Abstract
This study looks at the influence of extrusion parameters such as screw speed, feed rate and barrel temperature on the nanocomposite structure (size of agglomerates, level of intercalation and exfoliation) and its consequences on final mechanical properties. Nanocomposites of polypropylene, maleated polypropylene and organomodified montmorillonite, with respective mass fractions of 85/10/5, were prepared in a co-rotating twin-screw extruder using a masterbatch dilution method. The nanocomposites structure was quantified by scanning and transmission electron microscopy, X-ray diffraction and dynamic rheometry. Relationships between the microstructure at different levels (size and number of agglomerates, interlayer distance, melt yield stress to quantify the exfoliation level) and the processing conditions were established, revealing that specific mechanical energy received during extrusion was the key parameter controlling this microstructure. Mechanical properties in uniaxial tension (apparent Young's modulus) were measured and related to the microstructural parameters resulting from extrusion conditions.
References
Cassagnau, P., et al., “Melt Rheology of Organoclay and Fumed Silica Nanocomposites”, Polymer, 49, 2183–2196(2008), DOI: http://dx.doi.org/10.1016/j.polymer.2007.12.035Search in Google Scholar
Cho, J. W., Paul, D. R., et al., “Nylon 6 Nanocomposites by Melt Compounding”, Polymer, 42, 1083–1094(2001), DOI: http://dx.doi.org/10.1016/S0032-3861(00)00380-3Search in Google Scholar
Dennis, H. R., et al., “Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-based Nanocomposites”, Polymer, 42, 9513–9522(2001), DOI: http://dx.doi.org/10.1016/S0032-3861(01)00473-6Search in Google Scholar
Fasulo, P. D., et al., “Extrusion Processing of TPO Nanocomposites”, Polym. Eng. Sci., 44, 1036–1045(2004)10.1002/pen.20097Search in Google Scholar
Fornes, T. D., et al., “Effect of Organoclay Structure on Nylon 6 Nanocomposite Morphology and Properties”, Polymer, 43, 5915–5933(2002), DOI: http://dx.doi.org/10.1016/S0032-3861(02)00400-7Search in Google Scholar
Fukushima, Y., Inagaki, S., et al., “Synthesis of an Intercalated Compound of Montmorillonite and 6-Polyamide”, J. Incl. Phenom., 5, 473–482(1987), DOI: http://dx.doi.org/10.1007/BF00664105Search in Google Scholar
Galgali, G., et al., “A Rheological Study on the Kinetics of Hybrid Formation in Polypropylene Nanocomposites”, Macromol., 34, 852–858(2001), http://dx.doi.org/10.1021/ma000565fSearch in Google Scholar
Giannelis, E. P., et al., “Polymer Layered Silicate Nanocomposites”, Adv. Mater., 8, 29–35(1996), DOI: http://dx.doi.org/10.1002/adma.19960080104Search in Google Scholar
Incarnato, L., et al., “Preparation and Characterization of New Melt Compounded Copolyamide Nanocomposites”, Polymer, 44, 4625–4634(2003), DOI: http://dx.doi.org/10.1016/S0032-3861(03)00360-4Search in Google Scholar
Kato, M., et al., “Synthesis of Polypropylene Oligomer – Clay Intercalation Compounds”, J. Appl. Polym. Sci., 66, 1781–1785(1997), DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19971128)66:9<1781::AID-APP17>3.0.CO;2-YSearch in Google Scholar
Kim, D. H., et al., “Structure and Properties of Polypropylene-Based Nanocomposites: Effect of PP-G-MA to Organoclay Ratio”, Polymer, 48, 5308–5323(2007), DOI: http://dx.doi.org/10.1016/j.polymer.2007.07.011Search in Google Scholar
Krishnamoorti, R., Yurekli, K., et al., “Rheology of Polymer Layered Silicate Nanocomposites”, Curr. Opin. Colloid Interf. Sci., 6, 464–470(2001), DOI: http://dx.doi.org/10.1016/S1359-0294(01)00121-2Search in Google Scholar
Lertwimolnun, W., Vergnes, B., et al., “Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix”, Polymer, 46, 3462–3471(2005), DOI: http://dx.doi.org/10.1016/j.polymer.2005.02.018Search in Google Scholar
Lertwimolnun, W., Vergnes, B., et al., “Effect of Processing Conditions on the Formation of Polypropylene/Organoclay Nanocomposites in a Twin Screw Extruder”, Polym. Eng. Sci., 46, 314–323(2006), DOI: http://dx.doi.org/10.1002/pen.20458Search in Google Scholar
Lertwimolnun, W., Vergnes, B., et al., “Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites”, Polym. Eng. Sci., 47, 2100–2109(2007), DOI: http://dx.doi.org/10.1002/pen.20934Search in Google Scholar
Li, J., et al., “Study on Kinetics of Polymer Melt Intercalation by a Rheological Approach”, J. Appl. Polym. Sci., 89, 318–323(2003), DOI: http://dx.doi.org/10.1002/app.12094Search in Google Scholar
Médéric, P., et al., “Influence of Melt-blending Conditions on Structural, Rheological, and Interfacial Properties of Polyamide-12 Layered Silicate Nanocomposites”, Polym. Eng. Sci., 46, 986–994(2006), DOI: http://dx.doi.org/10.1002/pen.20587Search in Google Scholar
Médéric, P., et al., “Structural and Rheological Properties as a Function of Mixing Energy for Polymer/Layered Silicate Nanocomposites”, Int. Polym. Proc., 24, 261–266(2009)Search in Google Scholar
Mobuchon, C., et al., “Effect of Flow History on the Structure of a Non-Polar Polymer/Clay Nanocomposite Model System”, Rheol. Acta, 46, 1045–1056(2007), DOI: http://dx.doi.org/10.1007/s00397-007-0188-5Search in Google Scholar
Modesti, M., et al., “Effect of Processing Conditions on Morphology and Mechanical Properties of Compatibilized Polypropylene Nanocomposites”, Polymer, 46, 10237–10245(2005), DOI: http://dx.doi.org/10.1016/j.polymer.2005.08.035Search in Google Scholar
Modesti, M., et al., “Thermal Behaviour of Compatibilised Polypropylene Nanocomposite: Effect of Processing Conditions”, Polym. Deg. Stab., 91, 672–680(2006), DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.018Search in Google Scholar
Okada, A., Usuki, A., et al., “The Chemistry of Polymer-clay Hybrids”, Mater. Sci. Eng., 3, 109–115(1995), DOI: http://dx.doi.org/10.1016/0928-4931(95)00110-7Search in Google Scholar
Peltola, P., et al., “Effect of Rotational Speed of Twin Screw Extruder on the Microstructure and Rheological and Mechanical Properties of Nanoclay-reinforced Polypropylene Nanocomposites”, Polym. Eng. Sci., 46, 995–1000(2006), DOI: http://dx.doi.org/10.1002/pen.20586Search in Google Scholar
Pignon, F., et al., “Thixotropic Behavior Of Clay Dispersions: Combinations Of Scattering And Rheometric Techniques”, J. Rheol., 42, 1349–1373(1998), DOI: http://dx.doi.org/10.1122/1.550964Search in Google Scholar
Poulesquen, A., Vergnes, B., “A Study of Residence Time Distribution in Co-rotating Twin Screw Extruders; Part I: Theoretical Modelling”, Polym. Eng. Sci., 43, 1841–1848(2003), DOI: http://dx.doi.org/10.1002/pen.10156Search in Google Scholar
Ren, J., et al., “Disorientation Kinetics of Aligned Polymer Layered Silicate Nanocomposite”, Macromol., 36, 4188–4194(2003), DOI: http://dx.doi.org/10.1021/ma025703aSearch in Google Scholar
Shah, R. K., Paul, D. R., et al., “Nylon 6 Nanocomposites Prepared by a Melt Mixing Masterbatch Process”, Polymer, 45, 2991–3000(2004), DOI: http://dx.doi.org/10.1016/j.polymer.2004.02.058Search in Google Scholar
Solomon, M. J., et al., “Rheology of Polypropylene/Clay Hybrid Materials”, Macromol., 34, 1864–1872(2001), DOI: http://dx.doi.org/10.1021/ma001122eSearch in Google Scholar
Toorman, E. A., et al., “Modelling the Thixotropic Behaviour of Dense Cohesive Sediment Suspensions”, Rheol. Acta, 36, 56–65(1997), DOI: http://dx.doi.org/10.1007/BF00366724Search in Google Scholar
Treece, M. A., Oberhauser, J. P., et al., “Soft Glassy Dynamics in Polypropylene-clay Nanocomposites”, Macromol., 40, 571–582(2007), DOI: http://dx.doi.org/10.1021/ma0612374Search in Google Scholar
Usuki, A., et al., “Synthesis of Nylon 6-Clay Hybrid”, J. Mater. Res., 8, 1179–1184(1993), DOI: http://dx.doi.org/10.1557/JMR.1993.1179Search in Google Scholar
Vaia, R. A., et al., “Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates”, Chem. Mater., 5, 1694–1696(1993), DOI: http://dx.doi.org/10.1021/cm00036a004Search in Google Scholar
Vaia, R. A., et al., “Kinetics of Polymer Melt Intercalation”, Macromol., 28, 8080–8085(1995), DOI: http://dx.doi.org/10.1021/ma00128a016Search in Google Scholar
Vergnes, B., et al., “The Use of Apparent Yield Stress to Characterize Exfoliation in Polymer Nanocomposites”, Int. Polym. Proc., 26, 229–232(2011), DOI: http://dx.doi.org/10.3139/217.2462Search in Google Scholar
Vergnes, B., Lertwimolnun, W., “Chapter 3 Impact of Processing Conditions on the Morphology, Structure and Properties of Polymer-organoclay Nanocomposites”, in Polymer Nanocomposite Research Advances, Sabu, T., Gennady, Z. (Eds.), Nova Science Publishers, New York, p. 49–93(2008)Search in Google Scholar
Villmow, T., et al., “Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin-screw Extrusion of Polycaprolactone/Multi-walled Carbon Nanotube Composites”, Compos. Sci. Technol., 70, 2045–2055(2010), DOI: http://dx.doi.org/10.1016/j.compscitech.2010.07.021Search in Google Scholar
Zouari, R., et al., “Time-Evolution of the Structure of Organoclay/Polypropylene Nanocomposites and Application of the Time/Temperature Superposition Principle”, J. Rheol., 56, 725–742(2012)10.1122/1.4708602Search in Google Scholar
© 2012, Carl Hanser Verlag, Munich