Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model
<p>The stability switching curves.</p> "> Figure 2
<p>Graphs of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>(</mo> <msub> <mi>τ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>) (red) and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <msub> <mi>τ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>) (blue).</p> "> Figure 3
<p>Stability switching curves for <span class="html-italic">A</span> = 0.</p> "> Figure 4
<p>Stabilizing effect of <math display="inline"><semantics> <mi>σ</mi> </semantics></math>.</p> "> Figure 5
<p>The <math display="inline"><semantics> <mi>α</mi> </semantics></math>-destabilizing effect.</p> "> Figure 6
<p>Possible global dynamics for various values of <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mn>1</mn> </msub> <mo><</mo> <msubsup> <mi>τ</mi> <mrow> <mn>1</mn> </mrow> <mi>c</mi> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>τ</mi> <mn>2</mn> </msub> </semantics></math> = 1.5.</p> "> Figure 7
<p>Possible global dynamics for various values of <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mn>1</mn> </msub> <mo>></mo> <msubsup> <mi>τ</mi> <mrow> <mn>1</mn> </mrow> <mi>A</mi> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>τ</mi> <mn>2</mn> </msub> </semantics></math> = 1.5.</p> "> Figure 8
<p>The stability switching curve for <math display="inline"><semantics> <mi>α</mi> </semantics></math> = 10 and <math display="inline"><semantics> <mi>σ</mi> </semantics></math> = 0.1.</p> "> Figure 9
<p>Two bifurcation diagrams along the <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mn>2</mn> </msub> <mo>=</mo> <msubsup> <mi>τ</mi> <mrow> <mn>2</mn> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> (=0.075).</p> "> Figure 10
<p>Possible global dynamics for various values of <math display="inline"><semantics> <msub> <mi>τ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>τ</mi> <mn>2</mn> </msub> </semantics></math> = 1.</p> ">
Abstract
:1. Introduction
2. Model
3. Stability Switching Curves
3.1.
- Assumption 2.
- Assumption 3. .
- Assumption 4.
- Assumption 5.
3.2.
4. Numerical Simulations
4.1. The Case of
4.2. The Case Including
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Okuguchi, K. Expectations and Stability in Oligopoly Models; Springer: Berlin, Germany, 1976. [Google Scholar]
- Okuguchi, K.; Szidarovszky, F. The Theory of Oligopoly with Multi-Product Firms, 2nd ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Bellman, R. Stability Theory of Differential Equations; Dover: New York, NY, USA, 1969. [Google Scholar]
- Mira, C. Chaotic Dynamics; World Scientific: Singapore, 1987. [Google Scholar]
- Bischi, G.-I.; Chiarella, C.; Kopel, M.; Szidarovszky, F. Nonlinear Oligopolies: Stability and Bifurcation; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bellman, R.; Cooke, K. Differential-Difference Equations; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Chiarella, C.; Khomin, A. An analysis of the complex dynamic behavior of nonlinear oligopoly models with time lags. Chaos Solitions Fractals 1996, 7, 2049–2065. [Google Scholar] [CrossRef]
- Gu, K.; Nicolescu, S.; Chen, J. On the stability crossing curve for general systems with two delays. J. Math. Anal. Appl. 2005, 311, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, H. Stability analysis of delay differential equations with two discrete delays. Can. Appl. Math. Q. 2012, 20, 519–533. [Google Scholar]
- Howroyd, T.; Russel, A. Cournot oligopoly models with time delays. J. Math. Econ. 1984, 13, 97–103. [Google Scholar] [CrossRef]
- Gori, L.; Guerrini, L.; Sodini, M. A continuous time Cournot duopoly with delays. Chaos Solitons Fractals 2015, 79, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, L.; Matsumoto, A.; Szidarovszky, F. Delay Cournot duopoly models revisited. Chaos 2018, 28, 093113. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Szidarovszky, F. Dynamic Oligopolies with Time Delays; Springer: Singapore, 2018. [Google Scholar]
- Matsumoto, A.; Szidarovszky, F.; Yoshida, H. Dynamics in linear Cournot duopolies with two time delays. Comput. Econ. 2011, 38, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Berezowski, M. Effect of delay time on the generation of chaos in continuous system: One-dimensional model, Two-dimensional model-tubulat chemical reaction with recycle. Chaos Solitions Fractals 2001, 12, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Szidarovszky, F. Discrete and continuous dynamic in nonlinear monopolies. Appl. Math. Comput. 2014, 232, 632–642. [Google Scholar] [CrossRef]
- Bischi, G.-I.; Stefamini, L.; Gardini, L. Synchronization intermittency and critical curves in a duopoly game. Math. Comput. Simul. 1998, 44, 559–585. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, A.; Szidarovszky, F.; Nakayama, K. Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model. Mathematics 2021, 9, 32. https://doi.org/10.3390/math9010032
Matsumoto A, Szidarovszky F, Nakayama K. Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model. Mathematics. 2021; 9(1):32. https://doi.org/10.3390/math9010032
Chicago/Turabian StyleMatsumoto, Akio, Ferenc Szidarovszky, and Keiko Nakayama. 2021. "Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model" Mathematics 9, no. 1: 32. https://doi.org/10.3390/math9010032
APA StyleMatsumoto, A., Szidarovszky, F., & Nakayama, K. (2021). Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model. Mathematics, 9(1), 32. https://doi.org/10.3390/math9010032