Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data
<p>Illustration of some tensorial invariants for tensors of rank 3 with the graphical representation (on the <b>top</b>), and the corresponding generalizations of the covariance matrix (on the <b>bottom</b>).</p> "> Figure 2
<p>Typical eigenvalue spectra corresponding to a purely random tensor (on the <b>top</b>) and the same data with some spikes added to it. The first histogram is obtained from 100 realizations of the eigenvalues distribution associated to i.i.d random tensors of rank 3 and size <span class="html-italic">N</span><sup>3</sup> = 50<sup>3</sup>. The second picture (in the <b>bottom</b>) is constructed from the superposition of the random tensor with 50 (suitably normalized) spikes. Finally, the green curve materializing the numerical interpolation.</p> "> Figure 3
<p>Opposite of the canonical dimensions (<b>top</b>) and the canonical dimensions associated to the eigenvalue distribution (<b>bottom</b>).</p> "> Figure 4
<p>Numerical flow associated to the eigenvalue distribution of the generalized covariance matrix of a purely random tensor without signal (<b>left</b>) and with signal (<b>right</b>) for the quartic truncation (the arrows being oriented from UV to IR).</p> "> Figure 5
<p>Illustration of the evolution of the potential associated to the couplings <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>u</mi> <mn>4</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>u</mi> <mn>6</mn> </msub> </semantics></math> for a truncation around <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. This example corresponds to specific initial conditions (in blue). We illustrate different points of the trajectory, from UV to IR respectively by the blue, red, yellow, purple, and green curves. We observe that this RG trajectory ends in the symmetric phase in the case of pure noise (on the <b>left</b>) and stays in the non-symmetric phase when we add a signal (on the <b>right</b>).</p> "> Figure 6
<p>Illustration of the compact region <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> (illustrated with purple dots) in the vicinity of the Gaussian fixed point providing initial conditions ending in the symmetric phase. On the <b>left</b>: the region for purely i.i.d random tensors in the expansion around <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (on the <b>top</b>) and around a running vacuum <math display="inline"><semantics> <mrow> <mi>χ</mi> <mo>=</mo> <mi>κ</mi> </mrow> </semantics></math> (on the <b>bottom</b>). On the <b>right</b>: the same regions when a signal build as a sum of discrete spikes is added.</p> ">
Abstract
:1. Introduction
- (i)
- The dimension of the relevant sectors of the theory space decreases for a strong enough signal, consequently providing a first objective criterion to define the signal detection threshold.
- (ii)
- The presence of a signal in the spectra may be revealed by a -symmetry breaking for the effective distribution. This provides a second intrinsic detection threshold. A strong enough signal is required to change the shape of the effective potential and therefore the end vacuum expectation value for the classical field .
2. Preliminaries
2.1. Some Basics of Framework
2.2. Local Potential Approximation
3. Flow Equations and Numerical Investigations
4. Conclusions and Open Issues
- (i)
- We showed that the intrinsic RG flow associated with a single i.i.d random tensor has only a few numbers of relevant local interactions and that the dimension of the relevant sector is essentially the same (restricting ourselves to the local approximation) for all the realizations at large N. Thus, assuming that the properties of a purely noisy data set can be well materialized by such an i.i.d random tensor. We showed that the presence of a strong enough signal (suitably materialized by a sum of discrete spikes) reduces the dimension of the relevant sector, modifying accordingly the properties of the asymptotic distributions for the (effective) random field.
- (ii)
- For the purely random distributions defining the noise, we showed the existence of a simply connected compact region in the vicinity of the Gaussian fixed point, for which the -symmetry is always restored in the deep infrared; the RG trajectories end in the symmetric region with . Moreover, disturbing a spectrum with a strong enough signal systematically reduces the size of this compact region, stressing a link between signal detection and -symmetry breaking. In this picture, we expect that the strength of the signal plays an analogous role to the “temperature” [24] in the standard critical phenomena description. Furthermore, only a subregion of provides physically relevant states in the infrared regime. We thus conjecture the existence of an intrinsic detection threshold since it is expected that the signal can only be detected when the physical sub-region of is affected by the deformation.
Author Contributions
Funding
Conflicts of Interest
References
- Lieb, E.H.; Simon, B. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 1977, 23, 22–116. [Google Scholar] [CrossRef] [Green Version]
- Navarro, L. Gibbs, Einstein and the foundations of statistical mechanics. Arch. Hist. Exact Sci. 1998, 53, 147–180. [Google Scholar] [CrossRef]
- Łukaszewicz, G.; Kalita, P. Navier–Stokes Equations: An Introduction with Applications; Springer: Berlin/Heisenberg, Germany, 2016. [Google Scholar]
- Galkin, V.; Rusakov, S. Status of the Navier–Stokes Equations in Gas Dynamics. A Review. Fluid Dyn. 2018, 53, 152–168. [Google Scholar] [CrossRef]
- Kadanoff, L.P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 1966, 2, 263. [Google Scholar] [CrossRef] [Green Version]
- Kadanoff, L.P.; Götze, W.; Hamblen, D.; Hecht, R.; Lewis, E.; Palciauskas, V.V.; Rayl, M.; Swift, J.; Aspnes, D.; Kane, J. Static phenomena near critical points: Theory and experiment. Rev. Mod. Phys. 1967, 39, 395. [Google Scholar] [CrossRef]
- Wilson, K.G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 1971, 4, 3174. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773. [Google Scholar] [CrossRef]
- Brézin, E.; Le Guillou, J.; Zinn-Justin, J. Phase Transitions and Critical Phenomena; Domb, C., Lebowitz, J.L., Eds.; Academic Press: New York, NY, USA, 1976; Volume 19. [Google Scholar]
- Polchinski, J. Renormalization and effective Lagrangians. Nucl. Phys. B 1984, 231, 269–295. [Google Scholar] [CrossRef]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon Press: Oxford, UK, 2002; Volume 113. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Guan, Y.; Dy, J. Sparse probabilistic principal component analysis. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, Clearwater, FL, USA, 16–19 April 2009; Volume 5, pp. 185–192. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Bradde, S.; Bialek, W. Pca meets rg. J. Stat. Phys. 2017, 167, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Bény, C. Inferring relevant features: From QFT to PCA. Int. J. Quantum Inf. 2018, 16, 1840012. [Google Scholar] [CrossRef] [Green Version]
- Seddik, M.E.A.; Tamaazousti, M.; Couillet, R. A kernel random matrix-based approach for sparse PCA. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Bény, C.; Osborne, T.J. Information-geometric approach to the renormalization group. Phys. Rev. A 2015, 92, 022330. [Google Scholar] [CrossRef] [Green Version]
- Bény, C. Coarse-grained distinguishability of field interactions. Quantum 2018, 2, 67. [Google Scholar] [CrossRef]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Generalized scale behavior and renormalization group for principal component analysis. arXiv 2020, arXiv:2002.10574. [Google Scholar]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Field theoretical renormalization group approach for signal detection. arXiv 2020, arXiv:2011.02376. [Google Scholar]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Signal detection in nearly continuous spectra and symmetry breaking. arXiv 2020, arXiv:2011.05447. [Google Scholar]
- Amari, S.I. Information Geometry and Its Applications; Springer: Berlin/Heisenberg, Germany, 2016. [Google Scholar]
- Amari, S.I.; Nagaoska, H. Methods of Information Geometry; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Zinn-Justin, J. From Random Walks to Random Matrices; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Halverson, J.; Maiti, A.; Stoner, K. Neural networks and quantum field theory. Mach. Learn. Sci. Technol. 2021, 2, 035002. [Google Scholar] [CrossRef]
- Koch, E.D.M.; Koch, R.D.M.; Cheng, L. Is Deep Learning a Renormalization Group Flow? IEEE Access 2020, 8, 106487–106505. [Google Scholar] [CrossRef]
- Marčenko, V.A.; Pastur, L.A. Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb. 1967, 1, 457. [Google Scholar] [CrossRef]
- Richard, E.; Montanari, A. A statistical model for tensor PCA. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2897–2905. [Google Scholar]
- Hopkins, S.B.; Shi, J.; Steurer, D. Tensor principal component analysis via sum-of-square proofs. In Proceedings of the Conference on Learning Theory, Paris, France, 3–6 July 2015; pp. 956–1006. [Google Scholar]
- Ros, V.; Arous, G.B.; Biroli, G.; Cammarota, C. Complex energy landscapes in spiked-tensor and simple glassy models: Ruggedness, arrangements of local minima, and phase transitions. Phys. Rev. X 2019, 9, 011003. [Google Scholar] [CrossRef] [Green Version]
- Arous, G.B.; Gheissari, R.; Jagannath, A. Algorithmic thresholds for tensor PCA. Ann. Probab. 2020, 48, 2052–2087. [Google Scholar]
- Hastings, M.B. Classical and quantum algorithms for tensor principal component analysis. Quantum 2020, 4, 237. [Google Scholar] [CrossRef]
- Jagannath, A.; Lopatto, P.; Miolane, L. Statistical thresholds for tensor PCA. Ann. Appl. Probab. 2020, 30, 1910–1933. [Google Scholar] [CrossRef]
- Ouerfelli, M.; Tamaazousti, M.; Rivasseau, V. A New Framework for Tensor PCA Based on Trace Invariants. Submitted to International Conference on Learning Representations, 2021, under Review. Available online: https://paperswithcode.com/paper/a-new-framework-for-tensor-pca-based-on-trace (accessed on 1 January 2021).
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, D.; Sturmfels, B. The number of eigenvalues of a tensor. Linear Algebra Appl. 2013, 438, 942–952. [Google Scholar] [CrossRef]
- Hillar, C.J.; Lim, L.H. Most tensor problems are NP-hard. J. ACM (JACM) 2013, 60, 1–39. [Google Scholar] [CrossRef]
- Gurau, R.; Ryan, J.P. Colored tensor models—A review. SIGMA Symmetry Integr. Geom. Methods Appl. 2012, 8, 020. [Google Scholar] [CrossRef]
- Gurau, R. The complete 1/N expansion of colored tensor models in arbitrary dimension. In Annales Henri Poincaré; Springer: Berlin/Heisenberg, Germany, 2012; Volume 13, pp. 399–423. [Google Scholar]
- Rivasseau, V. The tensor track, III. Fortschr. Phys. 2014, 62, 81–107. [Google Scholar] [CrossRef] [Green Version]
- Gurau, R. Random Tensors; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Aoki, K.I.; Morikawa, K.; Souma, W.; Sumi, J.I.; Terao, H. Rapidly converging truncation scheme of the exact renormalization group. Prog. Theor. Phys. 1998, 99, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Zappala, D. Improving the Renormalization Group approach to the quantum-mechanical double well potential. Phys. Lett. A 2001, 290, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Knorr, B. Exact solutions and residual regulator dependence in functional renormalisation group flows. J. Phys. Math. Theor. 2021, 54, 275401. [Google Scholar] [CrossRef]
- Pawlowski, J.M. Aspects of the functional renormalisation group. Ann. Phys. 2007, 322, 2831–2915. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Optimisation of the exact renormalisation group. Phys. Lett. B 2000, 486, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Derivative expansion and renormalisation group flows. J. High Energy Phys. 2001, 2001, 059. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Delamotte, B. An introduction to the nonperturbative renormalization group. In Renormalization Group and Effective Field Theory Approaches to Many-Body Systems; Springer: Berlin/Heisenberg, Germany, 2012; pp. 49–132. [Google Scholar]
- Pawlowski, J.M.; Scherer, M.M.; Schmidt, R.; Wetzel, S.J. Physics and the choice of regulators in functional renormalisation group flows. Ann. Phys. 2017, 384, 165–197. [Google Scholar] [CrossRef] [Green Version]
- Berges, J.; Tetradis, N.; Wetterich, C. Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 2002, 363, 223–386. [Google Scholar] [CrossRef] [Green Version]
- Blaizot, J.P.; Galain, R.M.; Wschebor, N. Non-Perturbative Renormalization Group calculation of the transition temperature of the weakly interacting Bose gas. EPL (Europhys. Lett.) 2005, 72, 705. [Google Scholar] [CrossRef]
- Blaizot, J.P.; Mendez-Galain, R.; Wschebor, N. Nonperturbative renormalization group and momentum dependence of n-point functions. I. Phys. Rev. E 2006, 74, 051116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaizot, J.P.; Mendez-Galain, R.; Wschebor, N. Nonperturbative renormalization group and momentum dependence of n-point functions. II. Phys. Rev. E 2006, 74, 051117. [Google Scholar] [CrossRef] [Green Version]
- Nagy, S. Lectures on renormalization and asymptotic safety. Ann. Phys. 2014, 350, 310–346. [Google Scholar] [CrossRef] [Green Version]
- Balog, I.; Chaté, H.; Delamotte, B.; Marohnić, M.; Wschebor, N. Convergence of nonperturbative approximations to the renormalization group. Phys. Rev. Lett. 2019, 123, 240604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahoche, V.; Samary, D.O. Nonperturbative renormalization group beyond the melonic sector: The effective vertex expansion method for group fields theories. Phys. Rev. D 2018, 98, 126010. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O. Pedagogical comments about nonperturbative Ward-constrained melonic renormalization group flow. Phys. Rev. D 2020, 101, 024001. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Ousmane Samary, D. Reliability of the local truncations for the random tensor models renormalization group flow. Phys. Rev. D 2020, 102, 056002. [Google Scholar] [CrossRef]
- Lahoche, V.; Ousmane Samary, D. Revisited functional renormalization group approach for random matrices in the large-N limit. Phys. Rev. D 2020, 101, 106015. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoche, V.; Ouerfelli, M.; Samary, D.O.; Tamaazousti, M. Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data. Entropy 2021, 23, 795. https://doi.org/10.3390/e23070795
Lahoche V, Ouerfelli M, Samary DO, Tamaazousti M. Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data. Entropy. 2021; 23(7):795. https://doi.org/10.3390/e23070795
Chicago/Turabian StyleLahoche, Vincent, Mohamed Ouerfelli, Dine Ousmane Samary, and Mohamed Tamaazousti. 2021. "Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data" Entropy 23, no. 7: 795. https://doi.org/10.3390/e23070795
APA StyleLahoche, V., Ouerfelli, M., Samary, D. O., & Tamaazousti, M. (2021). Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data. Entropy, 23(7), 795. https://doi.org/10.3390/e23070795