A Robust Adaptive Filter for a Complex Hammerstein System
<p>Time sequence and histogram for the complex alpha stable noise. (<b>a</b>) time sequence; (<b>b</b>) histogram.</p> "> Figure 2
<p>Learning curves of different algorithms. HCLMS—Hammerstein complex least mean square; HMCCC—Hammerstein maximum complex correntropy criterion.</p> "> Figure 3
<p>Steady testing mean square errors (MSEs) under different characteristic factors and dispersion parameters.</p> "> Figure 4
<p>Time sequence and histogram for the contaminated Gaussian (CG) noise. (<b>a</b>) time sequence; (<b>b</b>) histogram.</p> "> Figure 5
<p>Learning curves of different algorithms.</p> "> Figure 6
<p>Influence of the probability and variance of outlier.</p> "> Figure 7
<p>Influence of <math display="inline"><semantics> <mi>σ</mi> </semantics></math>.</p> "> Figure 8
<p>Steady-state testing MSEs with different noise variances (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. Hammerstein Adaptive Filter under the Maximum Complex Correntropy Criterion
2.1. Complex Correntropy
2.2. Adaptive Filter for Complex Hammerstein System
2.2.1. Cost Function
2.2.2. Adaptive Algorithm
3. Convergence Analysis
- (A1)
- is independently identically distributed (iid), zero-mean, circular, and independent of , and ;
- (A2)
- Both and are uncorrelated with when .
3.1. Stability Analysis
3.2. Steady Excess Mean Square Error
4. Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Input:,,,,, |
1. Initializations: , . |
2. While available, do |
3. |
4. |
5. |
6. |
7. |
8. |
9 End while |
10. |
Output: Estimated polynomial coefficient and filter weight . |
References
- Principe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives; Springer: New York, NY, USA, 2010. [Google Scholar]
- Chen, B.; Zhu, Y.; Hu, J.; Príncipe, J.C. System Parameter Identification: Information Criteria and Algorithms; Newnes: Oxford, UK, 2013. [Google Scholar]
- Liu, W.; Pokharel, P.P.; Príncipe, J. Correntropy: A localized similarity measure. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network (IJCNN), Vancouver, BC, Canada, 16–21 July 2006; pp. 4919–4924. [Google Scholar]
- Liu, W.; Pokharel, P.P.; Príncipe, J. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Singh, A.; Príncipe, J.C. Using correntropy as a cost function in linear adaptive filters. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN), Atlanta, GA, USA, 14–19 June 2009; pp. 2950–2955. [Google Scholar]
- Singh, A.; Príncipe, J.C. A loss function for classification based on a robust similarity metric. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Príncipe, J.C. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H. Kernel recursive generalized maximum correntropy. IEEE Signal Process. Lett. 2017, 24, 1832–1836. [Google Scholar] [CrossRef]
- Chen, B.; Xing, L.; Xu, B.; Zhao, H.; Zheng, N.; Príncipe, J.C. Kernel Risk-Sensitive Loss: Definition, Properties and Application to Robust Adaptive Filtering. IEEE Trans. Signal Process. 2017, 65, 2888–2901. [Google Scholar] [CrossRef]
- Wang, S.; Dang, L.; Wang, W.; Qian, G.; Tse, C.K. Kernel Adaptive Filters With Feedback Based on Maximum Correntropy. IEEE Access. 2018, 6, 10540–10552. [Google Scholar] [CrossRef]
- Diniz, P.S.R. Adaptive Filtering: Algorithms and Practical Implementation, 4th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bai, E.W.; Li, D. Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. Autom. Control. 2004, 49, 1929–1940. [Google Scholar] [CrossRef]
- Jeraj, J.; Mathews, V.J. Stochastic mean-square performance analysis of an adaptive Hammerstein filter. IEEE Trans. Signal Process. 2006, 54, 2168–2177. [Google Scholar] [CrossRef]
- Ding, F.; Liu, X.P.; Liu, G. Identification methods for Hammerstein nonlinear systems. Dig. Signal Process. 2011, 21, 215–238. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Comminiello, D.; Parisi, R.; Uncini, A. Comparison of Hammerstein and Wiener systems for nonlinear acoustic echo cancelers in reverberant environments. In Proceedings of the 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 6–8 July 2011; pp. 1–6. [Google Scholar]
- Stenger, A.; Kellermann, W. Adaptation of a memoryless preprocessor for nonlinear acoustic echo cancelling. Signal Process. 2000, 80, 1747–1760. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Comminiello, D.; Parisi, R.; Uncini, A. Hammerstein uniform cubic spline adaptive filters: Learning and convergence properties. Signal Process. 2014, 100, 112–123. [Google Scholar] [CrossRef]
- Dang, L.; Wang, W.; Sun, Q.; Long, Z.; Qian, G.; Wang, S. Hammerstein adaptive filter with single feedback under minimum mean square error. In Proceedings of the 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–7. [Google Scholar]
- Hunt, K.J.; Munih, M.; Donaldson, N.N.; Barr, F.M.D. Investigation of the Hammerstein hypothes is in the modeling of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 1998, 45, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Su, S.W.; Wang, L.; Celler, B.G.; Savkin, A.V.; Guo, Y. Identification and control of heart rate regulation during treadmill exercise. IEEE Trans. Biomed. Eng. 2007, 54, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Peng, S.; Chen, B.; Zhao, H. Robust Hammerstein adaptive filtering under maximum correntropy criterion. Entropy 2015, 17, 7149–7166. [Google Scholar] [CrossRef]
- Guimaraes, J.P.F.; Fontes, A.I.R.; Rego, J.B.A.; Martins, A.M.; Príncipe, J.C. Complex correntropy: Probabilistic interpretation and application to complex-valued data. IEEE Signal Process. Lett. 2017, 24, 42–45. [Google Scholar] [CrossRef]
- Qian, G.; Wang, S. Generalized Complex Correntropy: Application to Adaptive Filtering of Complex Data. IEEE Access. 2018, 6, 19113–19120. [Google Scholar] [CrossRef]
- Guimaraes, J.P.F.; Fontes, A.I.R.; Rego, J.B.A.; Martins, A.M.; Príncipe, J.C. Complex Correntropy Function: Properties, and application to a channel equalization problem. Expert Syst. Appl. 2018, 107, 173–181. [Google Scholar] [CrossRef]
- Qian, G.; Luo, D.; Wang, S. Recursive Minimum Complex Kernel Risk Sensitive Loss Algorithm. Entropy 2018, 20, 902. [Google Scholar] [CrossRef]
- Wirtinger, W. Zur formalen theorie der funktionen von mehr complexen veränderlichen. Math. Ann. 1927, 97, 357–375. (In Germany) [Google Scholar] [CrossRef]
- Bouboulis, P.; Theodoridis, S. Extension of Wirtinger’s calculus to reproducing Kernel Hilbert spaces and the complex kernel LMS. IEEE Trans. Signal Process. 2011, 59, 964–978. [Google Scholar] [CrossRef]
- Zhang, X. Matrix Analysis and Application, 2th ed.; Tsinghua University Press: Beijing, China, 2013. [Google Scholar]
- Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Príncipe, J.C. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 2014, 21, 880–884. [Google Scholar]
- Picinbono, B. On circularity. IEEE Trans. Signal Process. 1994, 42, 3473–3482. [Google Scholar] [CrossRef]
Input:,,,,,, |
1. Initializations: , . |
2. While available, do |
3. |
4. |
5. |
6. |
7. |
8. |
9. |
10. End while |
11. |
Output: Estimated polynomial coefficient and filter weight . |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, G.; Luo, D.; Wang, S. A Robust Adaptive Filter for a Complex Hammerstein System. Entropy 2019, 21, 162. https://doi.org/10.3390/e21020162
Qian G, Luo D, Wang S. A Robust Adaptive Filter for a Complex Hammerstein System. Entropy. 2019; 21(2):162. https://doi.org/10.3390/e21020162
Chicago/Turabian StyleQian, Guobing, Dan Luo, and Shiyuan Wang. 2019. "A Robust Adaptive Filter for a Complex Hammerstein System" Entropy 21, no. 2: 162. https://doi.org/10.3390/e21020162
APA StyleQian, G., Luo, D., & Wang, S. (2019). A Robust Adaptive Filter for a Complex Hammerstein System. Entropy, 21(2), 162. https://doi.org/10.3390/e21020162