Synergistic Integration of Local and Global Information for Critical Edge Identification
<p>(<b>a</b>–<b>d</b>) show the original network; the network after removing edges (1, 2) and (2, 7); the network after removing edges (1, 2) and (1, 7); and the network after removing edges (2, 7) and (1, 7), respectively. (<b>e</b>) presents a network without triangular structures, and (<b>f</b>) shows the network after removing edge (1, 2) from the network in (<b>e</b>). In these figures, important edges are marked with red lines, and the others are black lines.</p> "> Figure 2
<p>The top three important edges determined by the SN, EN, EB, and GLHC methods, respectively.</p> "> Figure 3
<p>Subfigures (<b>a</b>–<b>d</b>) illustrate the performance in terms of accuracy of GLHC in the InfectHyper, Ego1, Oregon, and RoadMinnesota networks. The horizontal axis represents the proportion of nodes removed, and the vertical axis represents the ratio of the number of nodes in the largest remaining connected subgraph after node removal to the number of nodes in the original network.</p> ">
Abstract
:1. Introduction
- (1)
- By combining local information with global information, the GLHC method provides a more comprehensive assessment of edge importance. Local information helps capture fine-grained structures within communities, while global information offers a macroscopic view of cross-community connections. This combination enables the GLHC method to evaluate edge importance at multiple levels, resulting in more thorough and accurate identification of critical edges.
- (2)
- The GLHC method shows strong stability in response to changes and disturbances in the network topology, ensuring network connectivity and the overall performance.
2. The Proposed Method
2.1. Baseline Methods
2.1.1. Degree Product (DP)
2.1.2. Edge Betweenness (EB)
2.1.3. Bridgeness (BN)
2.1.4. Diffusion Intensity (DI)
2.1.5. Edge Importance Metric (EI)
2.1.6. Second-Order Neighborhood (SN)
2.2. Proposed Methods
2.2.1. The Enhanced Neighborhood (EN) Method
2.2.2. Global–Local Hybrid Centrality (GLHC)
- (1)
- Inaccurate ranking: Although the EN method can correctly identify the top three edges, the ranking is not precise, with the most important edge (1, 2) being misclassified as the third most important.
- (2)
- The inability to identify edges outside of triangular structures results in most edges scoring zero: except for the top three ranked edges, all the other edges receive a score of zero because there are no triangular structures present, which means the nodes connected by these edges lack common second-order or first-order neighbors.
- (1)
- Accurate identification and ranking: As shown in Figure 2, the GLHC method is the only one that not only accurately identifies the top three important edges but also correctly ranks them, with edge (1, 2) being correctly identified as the most important and ranked first.
- (2)
- Capable of identifying edges that are not part of triangular structures, and all edges receive scores: Even if certain edges lack common first-order or second-order neighbors, GLHC still generates reasonable scores and corresponding rankings for them, unlike the EN method, which simply assigns a score of zero.
- (3)
- Compensates for the lack of local information in global methods: Compared to EB, the GLHC method is able to accurately identify the importance of edges (1, 7) and (2, 7).
- (1)
- Local information aids in capturing fine-grained structures within communities: Within the network structure of communities, the enhanced neighborhood coefficient method effectively identifies close connections between nodes. In complex networks, communities often exhibit high levels of clustering, and local information among nodes can reveal their core roles within the community. Therefore, the GLHC method leverages local neighbor information to more accurately assess the importance of edges within communities, avoiding oversight of critical internal structures.
- (2)
- Global information provides a macro perspective across communities: By incorporating global information, the GLHC method can identify bridging edges that connect different communities. These bridging edges are often the primary channels for inter-community information transfer and resource flow, which are crucial to the overall connectivity and dissemination of information within the network. Neglecting these edges can lead to significant biases in assessing network importance, while the GLHC method ensures that these critical bridging edges are not overlooked by integrating global information.
3. Results and Discussion
3.1. Datasets
3.2. Robustness
3.3. The Effect of Connectivity Degradation
3.4. Monotonicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lei, M.; Wei, D. Identifying influence for community in complex networks. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5346–5349. [Google Scholar]
- Chen, S.; Ji, X.; Shao, H.; Ma, J.; Hu, G. Evaluating the robustness of attributed dynamic bus-metro networks based on community reconstruction. Transp. B Transp. Dyn. 2024, 12, 2380909. [Google Scholar] [CrossRef]
- Wandelt, S.; Shi, X.; Sun, X. Estimation and improvement of transportation network robustness by exploiting communities. Reliab. Eng. Syst. Saf. 2021, 206, 107307. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, Y.; Liang, Y. Effect of transfer costs on traffic dynamics of multimodal transportation networks. Phys. A Stat. Mech. Its Appl. 2023, 623, 128848. [Google Scholar] [CrossRef]
- Ji, Y.; He, W.; Cheng, S.; Kurths, J.; Zhan, M. Dynamic network characteristics of power-electronics-based power systems. Sci. Rep. 2020, 10, 9946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Hu, F.; Wang, S.; Chen, J. Power network robustness analysis based on electrical engineering and complex network theory. Phys. A Stat. Mech. Its Appl. 2021, 564, 125540. [Google Scholar] [CrossRef]
- Chetty, A.; Blekhman, R. Multi-omic approaches for host-microbiome data integration. Gut Microbes 2024, 16, 2297860. [Google Scholar] [CrossRef]
- Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature 2015, 524, 65–68. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 056109. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, M.; Zhou, T.; Do, Y. Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics. Sci. Rep. 2015, 5, 13172. [Google Scholar] [CrossRef]
- Onnela, J.P.; Saramäki, J.; Hyvönen, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.L. Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7332–7336. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.Q.; Ren, F.X.; Shen, H.W.; Zhang, Z.K.; Zhou, T. Bridgeness: A local index on edge significance in maintaining global connectivity. J. Stat. Mech. Theory Exp. 2010, 2010, P10011. [Google Scholar] [CrossRef]
- Zhao, N.; Li, J.; Wang, J.; Li, T.; Yu, Y.; Zhou, T. Identifying significant edges via neighborhood information. Phys. A Stat. Mech. Its Appl. 2020, 548, 123877. [Google Scholar] [CrossRef]
- Yu, E.Y.; Chen, D.B.; Zhao, J.Y. Identifying critical edges in complex networks. Sci. Rep. 2018, 8, 14469. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, P.; Xiang, Z.; Gao, X.; Chen, Y. Novel Approach to Edge Importance Ranking: Balancing Network Structure and Transmission Performance. IEEE Syst. J. 2023, 18, 403–414. [Google Scholar] [CrossRef]
- Lü, L.; Zhang, Y.-C.; Yeung, C.H.; Zhou, T. Leaders in social networks, the delicious case. PLoS ONE 2011, 6, e21202. [Google Scholar] [CrossRef]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Ricciardello, A. A novel measure of edge centrality in social networks. Knowl. Based Syst. 2012, 30, 136–150. [Google Scholar] [CrossRef]
- Zhang, Q.; Marton, K.; Alessandro, V. Link transmission centrality in large-scale social networks. EPJ Data Sci. 2018, 7, 33. [Google Scholar] [CrossRef]
- Hu, Q.; Gao, Y.; Ma, P.; Yin, Y.; Zhang, Y.; Xing, C. A new approach to identify influential spreaders in complex networks. In Proceedings of the International Conference on Web-Age Information Management, Beidaihe, China, 14–16 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 99–104. [Google Scholar]
- Gao, J.; Buldyrev, S.V.; Havlin, S.; Stanley, H.E. Robustness of a network of networks. Phys. Rev. Lett. 2011, 107, 195701. [Google Scholar] [CrossRef]
- Song, J.H. Important edge identification in complex networks based on local and global features. Chin. Phys. B 2023, 32, 098901. [Google Scholar] [CrossRef]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 1–4. Available online: http://networkrepository.com (accessed on 3 October 2024).
- Leskovec, J.; Mcauley, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. 2012, 25, 539–547. [Google Scholar]
- Scheffer, L.K.; Xu, C.S.; Januszewski, M.; Lu, Z.; Takemura, S.Y.; Hayworth, K.J.; Huang, G.B.; Shinomiya, K.; Maitlin-Shepard, J.; Berg, S.; et al. A connectome and analysis of the adult Drosophila central brain. eLife 2020, 9, e57443. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.; Zhao, Y.; Cai, L.; Xue, H.; Zhu, X.; Lu, H.; Zhang, J.; Sun, S.; Ling, L.; Zhang, N.; et al. Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res. 2003, 31, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters. In ACM Transactions on Knowledge Discovery from Data (TKDD); Association for Computing Machinery: New York, NY, USA, 2007; Volume 1, p. 2-es. [Google Scholar]
- Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 177–187. [Google Scholar]
- Rozemberczki, B.; Davies, R.; Sarkar, R.; Sutton, C. Gemsec: Graph embedding with self clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 65–72. [Google Scholar]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef]
- Callaway, D.S.; Newman, M.E.; Strogatz, S.H.; Watts, D.J. Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 2000, 85, 5468. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, D.; Sun, Y.; Zhang, R.; Liu, J. Ranking influential spreaders based on both node k-shell and structural hole. Knowl.-Based Syst. 2023, 260, 110163. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, X.; Wang, Z.; Kurths, J. Diffusion source inference for large-scale complex networks based on network percolation. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, X.; Wang, Z. Fast Outbreak Sense and Effective Source Inference via Minimum Observer Set. IEEE/ACM Trans. Netw. 2024, 32, 3111–3125. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, G.; Wang, X.; Zhu, P.; Wang, Z. Diffusion containment in complex networks through collective influence of connections. IEEE Trans. Inf. Forensics Secur. 2023, 19, 1510–1524. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, G.; Wang, X.; Wang, Z.; Zhu, P.; Wang, Z. Efficient approaches for attaining epidemic-free networks with minimum edge removal set. Commun. Nonlinear Sci. Numer. Simul. 2024, 130, 107753. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, X.; Yan, L.; Zhao, S.; Wang, Z. Individual-centralized seeding strategy for influence maximization in information-limited networks. J. R. Soc. Interface 2024, 21, 20230625. [Google Scholar] [CrossRef]
SN | EN | EB | GLHC | |||||
---|---|---|---|---|---|---|---|---|
Rank | Edge | Score | Edge | Score | Edge | Score | Edge | Score |
1 | (1, 7) | 0.5 | (2, 7) | 1.75 | (1, 2) | 0.46 | (1, 2) | 1.57 |
2 | (2, 7) | 0.5 | (1, 7) | 1.6 | (2, 9) | 0.28 | (2, 7) | 1.10 |
3 | (1, 4) | 0.0 | (1, 2) | 0.38 | (2, 11) | 0.28 | (1, 7) | 1.03 |
4 | (1, 5) | 0.0 | (1, 4) | 0.0 | (1, 4) | 0.20 | (2, 9) | 0.85 |
5 | (1, 6) | 0.0 | (1, 5) | 0.0 | (1, 13) | 0.20 | (2, 11) | 0.85 |
6 | (1, 13) | 0.0 | (1, 6) | 0.0 | (1, 5) | 0.15 | (1, 4) | 0.60 |
7 | (1, 2) | 0.0 | (1, 13) | 0.0 | (1, 6) | 0.15 | (1, 13) | 0.59 |
8 | (2, 8) | 0.0 | (2, 8) | 0.0 | (2, 8) | 0.15 | (1, 5) | 0.46 |
9 | (2, 9) | 0.0 | (2, 9) | 0.0 | (9, 10) | 0.15 | (1, 6) | 0.46 |
10 | (2, 11) | 0.0 | (2, 11) | 0.0 | (11, 12) | 0.15 | (2, 8) | 0.46 |
11 | (4, 3) | 0.0 | (4, 3) | 0.0 | (4, 3) | 0.08 | (9, 10) | 0.46 |
12 | (13, 3) | 0.0 | (13, 3) | 0.0 | (13, 3) | 0.08 | (11, 12) | 0.46 |
13 | (9, 10) | 0.0 | (9, 10) | 0.0 | (1, 7) | 0.08 | (4, 3) | 0.25 |
14 | (11, 12) | 0.0 | (11, 12) | 0.0 | (2, 7) | 0.08 | (13, 3) | 0.25 |
SN | EN | EB | GLHC | |||||
---|---|---|---|---|---|---|---|---|
Rank | Edge | Score | Edge | Score | Edge | Score | Edge | Score |
1 | (1, 7) | 0.0 | (1, 7) | 0.0 | (1, 2) | 0.54 | (1, 2) | 1.62 |
2 | (11, 12) | 0.0 | (11, 12) | 0.0 | (2, 9) | 0.28 | (2, 9) | 0.85 |
3 | (1, 4) | 0.0 | (1, 4) | 0.0 | (2, 11) | 0.28 | (2, 11) | 0.85 |
4 | (1, 5) | 0.0 | (1, 5) | 0.0 | (1, 4) | 0.20 | (1, 4) | 0.60 |
5 | (1, 6) | 0.0 | (1, 6) | 0.0 | (1, 13) | 0.20 | (1, 13) | 0.60 |
6 | (1, 13) | 0.0 | (1, 13) | 0.0 | (1, 5) | 0.15 | (1, 5) | 0.46 |
7 | (1, 2) | 0.0 | (1, 2) | 0.0 | (1, 6) | 0.15 | (1, 6) | 0.46 |
8 | (2, 8) | 0.0 | (2, 8) | 0.0 | (1, 7) | 0.15 | (1, 7) | 0.46 |
9 | (2, 9) | 0.0 | (2, 9) | 0.0 | (2, 8) | 0.15 | (2, 8) | 0.46 |
10 | (2, 11) | 0.0 | (2, 11) | 0.0 | (9, 10) | 0.15 | (9, 10) | 0.46 |
11 | (4, 3) | 0.0 | (4, 3) | 0.0 | (11, 12) | 0.15 | (11, 12) | 0.46 |
12 | (13, 3) | 0.0 | (13, 3) | 0.0 | (4, 3) | 0.08 | (4, 3) | 0.25 |
13 | (9, 10) | 0.0 | (9, 10) | 0.0 | (13, 3) | 0.08 | (13, 3) | 0.25 |
Networks | E | N | <k> | C | r |
---|---|---|---|---|---|
RhesusBrain | 582 | 91 | 12.7912 | 0.8601 | −0.7698 |
IndustryPartner | 630 | 219 | 5.7534 | 0.1762 | −0.2168 |
InfectHyper | 2196 | 113 | 38.8673 | 0.5348 | −0.1226 |
Ego1 | 2519 | 333 | 15.1291 | 0.5082 | 0.2360 |
Ego2 | 3192 | 224 | 28.5 | 0.5443 | 0.2227 |
Ego3 | 4813 | 534 | 18.02621 | 0.5437 | 0.2224 |
RoadMinnesota | 3303 | 2642 | 2.5004 | 0.0159 | −0.1848 |
Drosophila | 9016 | 1781 | 10.1246 | 0.2628 | −0.0943 |
Yeast | 7182 | 2361 | 6.0838 | 0.1301 | −0.0845 |
GR-QC | 14,496 | 5242 | 5.5307 | 0.5296 | 0.6591 |
Oregon | 31,180 | 10,900 | 5.7211 | 0.3525 | −0.1556 |
Company | 52,310 | 14,113 | 7.4130 | 0.2392 | 0.0129 |
ER | 59,991 | 20,000 | 5.9991 | 0.0025 | −0.0308 |
BA | 60,000 | 20,000 | 6.0000 | 0.4412 | −0.0154 |
WS | 124,579 | 5000 | 49.8316 | 0.0100 | −0.0008 |
Networks | EB | DP | DI | BN | EI | SN | EN | GLHC |
---|---|---|---|---|---|---|---|---|
RhesusBrain | 0.5966 | 0.8389 | 0.6882 | 0.5432 | 0.7861 | 0.6687 | 0.5796 | 0.5320 |
IndustryPartner | 0.5673 | 0.7009 | 0.6830 | 0.6046 | 0.6792 | 0.5319 | 0.5115 | 0.4711 |
InfectHyper | 0.8488 | 0.9525 | 0.9430 | 0.9419 | 0.9489 | 0.7279 | 0.7149 | 0.6785 |
Ego1 | 0.4440 | 0.8328 | 0.6941 | 0.6127 | 0.6839 | 0.3687 | 0.3571 | 0.3463 |
Ego2 | 0.5930 | 0.9049 | 0.8577 | 0.8113 | 0.6907 | 0.5630 | 0.5523 | 0.5374 |
Ego3 | 0.3233 | 0.8418 | 0.6712 | 0.5803 | 0.7087 | 0.3586 | 0.3318 | 0.2983 |
RoadMinnesota | 0.2851 | 0.2640 | 0.2737 | 0.5030 | 0.5038 | 0.4441 | 0.4805 | 0.2625 |
Drosophila | 0.6440 | 0.8598 | 0.8248 | 0.7614 | 0.7226 | 0.6096 | 0.6013 | 0.5826 |
Yeast | 0.5295 | 0.6995 | 0.6234 | 0.5727 | 0.5817 | 0.4220 | 0.4198 | 0.4147 |
GR-QC | 0.2406 | 0.4533 | 0.2623 | 0.1963 | 0.3446 | 0.2189 | 0.2035 | 0.1926 |
Oregon | 0.5445 | 0.7245 | 0.6211 | 0.5615 | 0.7260 | 0.4737 | 0.4912 | 0.4434 |
Company | 0.5317 | 0.7591 | 0.6577 | 0.5617 | 0.5852 | 0.4065 | 0.4289 | 0.4001 |
ER | 0.8152 | 0.8386 | 0.8217 | 0.8424 | 0.8341 | 0.7539 | 0.7467 | 0.7057 |
BA | 0.7291 | 0.7304 | 0.7261 | 0.7369 | 0.7599 | 0.6978 | 0.6818 | 0.6338 |
WS | 0.2868 | 0.6227 | 0.2476 | 0.5880 | 0.6085 | 0.2032 | 0.2065 | 0.1930 |
Networks | EB | DP | DI | BN | EI | SN | EN | GLHC |
---|---|---|---|---|---|---|---|---|
RhesusBrain | 0.9945 | 0.9637 | 0.9374 | 0.8371 | 0.9673 | 0.8982 | 0.9749 | 0.9951 |
IndustryPartner | 0.9855 | 0.9849 | 0.9849 | 0.7621 | 0.9838 | 0.9826 | 0.9855 | 0.9922 |
InfectHyper | 0.8487 | 0.9525 | 0.9429 | 0.9419 | 0.9488 | 0.7279 | 0.9048 | 0.9685 |
Ego1 | 0.9996 | 0.9964 | 0.9712 | 0.9701 | 0.9876 | 0.9983 | 0.9991 | 0.9997 |
Ego2 | 0.9999 | 0.9981 | 0.9684 | 0.9885 | 0.9813 | 0.9978 | 0.9999 | 0.9999 |
Ego3 | 0.9998 | 0.9964 | 0.9700 | 0.9774 | 0.9761 | 0.9981 | 0.9998 | 0.9999 |
RoadMinnesota | 0.9984 | 0.6194 | 0.4970 | 0.5138 | 0.8454 | 0.8581 | 0.8984 | 0.9984 |
Drosophila | 0.9997 | 0.9969 | 0.9856 | 0.9502 | 0.9699 | 0.9996 | 0.9957 | 0.9997 |
Yeast | 0.9862 | 0.9910 | 0.9554 | 0.7925 | 0.9689 | 0.9829 | 0.9472 | 0.9830 |
GR-QC | 0.9083 | 0.9807 | 0.8684 | 0.4174 | 0.9347 | 0.9813 | 0.9770 | 0.9920 |
Oregon | 0.9994 | 0.9914 | 0.9882 | 0.9362 | 0.9876 | 0.9993 | 0.9313 | 0.9994 |
Company | 0.9998 | 0.9923 | 0.9695 | 0.8555 | 0.9867 | 0.9924 | 0.9780 | 0.9934 |
ER | 1.0 | 0.9668 | 0.8796 | 0.9839 | 0.7367 | 0.9378 | 0.9412 | 1.0 |
BA | 0.9999 | 0.9692 | 0.9398 | 0.9818 | 0.7076 | 0.9821 | 0.9846 | 0.9999 |
WS | 0.9997 | 0.6095 | 0.7756 | 0.6759 | 0.9726 | 0.9126 | 0.9373 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Luo, T.; Wang, H.; Yang, S.-P.; Xiong, N.-F.; Jing, M.; Wang, J. Synergistic Integration of Local and Global Information for Critical Edge Identification. Entropy 2024, 26, 933. https://doi.org/10.3390/e26110933
Zhao N, Luo T, Wang H, Yang S-P, Xiong N-F, Jing M, Wang J. Synergistic Integration of Local and Global Information for Critical Edge Identification. Entropy. 2024; 26(11):933. https://doi.org/10.3390/e26110933
Chicago/Turabian StyleZhao, Na, Ting Luo, Hao Wang, Shuang-Ping Yang, Ni-Fei Xiong, Ming Jing, and Jian Wang. 2024. "Synergistic Integration of Local and Global Information for Critical Edge Identification" Entropy 26, no. 11: 933. https://doi.org/10.3390/e26110933
APA StyleZhao, N., Luo, T., Wang, H., Yang, S. -P., Xiong, N. -F., Jing, M., & Wang, J. (2024). Synergistic Integration of Local and Global Information for Critical Edge Identification. Entropy, 26(11), 933. https://doi.org/10.3390/e26110933