Therm. Eng. 2019, 149, 1287–1304. [Google Scholar] [CrossRef]
- Tian, H.; Shu, G.; Wei, H.; Liang, X.; Liu, L. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 2012, 47, 125–136. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, Z.; Dong, M.; Lu, J.; Yu, Z. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine. Int. J. Refrig. 2020, 118, 470–482. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Cui, B. Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system. Int. J. Refrig. 2020, 112, 348–356. [Google Scholar] [CrossRef]
- Li, T.; Meng, N.; Liu, J.; Zhu, J.; Kong, X. Thermodynamic and economic evaluation of the organic Rankine cycle (ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery. Energy Convers. Manag. 2019, 183, 816–829. [Google Scholar] [CrossRef]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis, and Design of Chemical Processes, 5th ed.; Pearson Education: Kraków, Poland, 2018. [Google Scholar]
- Jenkins, S. 2019 Chemical Engineering Plant Cost Index Annual Average [EB/OL]. 2020. Available online: https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/ (accessed on 6 March 2022).
- Liu, S.; Li, Z.; Dai, B.; Zhong, Z.; Li, H.; Song, M.; Sun, Z. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China. Appl. Therm. Eng. 2019, 148, 1425–1439. [Google Scholar] [CrossRef]
- Fazelpour, F.; Morosuk, T. Exergoeconomic analysis of carbon dioxide transcritical refrigeration machines. Int. J. Refrig. 2014, 38, 128–139. [Google Scholar] [CrossRef]
- Zhao, X. Optimal Configuration of District Cooling and Heating System Driven by Industrial Waste Heat; Beijing University of Civil Engineering and Architecture: Beijing, China, 2019. [Google Scholar]
- Zhou, G.Y.; Wu, E.; Tu, S.T. Optimum selection of compact heat exchangers using non-structural fuzzy decision method. Appl. Energy 2014, 113, 1801–1809. [Google Scholar] [CrossRef]
Critical Temperature/°C | Critical Pressure/MPa | Safety Level | ALT/Year | ODP | GWP | |
---|---|---|---|---|---|---|
R134a | 101.06 | 4.0593 | A1 | 13.4 | 0 | 1430 |
R1270 | 91.061 | 4.555 | A3 | 0.001 | 0 | 1.8 |
R142b | 137.11 | 4.055 | A2 | 17.2 | 0.065 | 2310 |
R227ea | 101.75 | 2.925 | A1 | 38.9 | 0 | 3320 |
R600 | 151.975 | 3.796 | A3 | 0.02 | 0 | 20 |
R600a | 134.66 | 3.629 | A3 | 0.016 | 0 | 20 |
Parameters | Value |
---|---|
Collector temperature, Tgwin (°C) | 182.23 |
Heat transfer oil | YD-320 |
Heat transfer oil density | 0.85–0.88 |
Heat transfer oil specific heat capacity kJ/(kg.K) | 2.5 |
Heat transfer oil flow rate, mgw (kg/s) | 13.64 |
Condensing temperature, Tcond (°C) | 35 |
Evaporator 1 narrow point temperature difference, Tpinch-e1 (°C) | 10 |
Condenser 1 narrow point temperature difference, Tpinch-c1 (°C) | 5 |
Evaporator 2 narrow point temperature difference, Tpinch-e2 (°C) | 5 |
Condenser 2 narrow point temperature difference, Tpinch-c2 (°C) | 5 |
TORC turbine isentropic efficiency, ηturbine | 0.75 |
Isentropic efficiency of the TORC workhorse pump, ηpump | 0.7 |
TCO2 compressor isentropic efficiency, ηcomp | 0.9 |
Cooling water inlet temperature, Tcwin (°C) | 20 |
Air inlet temperature, Tairin (°C) | 20 |
Ambient temperature, T0 (°C) | 20 |
Ambient pressure, P0 (MPa) | 0.101 |
First Law of Thermodynamics | Second Law of Thermodynamics | |
---|---|---|
Evaporator 1 | ||
Condenser 1 | ||
Pump | ||
Turbine | ||
Evaporator 2 | ||
Condenser 2 | ||
Compressor | ||
Expansion valve |
Indicators | Formula |
---|---|
ARC | |
Cost2019 | |
RPC | |
DPP | |
SIR |
Rank | COP | ηe/% | ARC(m2/kW) | RPC (USD/(kW-h)) | Total-Cost2019 (USD 105) | DPP | SIR |
---|---|---|---|---|---|---|---|
D1 | 3.16 | 11.02 | 0.119 | 0.029 | 87.48 | 2.98 | 4.08 |
D2 | 10.17 | 0.123 | 0.03 | 86.11 | 3.09 | 3.95 | |
D3 | 13.01 | 0.108 | 0.027 | 91.76 | 2.695 | 4.46 | |
D4 | 9.65 | 0.13 | 0.032 | 83.13 | 3.257 | 3.77 | |
D5 | 13.26 | 0.107 | 0.026 | 91.49 | 2.651 | 4.53 | |
D6 | 12.23 | 0.112 | 0.028 | 89.65 | 2.788 | 4.33 |
D1 | D2 | D3 | D4 | D5 | D6 | |
---|---|---|---|---|---|---|
Tier 1 evaluation results | 0.135 | 0.172 | 0.090 | 0.114 | 0.129 | 0.137 |
Tier 1 evaluation ranking | 3 | 1 | 7 | 6 | 5 | 2 |
Tier 2 evaluation results | 0.129 | 0.114 | 0.151 | 0.089 | 0.182 | 0.145 |
Second-tier evaluation ranking | 4 | 6 | 2 | 7 | 1 | 3 |
Tier 3 evaluation results | 0.124 | 0.097 | 0.164 | 0.084 | 0.202 | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Xu, P.; Wang, Y.; Tong, W.; Yang, Z. Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle. Energies 2023, 16, 5557. https://doi.org/10.3390/en16145557
Zhang N, Xu P, Wang Y, Tong W, Yang Z. Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle. Energies. 2023; 16(14):5557. https://doi.org/10.3390/en16145557
Chicago/Turabian StyleZhang, Na, Po Xu, Yiming Wang, Wencai Tong, and Zhao Yang. 2023. "Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle" Energies 16, no. 14: 5557. https://doi.org/10.3390/en16145557
APA StyleZhang, N., Xu, P., Wang, Y., Tong, W., & Yang, Z. (2023). Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle. Energies, 16(14), 5557. https://doi.org/10.3390/en16145557