[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Status of the Navier–Stokes Equations in Gas Dynamics. A Review

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The existing ideas on the status of the Navier–Stokes equations are changed in taking into account the following facts: generally speaking, the terms of these equations neglected in the boundary layer equations are of the order of certain Burnett terms in the conservation equations; the Navier–Stokes equations cannot be used to describe slow nonisothermal gas flows since in this case it is necessary to take the Burnett temperature stresses into account; and in the transport relations the Burnett terms determine certain effects (for example, the mechanocaloric effect).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952; Izd-vo Inost. Lit., Moscow, 1960).

    MATH  Google Scholar 

  2. M. N. Kogan, Rarefied Gas Dynamics (Plenum Press, New York, 1969; Nauka, Moscow, 1967).

    Google Scholar 

  3. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).

    Google Scholar 

  4. H. S. Tsien, “Superaerodynamics: Mechanics of Rarefied Gases,” J. Aeronaut. Sci. 13 (12), 653–664 (1946).

    Article  Google Scholar 

  5. M. Z. Krzywoblocki, “On the Two-Dimensional Laminar Boundary Layer Equations for Hypersonic Flow in Continuum and Rarefied Gases,” J. Aeronaut. Soc. India (1), 1–10 (1953).

    Google Scholar 

  6. Yu. P. Lun’kin, “Boundary Layer Equations and the Boundary Conditions for Them in the Case of Weakly Rarefied Gas Flow with Supersonic Velocities,” Prikl. Mat. Mekh. 21 (5), 597–605 (1957).

    MathSciNet  Google Scholar 

  7. V. S. Galkin, “Slip Effects in Hypersonic Weakly Rarefied Gas Flows past Bodies,” Inzh. Zh. 3 (1), 27–36 (1963).

    Google Scholar 

  8. V. N. Zhigulev, “Equation of Motion of a Nonequilibrium Mediumwith Regard to Radiation,” Inzh. Zh. 4 (2), 231–241 (1964).

    Google Scholar 

  9. Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications (Birkhauser, Boston-Basel-Berlin, 2007).

    Book  MATH  Google Scholar 

  10. Yu. P. Golovachev, Numerical Simulation of Viscous Gas Flows in the Shock Layer (Nauka, Fizmatlit, Moscow, 1996) [in Russian].

    MATH  Google Scholar 

  11. M. N. Kogan, V. S. Galkin, and O. G. Friedlender, “Stresses Arising in Gases As a Result of Temperature and Concentration Inhomogeneities,” Usp. Fiz. Nauk 119 (1), 111–125 (1976).

    Article  ADS  Google Scholar 

  12. M. S. Cramer, “Numerical Estimates for the Bulk Viscosity of Gases,” Phys. Fluids 24, 066102, 1–23 (2012).

    Google Scholar 

  13. R. E. Graves and B. M. Argrow, “Bulk Viscosity: Past to Present,” J. Thermophys. Heat Transfer 13 (3), 337–342 (1999).

    Article  Google Scholar 

  14. E. A. Nagnibeda and E. V. Kustova, Kinetic Theory of Transport Processes and Relaxation in Nonequilibrium Reacting Gas Flows (University Press, Saint-Petersburg, 2003) [in Russian].

    MATH  Google Scholar 

  15. M. A. Rydalevskaya, Statistic and Kinetic Models in Physicochemical Gas Dynamics (University Press, St.-Petersburg, 2003) [in Russian].

    Google Scholar 

  16. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms (Springer-Verlag, New-York-Berlin-Heidelberg, 1994).

    MATH  Google Scholar 

  17. V. Giovangigli, Multicomponent FlowModeling (Birkhauser, Boston-Basel-Berlin, 1999).

    Book  MATH  Google Scholar 

  18. V. M. Zhdanov, V. S. Galkin, O. A. Gordeev, and I. A. Sokolova, Physicochemical Processes in Gas Dynamics. Handbook, Vol. 3, in: S. A. Losev (Ed.) Models of the Molecular Transfer Process in Physicochemical Gas Dynamics (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  19. V. S. Galkin, M. N. Kogan, and N. K. Makashev, “Generalized Chapman–Enskog Method,” Dokl. Akad. Nauk SSSR 220 (2), 304–307 (1975).

    ADS  MATH  Google Scholar 

  20. M. N. Kogan, V. S. Galkin, and N. K. Makashev, “Generalized Chapman–Enskog Method: Derivation of the Nonequilibrium Gasdynamic Equations,” in: Rarefied Gas Dynamics. 11th Int. Symp. Cannes, 1978, Vol. 2 (Paris, 1979), pp. 693–734.

    Google Scholar 

  21. V. S. Galkin, M. N. Kogan, and N. K. Makashev, “Region of Applicability and the Main Features of the Generalized Chapman–Enskog Method,” Fluid Dynamics 19 (3), 449–458 (1984).

    Article  ADS  MATH  Google Scholar 

  22. B. V. Alekseev and I. T. Grushin, Transfer Processes in Reacting Gases and Plasma (Energoatomizdat, Moscow, 1994) [in Russian].

    Google Scholar 

  23. R. Brun “Transport Properties of NonequilibriumGas Flows,” in: M. Capitelli (Ed.), Molecular Physics and Hypersonic Flows (Kluwer Acad. Publ., Netherlanders, 1996), pp. 361–382 (1996).

    Chapter  Google Scholar 

  24. V. A. Matsuk and V. A. Rykov, “The Chapman–Enskog Method for a Mixture of Gases,” Dokl. Akad. Nauk SSSR 233 (1), 49–51 (1977).

    ADS  Google Scholar 

  25. V. A. Matsuk, “The Chapman–Enskog Method for a Chemically Reacting Gas Mixture with Allowance for the Internal Degrees of Freedom,” Zh. Vychisl.Mat. Mat. Fiz. 18 (4), 1043–1048 (1978).

    MathSciNet  Google Scholar 

  26. T. C. Lin and R. E. Street, “Effect of Variable Viscosity and Thermal Conductivity on High-Speed Slip Flow between Concentric Cylinders,” NACA Rep., No. 1175 (1954).

    Google Scholar 

  27. V. S. Galkin and M. Sh. Shavaliev, “Gasdynamic Equations of Higher Approximations of the Chapman–Enskog Method. Review,” Fluid Dynamics 33 (4), 469–487 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. K. Cheng, “The Blunt Body Problem in Hypersonic Flow at Low Reynolds Number,” IAS Paper, No. 63–92 (1963).

    Google Scholar 

  29. G. A. Tirskii, “Continuum Models in the Problems of Hypersonic Rarefied Gas Flow past Bodies,” Prikl. Mat. Mekh. 61 (6), 903–930 (1997).

    MathSciNet  Google Scholar 

  30. M. M. Kuznetsov and V. S. Nikol’skii, “Kinetic Analysis of Hypersonic Polyatomic Gas Flow in the Thin Three-Dimensional Shock Layer,” Uch. Zap. TsAGI 16 (3), 38–49 (1985).

    Google Scholar 

  31. H. K. Cheng, C. J. Lee, E. Y. Wong, and H. T. Yang, “Hypersonic Slip Flows and Issues on Extending Continuum Model Beyond the Navier–Stokes Level,” AIAA Paper, No. 89-1663 (1989).

    Book  Google Scholar 

  32. V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, and I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Flows (Fizmatlit, Moscow, 2003; Elsevier, Amsterdam, 2007).

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (2nd Ed.) (Pergamon Press, 1987; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  34. M. N. Kogan, “Kinetic Theory in Aerothermodynamics,” Prog. Aerospace Sci. 29 (4), 271–354 (1992).

    Article  ADS  Google Scholar 

  35. V. Yu. Aleksandrov and O. G. Fridlender, “Slow Gas Motions and the Negative Drag of a Strongly Heated Spherical Particle,” Fluid Dynamics 43 (3), 485–492 (2008).

    Article  ADS  MATH  Google Scholar 

  36. V. Yu. Aleksandrov, “Drag of a Strongly Heated Sphere at Small Reynolds Numbers,” Fluid Dynamics 46 (5), 794–808 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Vol. 10, E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2001) [in Russian].

  38. V. S. Galkin and S. V. Rusakov, “Gas Dynamics Equations of Slow Flows of Polyatomic Gas Mixtures with Inhomogeneous Temperature and Concentrations,” Prikl. Mat. Mekh. 79 (2), 218–235 (2015).

    MATH  Google Scholar 

  39. V. S. Galkin and S. V. Rusakov, “Transformations of the Burnett Components of Transport Relations in Gases,” Fluid Dynamics 49 (1), 131–136 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Primakoff, “The Translational Dispersion of Sound in Gases,” J. Acoust. Soc. America 14 (1), 14–18 (1942).

    Article  ADS  Google Scholar 

  41. M. Greenspan, “Transmission of Sound Waves in Gases at Very Low Pressures,” in: Physical Acoustics, Vol. 2, Pt. A, Properties of Gases, Liquids and Solutions (Acad. Press, N.Y., 1965), pp. 1–45.

    Google Scholar 

  42. J. D. Foch and G. W. Ford, “The Dispersion of Sound in Monatomic Gases,” in: J. De Bour and G. E. Ulenbeck (Eds.), Studies in Statistical Mechanics, Vol. 5 (North-Holland, Amsterdam, 1970), pp. 101–231.

    Google Scholar 

  43. J. D. Foch, G. E. Ulenbeck, and M. F. Losa, “Theory of Sound Propagation in Mixtures of Monatomic Gases,” Phys. Fluids 15 (7), 1224–1232 (1972).

    Article  ADS  MATH  Google Scholar 

  44. H. Honma, D. Q. Xu, and H. Oguchi, “KineticModel Approach to the Shock Structure Problem: A Detailed Aspect, in: Rarefied Gas Dynamics. Proc. 17th Int. Symp. VCH. Weinheim, 1991, pp. 161–166.

  45. V. S. Galkin and S. V. Rusakov, “On Asymptotic Theory of Dispersion of Sound in a Binary Gas Mixture,” Prikl. Mat. Mekh. 78 (2), 194–200 (2014).

    Google Scholar 

  46. V. S. Galkin and S.V. Rusakov, “Asymptotic Theory of the Parameters ofAsymmetry of aWeak ShockWave,” Prikl. Mat. Mekh. 77 (4), 573–584 (2013).

    Google Scholar 

  47. M. Sh. Shavaliev, “Investigation of theWeak ShockWave Structure and Propagation of Small Perturbations in GasMixtures Using the Burnett Equations,” Prikl. Mat. Mekh. 63 (3), 444–456 (1999).

    MathSciNet  MATH  Google Scholar 

  48. V. S. Galkin and V. A. Zharov, “Solution of Problems of Sound Propagation andWeak ShockWave Structure in a Polyatomic Gas Using the Burnett Equations,” Prikl. Mat. Mekh. 65 (3), 467–476 (2001).

    MATH  Google Scholar 

  49. F. E. Lumpkin and D. R. Chapman, “Accuracy of the Burnett Equations for Hypersonic Real Gas Flows,” J. Thermophys. and Heat Transfer 6 (3), 419–425 (1992).

    Article  ADS  Google Scholar 

  50. V. I. Roldughin and V. M. Zhdanov, “Non-Equilibrium Thermodynamics and Kinetic Theory of GasMixtures in the Presence of Interfaces,” Advances Colloid Interface Science 98, 121–215 (2002).

    Article  Google Scholar 

  51. V. M. Zhdanov and V. I. Roldugin, “NonequilibriumThermodynamics and Kinetic Theory of Rarefied Gases,” Usp. Fiz. Nauk 168 (4), 407–438 (1998).

    Article  Google Scholar 

  52. V. S. Galkin, “Degeneracy of the Chapman–Enskog Series for Transport Properties in the Case of Slow Steady-StateWeakly-Rarefied Gas Flows,” Fluid Dynamics 23 (4), 614–620 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S. M. Dikman and L. P. Pitaevskii, “Convection of a New Type in the Magnetoactive Plasma,” Zh. Eksp. Teor. Fiz. 78 (5), 1750–1759 (1980).

    ADS  Google Scholar 

  54. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2, Instability of Inhomogeneous Plasma (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  55. A. B. Mikhailovskii, “Hydrodynamic Theory of Plasma Rotation in a Tokamak,” Fiz. Plasmy 9 (3), 594–603 (1983).

    Google Scholar 

  56. V. S. Tsypin, “Rotation and Transfer of Collisionless Plasma in a Tokamak,” Fiz. Plasmy 11 (10), 1163–1166 (1985).

    Google Scholar 

  57. F. R. W. McCourt, J. J. M. Beenakker, W. E. Kohler, and I. Kuscer, Nonequilibrium Phenomena in Polyatomic Gases, Vol. 2 (Clarendon Press, Oxford, 1991).

    Google Scholar 

  58. G. A. Pavlov and Yu. V. Troshchiev, “Investigation of Thermal Regimes inMedia with Volume Heat Release,” Zh. Tekhn. Fiz. 83 (1), 34–39 (2013).

    Google Scholar 

  59. G. A. Pavlov, “Burnett Kinetic Coefficients in Dense Charged and Neutral Media,” Zh. Tekhn. Fiz. 80 (4), 152–155 (2010).

    Google Scholar 

  60. V. S. Galkin and S. V. Rusakov, “On Theory of the Volume Viscosity and Relaxational Pressure,” Prikl. Mat. Mekh. 69 (6), 1051–1064 (2005).

    MathSciNet  MATH  Google Scholar 

  61. M. H. Ernst, “Transport Coefficients and Temperature Definition,” Physica 32 (2), 252–272 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  62. M. Sh. Shavaliev, “Transport Phenomena in the Burnett Approximation for MulticomponentGas Mixtures,” Fluid Dynamics 9 (1), 96–104 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. V. S. Galkin, “Burnett Equations forMulticomponentMixtures of Polyatomic Gases,” Prikl. Mat. Mekh. 64 (4), 590–609 (2000).

    MATH  Google Scholar 

  64. V. S. Galkin and V. A. Zharov, “Transport Properties of Gases in the Burnett Approximation,” Prikl. Mat. Mekh. 66 (3), 434–447 (2002).

    MathSciNet  MATH  Google Scholar 

  65. V. S. Galkin and S. V. Rusakov, “Requirements to the Accuracy of the Burnett Transport Coefficients,” Fluid Dynamics 47 (6), 802–805 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. S. Takata, S. Yasuda, K. Aoki, and T. Shibata, “Various Transport Coefficients Occurring in Binary Gas Mixtures and their Database,” in Rarefied Gas Dynamics. 23rd Int. Symp. N.-Y. Amer. Inst. Phys., 2003, pp. 106–113.

  67. M. Sh. Shavaliev, “Super-Burnett Corrections to the Stress Tensor and Heat Flux in a Gas of Maxwellian Molecules,” Prikl. Mat. Mekh. 57 (3), 168–171 (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Galkin.

Additional information

Original Russian Text © V.S. Galkin, S.V. Rusakov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 1, pp. 156–173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, V.S., Rusakov, S.V. Status of the Navier–Stokes Equations in Gas Dynamics. A Review. Fluid Dyn 53, 152–168 (2018). https://doi.org/10.1134/S0015462818010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818010056

Key words

Navigation