Abstract
The existing ideas on the status of the Navier–Stokes equations are changed in taking into account the following facts: generally speaking, the terms of these equations neglected in the boundary layer equations are of the order of certain Burnett terms in the conservation equations; the Navier–Stokes equations cannot be used to describe slow nonisothermal gas flows since in this case it is necessary to take the Burnett temperature stresses into account; and in the transport relations the Burnett terms determine certain effects (for example, the mechanocaloric effect).
Similar content being viewed by others
References
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Izd-vo Inost. Lit., Moscow, 1960).
M. N. Kogan, Rarefied Gas Dynamics (Plenum Press, New York, 1969; Nauka, Moscow, 1967).
J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).
H. S. Tsien, “Superaerodynamics: Mechanics of Rarefied Gases,” J. Aeronaut. Sci. 13 (12), 653–664 (1946).
M. Z. Krzywoblocki, “On the Two-Dimensional Laminar Boundary Layer Equations for Hypersonic Flow in Continuum and Rarefied Gases,” J. Aeronaut. Soc. India (1), 1–10 (1953).
Yu. P. Lun’kin, “Boundary Layer Equations and the Boundary Conditions for Them in the Case of Weakly Rarefied Gas Flow with Supersonic Velocities,” Prikl. Mat. Mekh. 21 (5), 597–605 (1957).
V. S. Galkin, “Slip Effects in Hypersonic Weakly Rarefied Gas Flows past Bodies,” Inzh. Zh. 3 (1), 27–36 (1963).
V. N. Zhigulev, “Equation of Motion of a Nonequilibrium Mediumwith Regard to Radiation,” Inzh. Zh. 4 (2), 231–241 (1964).
Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications (Birkhauser, Boston-Basel-Berlin, 2007).
Yu. P. Golovachev, Numerical Simulation of Viscous Gas Flows in the Shock Layer (Nauka, Fizmatlit, Moscow, 1996) [in Russian].
M. N. Kogan, V. S. Galkin, and O. G. Friedlender, “Stresses Arising in Gases As a Result of Temperature and Concentration Inhomogeneities,” Usp. Fiz. Nauk 119 (1), 111–125 (1976).
M. S. Cramer, “Numerical Estimates for the Bulk Viscosity of Gases,” Phys. Fluids 24, 066102, 1–23 (2012).
R. E. Graves and B. M. Argrow, “Bulk Viscosity: Past to Present,” J. Thermophys. Heat Transfer 13 (3), 337–342 (1999).
E. A. Nagnibeda and E. V. Kustova, Kinetic Theory of Transport Processes and Relaxation in Nonequilibrium Reacting Gas Flows (University Press, Saint-Petersburg, 2003) [in Russian].
M. A. Rydalevskaya, Statistic and Kinetic Models in Physicochemical Gas Dynamics (University Press, St.-Petersburg, 2003) [in Russian].
A. Ern and V. Giovangigli, Multicomponent Transport Algorithms (Springer-Verlag, New-York-Berlin-Heidelberg, 1994).
V. Giovangigli, Multicomponent FlowModeling (Birkhauser, Boston-Basel-Berlin, 1999).
V. M. Zhdanov, V. S. Galkin, O. A. Gordeev, and I. A. Sokolova, Physicochemical Processes in Gas Dynamics. Handbook, Vol. 3, in: S. A. Losev (Ed.) Models of the Molecular Transfer Process in Physicochemical Gas Dynamics (Fizmatlit, Moscow, 2013) [in Russian].
V. S. Galkin, M. N. Kogan, and N. K. Makashev, “Generalized Chapman–Enskog Method,” Dokl. Akad. Nauk SSSR 220 (2), 304–307 (1975).
M. N. Kogan, V. S. Galkin, and N. K. Makashev, “Generalized Chapman–Enskog Method: Derivation of the Nonequilibrium Gasdynamic Equations,” in: Rarefied Gas Dynamics. 11th Int. Symp. Cannes, 1978, Vol. 2 (Paris, 1979), pp. 693–734.
V. S. Galkin, M. N. Kogan, and N. K. Makashev, “Region of Applicability and the Main Features of the Generalized Chapman–Enskog Method,” Fluid Dynamics 19 (3), 449–458 (1984).
B. V. Alekseev and I. T. Grushin, Transfer Processes in Reacting Gases and Plasma (Energoatomizdat, Moscow, 1994) [in Russian].
R. Brun “Transport Properties of NonequilibriumGas Flows,” in: M. Capitelli (Ed.), Molecular Physics and Hypersonic Flows (Kluwer Acad. Publ., Netherlanders, 1996), pp. 361–382 (1996).
V. A. Matsuk and V. A. Rykov, “The Chapman–Enskog Method for a Mixture of Gases,” Dokl. Akad. Nauk SSSR 233 (1), 49–51 (1977).
V. A. Matsuk, “The Chapman–Enskog Method for a Chemically Reacting Gas Mixture with Allowance for the Internal Degrees of Freedom,” Zh. Vychisl.Mat. Mat. Fiz. 18 (4), 1043–1048 (1978).
T. C. Lin and R. E. Street, “Effect of Variable Viscosity and Thermal Conductivity on High-Speed Slip Flow between Concentric Cylinders,” NACA Rep., No. 1175 (1954).
V. S. Galkin and M. Sh. Shavaliev, “Gasdynamic Equations of Higher Approximations of the Chapman–Enskog Method. Review,” Fluid Dynamics 33 (4), 469–487 (1998).
H. K. Cheng, “The Blunt Body Problem in Hypersonic Flow at Low Reynolds Number,” IAS Paper, No. 63–92 (1963).
G. A. Tirskii, “Continuum Models in the Problems of Hypersonic Rarefied Gas Flow past Bodies,” Prikl. Mat. Mekh. 61 (6), 903–930 (1997).
M. M. Kuznetsov and V. S. Nikol’skii, “Kinetic Analysis of Hypersonic Polyatomic Gas Flow in the Thin Three-Dimensional Shock Layer,” Uch. Zap. TsAGI 16 (3), 38–49 (1985).
H. K. Cheng, C. J. Lee, E. Y. Wong, and H. T. Yang, “Hypersonic Slip Flows and Issues on Extending Continuum Model Beyond the Navier–Stokes Level,” AIAA Paper, No. 89-1663 (1989).
V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, and I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Flows (Fizmatlit, Moscow, 2003; Elsevier, Amsterdam, 2007).
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (2nd Ed.) (Pergamon Press, 1987; Nauka, Moscow, 1986).
M. N. Kogan, “Kinetic Theory in Aerothermodynamics,” Prog. Aerospace Sci. 29 (4), 271–354 (1992).
V. Yu. Aleksandrov and O. G. Fridlender, “Slow Gas Motions and the Negative Drag of a Strongly Heated Spherical Particle,” Fluid Dynamics 43 (3), 485–492 (2008).
V. Yu. Aleksandrov, “Drag of a Strongly Heated Sphere at Small Reynolds Numbers,” Fluid Dynamics 46 (5), 794–808 (2011).
L. D. Landau and E. M. Lifshitz, Theoretical Physics. Vol. 10, E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2001) [in Russian].
V. S. Galkin and S. V. Rusakov, “Gas Dynamics Equations of Slow Flows of Polyatomic Gas Mixtures with Inhomogeneous Temperature and Concentrations,” Prikl. Mat. Mekh. 79 (2), 218–235 (2015).
V. S. Galkin and S. V. Rusakov, “Transformations of the Burnett Components of Transport Relations in Gases,” Fluid Dynamics 49 (1), 131–136 (2014).
H. Primakoff, “The Translational Dispersion of Sound in Gases,” J. Acoust. Soc. America 14 (1), 14–18 (1942).
M. Greenspan, “Transmission of Sound Waves in Gases at Very Low Pressures,” in: Physical Acoustics, Vol. 2, Pt. A, Properties of Gases, Liquids and Solutions (Acad. Press, N.Y., 1965), pp. 1–45.
J. D. Foch and G. W. Ford, “The Dispersion of Sound in Monatomic Gases,” in: J. De Bour and G. E. Ulenbeck (Eds.), Studies in Statistical Mechanics, Vol. 5 (North-Holland, Amsterdam, 1970), pp. 101–231.
J. D. Foch, G. E. Ulenbeck, and M. F. Losa, “Theory of Sound Propagation in Mixtures of Monatomic Gases,” Phys. Fluids 15 (7), 1224–1232 (1972).
H. Honma, D. Q. Xu, and H. Oguchi, “KineticModel Approach to the Shock Structure Problem: A Detailed Aspect, in: Rarefied Gas Dynamics. Proc. 17th Int. Symp. VCH. Weinheim, 1991, pp. 161–166.
V. S. Galkin and S. V. Rusakov, “On Asymptotic Theory of Dispersion of Sound in a Binary Gas Mixture,” Prikl. Mat. Mekh. 78 (2), 194–200 (2014).
V. S. Galkin and S.V. Rusakov, “Asymptotic Theory of the Parameters ofAsymmetry of aWeak ShockWave,” Prikl. Mat. Mekh. 77 (4), 573–584 (2013).
M. Sh. Shavaliev, “Investigation of theWeak ShockWave Structure and Propagation of Small Perturbations in GasMixtures Using the Burnett Equations,” Prikl. Mat. Mekh. 63 (3), 444–456 (1999).
V. S. Galkin and V. A. Zharov, “Solution of Problems of Sound Propagation andWeak ShockWave Structure in a Polyatomic Gas Using the Burnett Equations,” Prikl. Mat. Mekh. 65 (3), 467–476 (2001).
F. E. Lumpkin and D. R. Chapman, “Accuracy of the Burnett Equations for Hypersonic Real Gas Flows,” J. Thermophys. and Heat Transfer 6 (3), 419–425 (1992).
V. I. Roldughin and V. M. Zhdanov, “Non-Equilibrium Thermodynamics and Kinetic Theory of GasMixtures in the Presence of Interfaces,” Advances Colloid Interface Science 98, 121–215 (2002).
V. M. Zhdanov and V. I. Roldugin, “NonequilibriumThermodynamics and Kinetic Theory of Rarefied Gases,” Usp. Fiz. Nauk 168 (4), 407–438 (1998).
V. S. Galkin, “Degeneracy of the Chapman–Enskog Series for Transport Properties in the Case of Slow Steady-StateWeakly-Rarefied Gas Flows,” Fluid Dynamics 23 (4), 614–620 (1988).
S. M. Dikman and L. P. Pitaevskii, “Convection of a New Type in the Magnetoactive Plasma,” Zh. Eksp. Teor. Fiz. 78 (5), 1750–1759 (1980).
A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2, Instability of Inhomogeneous Plasma (Atomizdat, Moscow, 1977) [in Russian].
A. B. Mikhailovskii, “Hydrodynamic Theory of Plasma Rotation in a Tokamak,” Fiz. Plasmy 9 (3), 594–603 (1983).
V. S. Tsypin, “Rotation and Transfer of Collisionless Plasma in a Tokamak,” Fiz. Plasmy 11 (10), 1163–1166 (1985).
F. R. W. McCourt, J. J. M. Beenakker, W. E. Kohler, and I. Kuscer, Nonequilibrium Phenomena in Polyatomic Gases, Vol. 2 (Clarendon Press, Oxford, 1991).
G. A. Pavlov and Yu. V. Troshchiev, “Investigation of Thermal Regimes inMedia with Volume Heat Release,” Zh. Tekhn. Fiz. 83 (1), 34–39 (2013).
G. A. Pavlov, “Burnett Kinetic Coefficients in Dense Charged and Neutral Media,” Zh. Tekhn. Fiz. 80 (4), 152–155 (2010).
V. S. Galkin and S. V. Rusakov, “On Theory of the Volume Viscosity and Relaxational Pressure,” Prikl. Mat. Mekh. 69 (6), 1051–1064 (2005).
M. H. Ernst, “Transport Coefficients and Temperature Definition,” Physica 32 (2), 252–272 (1966).
M. Sh. Shavaliev, “Transport Phenomena in the Burnett Approximation for MulticomponentGas Mixtures,” Fluid Dynamics 9 (1), 96–104 (1974).
V. S. Galkin, “Burnett Equations forMulticomponentMixtures of Polyatomic Gases,” Prikl. Mat. Mekh. 64 (4), 590–609 (2000).
V. S. Galkin and V. A. Zharov, “Transport Properties of Gases in the Burnett Approximation,” Prikl. Mat. Mekh. 66 (3), 434–447 (2002).
V. S. Galkin and S. V. Rusakov, “Requirements to the Accuracy of the Burnett Transport Coefficients,” Fluid Dynamics 47 (6), 802–805 (2012).
S. Takata, S. Yasuda, K. Aoki, and T. Shibata, “Various Transport Coefficients Occurring in Binary Gas Mixtures and their Database,” in Rarefied Gas Dynamics. 23rd Int. Symp. N.-Y. Amer. Inst. Phys., 2003, pp. 106–113.
M. Sh. Shavaliev, “Super-Burnett Corrections to the Stress Tensor and Heat Flux in a Gas of Maxwellian Molecules,” Prikl. Mat. Mekh. 57 (3), 168–171 (1993).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.S. Galkin, S.V. Rusakov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 1, pp. 156–173.
Rights and permissions
About this article
Cite this article
Galkin, V.S., Rusakov, S.V. Status of the Navier–Stokes Equations in Gas Dynamics. A Review. Fluid Dyn 53, 152–168 (2018). https://doi.org/10.1134/S0015462818010056
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0015462818010056