Hidden Attractors in Discrete Dynamical Systems
<p>Unstable periodic orbit <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> </mfenced> </semantics></math> and hidden chaotic attractor. <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Unstable periodic orbit <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mfenced> </semantics></math> and hidden chaotic attractor. <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Unstable periodic orbit <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mfenced> </semantics></math> and hidden chaotic attractor. <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Hidden chaotic attractor. <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Fractal of partial sums for Example 1.</p> "> Figure 6
<p>Numerical solution obtained from (<a href="#FD24-entropy-23-00616" class="html-disp-formula">24</a>). After reaching <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>2.3026</mn> </mrow> </semantics></math> the solution becomes chaotic. <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Foundations
3. Examples
Example 4
4. Hidden Chaotic Attractors with Euler Integration Method
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Berezowski, M. Determination of catastrophic sets of a tubular chemical reactor by two-parameter continuation method. Int. J. Chem. React. Eng. 2020, 18. [Google Scholar] [CrossRef]
- Berezowski, M. Application of Lyapunov’s Methods for Analyzing the Stability of a Tubular Chemical Reactor with Recycle. Chem. Eng. Technol. 2020, 43, 2523–2529. [Google Scholar] [CrossRef]
- Berezowski, M. Chaos Predictability in a Chemical Reactor. Int. J. Bifurc. Chaos 2020, 30, 2050221. [Google Scholar] [CrossRef]
- Lawnik, M.; Kapczyński, A. The application of modified Chebyshev polynomials in asymmetric cryptography. Comput. Sci. 2019, 20. [Google Scholar] [CrossRef]
- Galias, Z.; Tucker, W. Numerical Study of Coexisting Attractors for The Hénon Map. Int. J. Bifurc. Chaos 2013, 23, 1330025. [Google Scholar] [CrossRef] [Green Version]
- Garashchuk, I.R.; Sinelshchikov, D.; Kazakov, A.; Kudryashov, N. Hyperchaos and multistability in the model of two interacting microbubble contrast agents. Chaos 2019, 29, 063131. [Google Scholar] [CrossRef] [PubMed]
- Lawnik, M. The problem of the inverse Lyapunov exponent and its applications. Nonlinear Anal. Model. Control 2018, 23, 951–960. [Google Scholar] [CrossRef]
- Matsumoto, A.; Szidarovszky, F.; Nakayama, K. Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model. Mathematics 2021, 9, 32. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Leonov, G.; Vagaitsev, V. Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. Vol. 2010, 43, 29–33. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Vagaitsev, V. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, 375, 2230–2233. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Vagaitsev, V. Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden Attractors in Dynamical Systems. From Hidden Oscillations in Hilbert-Kolmogorov Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Sprott, J. Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 2013, 57, 79–84. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.; Hashemi Golpayegani, S.M.R. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 2013, 377, 699–702. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V.; Kiseleva, M.A.; Solovyeva, E.P.; Zaretskiy, A.M. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 2014, 77, 277–288. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Mokaev, T.N. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 2015, 224, 1421–1458. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Y.; Wei, Z.; Zhang, L. A New Class of Three-Dimensional Maps with Hidden Chaotic Dynamics. Int. J. Bifurc. Chaos 2016, 26, 1650206. [Google Scholar] [CrossRef]
- Jafari, S.; Pham, V.T.; Golpayegani, S.M.R.H.; Moghtadaei, M.; Kingni, S.T. The Relationship Between Chaotic Maps and Some Chaotic Systems with Hidden Attractors. Int. J. Bifurc. Chaos 2016, 26, 1650211. [Google Scholar] [CrossRef]
- Kiseleva, M.A.; Kuznetsov, N.V.; Leonov, G.A. Hidden attractors in electromechanical systems with and without equilibria. IFAC-PapersOnLine 2016, 49, 51–55. [Google Scholar] [CrossRef]
- Çavuşoğlu, U.; Panahi, S.; Akgül, A.; Jafari, S.; Kaçar, S. A New Chaotic System with Hidden Attractor and Its Engineering Applications: Analog Circuit Realization and Image Encryption. Analog Integr. Circuits Signal Process. 2019, 98, 85–99. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Q.; Chen, G. Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105362. [Google Scholar] [CrossRef]
- Azar, A.T.; Serrano, F.E. Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control. Entropy 2020, 22, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danca, M.F.; Lampart, M. Hidden and self-excited attractors in a heterogeneous Cournot oligopoly model. Chaos Solitons Fractals 2021, 142, 110371. [Google Scholar] [CrossRef]
- Kamal, N.; Varshney, V.; Shrimali, M.; Prasad, A.; Kuznetsov, N.; Leonov, G. Shadowing in hidden attractors. Nonlinear Dyn. 2018, 91, 2429–2434. [Google Scholar] [CrossRef]
- Danca, M.F.; Fečkan, M. Hidden chaotic attractors and chaos suppression in an impulsive discrete economical supply and demand dynamical system. Commun. Nonlinear Sci. Numer. Simul. 2019, 74, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Grassi, G.; Pham, V.T.; El-Khazali, R.; Vo Hoang, D. A Quadratic Fractional Map without Equilibria: Bifurcation, 0–1 Test, Complexity, Entropy, and Control. Electronics 2020, 9, 748. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Pham, V.-T.; El-Khazali, R. Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy and control. Chin. Phys. B 2020, 29, 050504. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Grassi, G.; Pham, V.T. Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Adv. 2020, 10, 045310. [Google Scholar] [CrossRef]
- Pham, V.T.; Vaidyanathan, S.; Volos, C.; Kapitaniak, T. (Eds.) Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Peng, X.; Zeng, Y. Image encryption application in a system for compounding self-excited and hidden attractors. Chaos Solitons Fractals 2020, 139, 110044. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Xu, C. An image encryption algorithm based on a hidden attractor chaos system and the Knuth–Durstenfeld algorithm. Opt. Lasers Eng. 2020, 128, 105995. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Sambas, A.; Mamat, M.; Sanjaya, M. A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot. Arch. Control Sci. 2017, 27, 541–554. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezowski, M.; Lawnik, M. Hidden Attractors in Discrete Dynamical Systems. Entropy 2021, 23, 616. https://doi.org/10.3390/e23050616
Berezowski M, Lawnik M. Hidden Attractors in Discrete Dynamical Systems. Entropy. 2021; 23(5):616. https://doi.org/10.3390/e23050616
Chicago/Turabian StyleBerezowski, Marek, and Marcin Lawnik. 2021. "Hidden Attractors in Discrete Dynamical Systems" Entropy 23, no. 5: 616. https://doi.org/10.3390/e23050616
APA StyleBerezowski, M., & Lawnik, M. (2021). Hidden Attractors in Discrete Dynamical Systems. Entropy, 23(5), 616. https://doi.org/10.3390/e23050616