Spatial Organization of the Gene Regulatory Program: An Information Theoretical Approach to Breast Cancer Transcriptomics
<p>A scatterplot, where each point represents a subregulatory program for a pair of chromosomes, comprised of all mutual information function (MI) values for each pair of genes in Chromosome i and Chromosome j. By comparing the MI between gene pairs in tumor and control, in terms of gain loss score (<math display="inline"><semantics> <mi mathvariant="script">GLS</mi> </semantics></math>) (whether there are more losses or gains in MI) and gain loss ratio (<math display="inline"><semantics> <mi mathvariant="script">GLR</mi> </semantics></math>) (whether MI losses or MI gains have a higher magnitude), we identify that interchromosomal interactions between genes in any pair of chromosomes have more losses than gains of MI in disease, with an average MI loss greater than the average MI gain. Meanwhile, intrachromosomal interactions may exhibit three different behaviors: (i) they have more losses with higher average MI loss, although with higher <math display="inline"><semantics> <mi mathvariant="script">GLS</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="script">GLR</mi> </semantics></math> values than the interchromosomal interactions (chromosomes 1, 2, 5, 6, 11, 17, 19, X); (ii) they have more losses, but the average MI gain is higher (chromosomes 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 22) or (iii) they have more gains, with a higher average MI gain (21).</p> "> Figure 2
<p>A heatmap showing the differences between GRPs in health and disease. In each square, the color intensity is proportional to <math display="inline"><semantics> <mrow> <mo>−</mo> <mo form="prefix">log</mo> <mo stretchy="false">(</mo> <mi>k</mi> <msub> <mi>s</mi> <mrow> <mi>t</mi> <mi>c</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math>, the Kolmogorov-Smirnov (KS) distance between the subregulatory program for <math display="inline"><semantics> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </semantics></math> in cancer vs the subregulatory program for <math display="inline"><semantics> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </semantics></math> in control. We may observe that in general, the distances between trans-GRPs in control and cancer are greater than the distances between cis-GRPs in health and disease.</p> "> Figure 3
<p>A heatmap showing the differences between cis-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mi>k</mi> </msub> </mrow> </semantics></math> and trans-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math> in terms of KS statistic. Notice that in tumors, each trans-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math> is almost equidistant to cis-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math> (that is, each column has virtually the same color intensity in all rows), which is not the case in controls.</p> "> Figure 4
<p>A network visualization of spatial behavior in terms of MI. Each node represents a chromosome. Each directed link has as weight the Hellinger distance (as calculated with the <span class="html-italic">textmineR</span> R package) between the probability density functions (PDFs) of cis-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math> and trans-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>. The intensity of each link (transparency and thickness) is inversely proportional to the Hellinger distance. The nodes are arranged using a prefuse force-directed layout algorithm, considering the inverse of the Hellinger distance. This pushes nodes where cis-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math> and trans-<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>R</mi> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math> are similar together. Notice that the position of chromosomes is different in tumors and controls. Also notice that, overall, links are thicker (that is, PDFs are closer) in controls. <a href="#app1-entropy-21-00195" class="html-app">Supplementary Figure S1</a> provides a force-directed visualization that shows some cases in tumor networks where chromosomes are "pushed together" (such as 2 and X, or 3 and 8).</p> ">
Abstract
:1. Introduction
1.1. The Gene Regulatory Program
1.2. Spatial Anomalies in Cancer-Associated GRPs
1.3. An Information Theoretical Approach to Gene Regulatory Programs
2. Analysis
2.1. Data
2.2. GRP Inference
2.3. Measures of Change in MI between Health and Disease
2.3.1. Gain Loss Score
2.3.2. Gain Loss Ratio
2.4. Comparison of GRPs between Control and Cancer Conditions
2.5. Comparison between cis- and trans-GRPs in Each Condition
3. Results and Discussion
3.1. Intra- and Inter-Chromosome Interactions Exhibit Differences in MI Changes
3.2. Cis-Patterns Depend on the Chromosome Size
3.3. Cis-GRPs Are More Similar in Health and Disease than Trans-GRPs
3.4. Differences in cis-and trans-GRPs in Health and Disease
Reconstructing a Spatial Dimension of Gene Regulation through Information Theoretic Approaches
4. Conclusions
- To what extent changes in gene regulation are relevant to breast cancer evolution?
- What are the possible consequences (functional or otherwise) of regulatory localization?
- Why different chromosomes behave differently? Including, but not limited to size effects.
- Are these patterns different in different cancers? Are they similar?
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GRP | Gene regulatory program |
MI | Mutual information function |
Probability distribution function | |
TCGA | The Cancer Genome Atlas |
References
- Stergachis, A.B.; Neph, S.; Sandstrom, R.; Haugen, E.; Reynolds, A.P.; Zhang, M.; Byron, R.; Canfield, T.; Stelhing-Sun, S.; Lee, K.; et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 2014, 515, 365. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Arnal, L.; Sassone-Corsi, P. Chromatin dynamics of circadian transcription. Curr. Mol. Biol. Rep. 2015, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dryden, N.H.; Broome, L.R.; Dudbridge, F.; Johnson, N.; Orr, N.; Schoenfelder, S.; Nagano, T.; Andrews, S.; Wingett, S.; Kozarewa, I.; et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Cremer, M.; Schmid, V.J.; Kraus, F.; Markaki, Y.; Hellmann, I.; Maiser, A.; Leonhardt, H.; John, S.; Stamatoyannopoulos, J.; Cremer, T. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenet. Chromatin 2017, 10, 39. [Google Scholar] [CrossRef]
- Espinal-Enriquez, J.; Fresno, C.; Anda-Jauregui, G.; Hernandez-Lemus, E. RNA-Seq based genome-wide analysis reveals loss of inter-chromosomal regulation in breast cancer. Sci. Rep. 2017, 7, 1760. [Google Scholar] [CrossRef] [PubMed]
- De Anda-Jaúregui, G.; García-Cortés, D.; Fresno, C.; Espinal-Enríquez, J.; Hernández-Lemus, E. Intra-chromosomal regulation decay in breast cancer. Appl. Math. Nonlinear Sci. 2018, 4, 1–8. (in press). [Google Scholar]
- García-Cortés, D.; de Anda-Jáuregui, G.; Fresno, C.; Hernandez-Lemus, E.; Espinal-Enriquez, J. Loss of Trans Regulation in Breast Cancer Molecular Subtypes. bioRxiv 2018. [Google Scholar] [CrossRef]
- Hernández-Lemus, E.; Rangel-Escareño, C. The role of information theory in gene regulatory network inference. In Information: Theory New Research; Deloumeaux, P., Gorzalka, J.D., Eds.; Nova Science Publishing: New York, NY, USA, 2011; pp. 109–144. ISBN 978-1-62100-395-3. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kindermann, R. Markov Random Fields and Their Applications; American Mathematical Society: Providence, RI, USA, 1980. [Google Scholar]
- Moussouris, J. Gibbs and Markov random systems with constraints. J. Stat. Phys. 1974, 10, 11–33. [Google Scholar] [CrossRef]
- Merchan, L.; Nemenman, I. On the sufficiency of pairwise interactions in maximum entropy models of networks. J. Stat. Phys. 2016, 162, 1294–1308. [Google Scholar] [CrossRef]
- TCGA. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61. [Google Scholar] [CrossRef]
- Tovar, H.; García-Herrera, R.; Espinal-Enríquez, J.; Hernández-Lemus, E. Transcriptional master regulator analysis in breast cancer genetic networks. Comput. Biol. Chem. 2015, 59, 67–77. [Google Scholar] [CrossRef]
- Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Dalla Favera, R.; Califano, A. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 2006, 7 (Suppl. 1), S7. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Anda-Jáuregui, G.; Espinal-Enriquez, J.; Hernández-Lemus, E. Spatial Organization of the Gene Regulatory Program: An Information Theoretical Approach to Breast Cancer Transcriptomics. Entropy 2019, 21, 195. https://doi.org/10.3390/e21020195
de Anda-Jáuregui G, Espinal-Enriquez J, Hernández-Lemus E. Spatial Organization of the Gene Regulatory Program: An Information Theoretical Approach to Breast Cancer Transcriptomics. Entropy. 2019; 21(2):195. https://doi.org/10.3390/e21020195
Chicago/Turabian Stylede Anda-Jáuregui, Guillermo, Jesús Espinal-Enriquez, and Enrique Hernández-Lemus. 2019. "Spatial Organization of the Gene Regulatory Program: An Information Theoretical Approach to Breast Cancer Transcriptomics" Entropy 21, no. 2: 195. https://doi.org/10.3390/e21020195
APA Stylede Anda-Jáuregui, G., Espinal-Enriquez, J., & Hernández-Lemus, E. (2019). Spatial Organization of the Gene Regulatory Program: An Information Theoretical Approach to Breast Cancer Transcriptomics. Entropy, 21(2), 195. https://doi.org/10.3390/e21020195