Information Propagation in Hypergraph-Based Social Networks
<p>Evolutionary schematic of the hypernetwork model (<math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>). Blue solid lines indicate existing hyperedges, green nodes denote existing nodes, red dashed lines depict new hyperedges added in the current time step, and blue nodes signify new nodes added during the current time step.</p> "> Figure 2
<p>SEIR model state transition diagram. In the context of information dissemination, the green section represents the <math display="inline"><semantics> <mrow> <mi>S</mi> </mrow> </semantics></math>-state, indicating unawareness of the information. The dark blue section is the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state, where individuals are aware of but not spreading the information. The purple section denotes the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, where individuals actively spread the information. The light blue section represents the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state, indicating immunity to the information.</p> "> Figure 3
<p>SSEIR model state transition diagram. Dark green denotes the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math>-state, light green denotes the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math>-state, dark blue denotes the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state, purple denotes the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, and light blue denotes the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state.</p> "> Figure 4
<p>Comparison chart of theoretical and simulation trends in information dissemination. The green dashed line represents theoretical values for the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state, the red dashed line for the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, and the light blue dashed line for the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state. Green star-shaped markers denote simulation results for the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state, red stars for the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, and light blue stars for the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state.</p> "> Figure 5
<p>Trends of information dissemination across different network models. Deep blue denotes the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math>-state, black denotes the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math>-state, light blue denotes the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state, red denotes the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, and green denotes the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. (<b>A</b>) displays the theoretical curves of the model, (<b>B</b>) applies the model to a hypernetwork, (<b>C</b>) to a BA scale-free network, and (<b>D</b>) to an NW small-world network.</p> "> Figure 6
<p>Impact of different <math display="inline"><semantics> <mrow> <mi>θ</mi> </mrow> </semantics></math> on the quantities of <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state. The (<b>A</b>) displays the effect on the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, while the (<b>B</b>) shows the effect on the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state. The green curve corresponds to a spreading rate of 0.005, the red to 0.03, and the blue to 0.05.</p> "> Figure 7
<p>Effects of different <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> on the quantities of <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. The (<b>A</b>) shows the effect of recovering rate on the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, while the (<b>B</b>) details the effect on the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. The green curve indicates a <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> of 0.04, the red a rate of 0.02, and the blue a rate of 0.01.</p> "> Figure 8
<p>Impact of varying average numbers of adjacent nodes on the quantities of <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. The (<b>A</b>) details the effects on the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, while the (<b>B</b>) details the effects on the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. The green curve denotes <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>; the red curve denotes <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>; the blue curve denotes <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Impact of different ratios of active (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math>) to inactive (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math>) nodes on the quantities of <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state. The (<b>A</b>) details the effect on the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state, while the (<b>B</b>) details the effect on the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state. The green curve indicates a ratio of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mo>:</mo> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo>:</mo> <mn>6</mn> </mrow> </semantics></math>, the red a ratio of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mo>:</mo> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>:</mo> <mn>7</mn> </mrow> </semantics></math>, and the blue a ratio of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mo>:</mo> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo>:</mo> <mn>8</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Time-dependent curves of active users in different information dissemination models at a fixed transmission rate. The blue curve in the figure represents the trend in the number of users in the <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state in the SIR model, the red curve represents the trends in the number of users in both the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state in the SEIR model, and the green curve represents the trends in the number of users in the <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state and <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state in the SSEIR model.</p> "> Figure 11
<p>Change curves of different states of the SSEIR model under various real networks. (<b>A</b>) shows the validation of the SSEIR model in a scientific collaboration network, while (<b>B</b>) depicts the validation in a Twitter social network. The figures use green, red, and blue curves to represent the change curves of the <math display="inline"><semantics> <mrow> <mi>R</mi> </mrow> </semantics></math>-state, <math display="inline"><semantics> <mrow> <mi>I</mi> </mrow> </semantics></math>-state, and <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math>-state, respectively.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Concept of Hypernetworks
2.2. Construction of OSHN Topological Model
- Initialization: Initially, the online social hypernetwork contains users, forming a social clustering relationship, where these user nodes constitute a single hyperedge;
- Growth Dynamics: At each time step , a new user is added. This user selects existing nodes from the hypernetwork to form various new clustering relationships. Consequently, at each time step, non-repetitive hyperedges are generated in the social hypernetwork;
- Hyperdegree Preferential Attachment Mechanism: From the pool of existing nodes in the hypernetwork, old nodes are selected to form a new hyperedge with the newly added node based on their hyperdegrees. The probability of selecting a node for connection is proportional to the node’s hyperdegree , relative to the total hyperdegree of all existing nodes in the hypernetwork, expressed as follows:
2.3. Traditional Propagation Model: SEIR
3. Proposal of the New Model
3.1. Shortcomings of Traditional Models
3.2. Proposal of the Model
- From to : A node adjacent to an -state node moves to -state with a probability of ;
- From to : A node adjacent to an -state node shifts to -state with a probability of , starting to disseminate information;
- From to or : Nodes in that -state have a probability of moving to -state to spread information or a probability of going directly to -state to stop spreading;
- From to : Nodes in the -state move to the -state with a probability of , ending their role in information dissemination. Additionally, the probability accounts for forgetting information, leading to -state.
4. Simulation Results and Analysis
4.1. Theoretical and Simulation Results Comparison
4.2. Dynamics Simulation Analysis of Different Network Structures
4.3. The Impact of Spreading Rate on Information Propagation
4.4. The Impact of Recovering Rate on Information Propagation
4.5. The Impact of the Number of Adjacent Nodes on Information Propagation
4.6. Impact of the Ratio of Active to Inactive Users on Information Propagation
4.7. Comparison of SIR, SEIR, and SSEIR Propagation Models
4.8. Validation of the SSEIR Model on Real Datasets
5. Conclusion and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Obar, J.A.; Wildman, S. Social media definition and the governance challenge: An introduction to the special issue. Telecommun. Policy 2015, 39, 745–750. [Google Scholar] [CrossRef]
- Goffman, W.; Newill, V. Generalization of epidemic theory. Nature 1964, 204, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146. [Google Scholar]
- Al-Oraiqat, M.A.; Ulichev, S.O.; Meleshko, V.Y.; AlRawashdeh, H.S.; Smirnov, O.O.; Polishchuk, L.I. Modeling strategies for information influence dissemination in social networks. J. Ambient Intell. Humaniz. Comput. 2021, 13, 2463–2477. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, X.; Du, R. An enhanced SIR dynamic model: The timing and changes in public opinion in the process of information diffusion. Electron. Commer. Res. 2024, 24, 2021–2044. [Google Scholar] [CrossRef]
- Qiu, L.; Jia, W.; Niu, W.; Zhang, M.; Liu, S. SIR-IM: SIR rumor spreading model with influence mechanism in social networks. Soft Comput. 2020, 25, 13949–13958. [Google Scholar] [CrossRef]
- Zhang, Z.K. Review of Information Propagation Mechanisms and Dynamics in Online Social Networks. J. Intell. 2017, 36, 422–431. [Google Scholar]
- Hill, A.L.; Rand, D.G.; Nowak, M.A.; Christakis, N.A. Infectious disease modeling of social contagion in networks. PLoS Comput. Biol. 2010, 6, e1000968. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Wang, H.; Zhang, J.; Li, L.; Huang, Q. The fractional SEIRS epidemic model for information dissemination in social networks. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 284–291. [Google Scholar]
- Cui, J.D.; Zheng, Q.; Sun, S. Research on micro-blog topic information dissemination based on improved SEIR model. Inf. Sci. 2017, 35, 22–27. [Google Scholar]
- Liu, Y.; Diao, S.-M.; Zhu, Y.-X.; Liu, Q. SHIR competitive information diffusion model for online social media. Phys. A Stat. Mech. Its Appl. 2016, 461, 543–553. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, Z.; Jin, Y.; Cheng, S.; Yang, T. ESIS: Emotion-based spreader–ignorant–stifler model for information diffusion. Knowl. Based Syst. 2015, 81, 46–55. [Google Scholar] [CrossRef]
- Lu, L.; Chen, D.; Zhou, T. The small world yields the most effective information spreading. N. J. Phys. 2011, 13, 123005. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Z.; Liu, P.; Wang, P. Influence maximization in social network considering memory effect and social reinforcement effect. Future Internet 2019, 11, 95. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y. Factors affecting the spread of multiple information in social networks. PLoS ONE 2019, 14, e0225751. [Google Scholar] [CrossRef]
- Shao, C.; Shao, F.; Liu, X.; Yang, D.; Sun, R.; Zhang, L.; Jiang, K. A Multi-Information Dissemination Model Based on Cellular Automata. Mathematics 2024, 12, 914. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Hu, M.; Dong, M.; Lai, L. Node attitude aware information dissemination model based on evolutionary game in social networks. Mob. Netw. Appl. 2021, 26, 114–129. [Google Scholar] [CrossRef]
- Chen, J.; Huang, J.; Xin, C.; Liu, M. Research on information dissemination model based on heat transfer in online social network. J. Supercomput. 2023, 79, 7717–7735. [Google Scholar]
- Li, L.; Zheng, X.; Han, J.; Hao, F. Information cascades blocking through influential nodes identification on social networks. J. Ambient Intell. Humaniz. Comput. 2023, 14, 7519–7530. [Google Scholar] [CrossRef]
- Sun, Y.; Han, J.; Yan, X.; Yu, P.S.; Wu, T. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 2011, 4, 992–1003. [Google Scholar] [CrossRef]
- Gui, H.; Sun, Y.; Han, J.; Brova, G. Modeling topic diffusion in multi-relational bibliographic information networks. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 3–7 November 2014; pp. 649–658. [Google Scholar]
- Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous graph attention network. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2022–2032. [Google Scholar]
- Li, Y.; Chen, C.; Duan, M.; Zeng, Z.; Li, K. Attention-aware encoder–decoder neural networks for heterogeneous graphs of things. IEEE Trans. Ind. Inform. 2020, 17, 2890–2898. [Google Scholar] [CrossRef]
- Molaei, S.; Zare, H.; Veisi, H. Deep learning approach on information diffusion in heterogeneous networks. Knowl.-Based Syst. 2020, 189, 105153. [Google Scholar] [CrossRef]
- Dutta, S.; Masud, S.; Chakrabarti, S.; Chakraborty, T. Deep exogenous and endogenous influence combination for social chatter intensity prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 1999–2008. [Google Scholar]
- Li, M.; Wang, X.; Gao, K.; Zhang, S. A survey on information diffusion in online social networks: Models and methods. Information 2017, 8, 118. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, L.; Du, G.; Wang, L.; Jiang, Y. Information Diffusion Prediction Based on Deep Attention in Heterogeneous Networks. In International Conference on Spatial Data and Intelligence; Springer Nature: Cham, Switzerland, 2022; pp. 99–112. [Google Scholar]
- Uthirapathy, S.E.; Sandanam, D. Predicting opinion evolution based on information diffusion in social networks using a hybrid fuzzy based approach. Int. J. Inf. Technol. 2023, 15, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Iamnitchi, A.; Hall, L.O.; Horawalavithana, S.; Mubang, F.; Ng, K.W.; Skvoretz, J. Modeling information diffusion in social media: Data-driven observations. Front. Big Data 2023, 6, 1135191. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhu, H.; Wang, L.; Chen, Z.; Gao, M.; Xin, Y. User Identity Linkage Across Social Networks by Heterogeneous Graph Attention Network Modeling. Appl. Sci. 2020, 10, 5478. [Google Scholar] [CrossRef]
- Zhu, N.; Li, W.; Pan, S.; Jin, S.; He, J. Modeling the dissemination of privacy information in online social networks. Trans. Emerg. Telecommun. Technol. 2024, 35, 6. [Google Scholar] [CrossRef]
- Vasilyeva, E.; Romance, M.; Samoylenko, I.; Kovalenko, K.; Musatov, D.; Raigorodskii, A.M.; Boccaletti, S. Distances in Higher-Order Networks and the Metric Structure of Hypergraphs. Entropy 2023, 25, 923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cheng, W.; Li, F.; Wang, X. Hypergraph-Based Influence Maximization in Online Social Networks. Mathematics 2024, 12, 2769. [Google Scholar] [CrossRef]
- Burgio, G.; Matamalas, J.T.; Gómez, S.; Arenas, A. Evolution of Cooperation in the Presence of Higher-Order Interactions: From Networks to Hypergraphs. Entropy 2020, 22, 744. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Li, F.X.; Zhao, H.X. Scale-Free Characteristics of Hypernetworks Study. Sci. China Phys. Mech. Astron. 2017, 47, 17–22. [Google Scholar]
- Berge, C. Graphs and Hypergraphs; American Elsevier Publishing Company: New York, NY, USA, 1973; p. 389. [Google Scholar]
- Gong, Y.C.; Wang, M.; Liang, W.; Hu, F.; Zhang, Z.K. UHIR: An effective information dissemination model of online social hypernetworks based on user and information attributes. Inf. Sci. 2023, 644, 119284. [Google Scholar] [CrossRef]
- Guo, J.L.; Zhu, X.Y.; Suo, Q.; Forrest, J. Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs. Sci. Rep. 2016, 6, 36648. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, H.X.; Ma, X.J. Construction and Characteristics Analysis of a Hypernetwork Evolution Model. Sci. China Phys. Mech. Astron. 2013, 43, 16–22. [Google Scholar] [CrossRef]
- Benedek, R.; Carl, A.; Rik, S. Multi-Scale attributed node embedding. J. Complex Netw. 2021, 9, cnab014. [Google Scholar]
Transition | Description |
---|---|
-state | |
-state | |
-state | |
-state | |
-state | |
-state | |
-state | |
-state | |
-state |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.-B.; Hu, F.; Li, P.-Y.; Song, Y.-R.; Zhang, Z.-K. Information Propagation in Hypergraph-Based Social Networks. Entropy 2024, 26, 957. https://doi.org/10.3390/e26110957
Xiao H-B, Hu F, Li P-Y, Song Y-R, Zhang Z-K. Information Propagation in Hypergraph-Based Social Networks. Entropy. 2024; 26(11):957. https://doi.org/10.3390/e26110957
Chicago/Turabian StyleXiao, Hai-Bing, Feng Hu, Peng-Yue Li, Yu-Rong Song, and Zi-Ke Zhang. 2024. "Information Propagation in Hypergraph-Based Social Networks" Entropy 26, no. 11: 957. https://doi.org/10.3390/e26110957
APA StyleXiao, H. -B., Hu, F., Li, P. -Y., Song, Y. -R., & Zhang, Z. -K. (2024). Information Propagation in Hypergraph-Based Social Networks. Entropy, 26(11), 957. https://doi.org/10.3390/e26110957