Overview of Tensor-Based Cooperative MIMO Communication Systems—Part 2: Semi-Blind Receivers
<p>Organization of the paper.</p> "> Figure 2
<p>Nested tensor decompositions based on TD and CPD.</p> "> Figure 3
<p>TTD of a <italic>P</italic>th-order tensor, <inline-formula><mml:math id="mm1130"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mi>P</mml:mi></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 4
<p>Graph of the TTD-4 model for a fourth-order tensor <inline-formula><mml:math id="mm1131"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>4</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 5
<p>Graph of the GTTD-(2,4,4,2) model for a sixth-order tensor <inline-formula><mml:math id="mm1132"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>6</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 6
<p>NCPD-4 model as (<bold>a</bold>) a nesting of two CPD-3 models and (<bold>b</bold>) a cascade of two CPD-3 models.</p> "> Figure 7
<p>NTD-4 model as (<bold>a</bold>) a particular TTD and (<bold>b</bold>) a cascade of two TD-(2,3) models.</p> "> Figure 8
<p>Graph of the NTD-4 model for a fourth-order tensor <inline-formula><mml:math id="mm1133"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>4</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 9
<p>Graph of the NTD-6 model for a sixth-order tensor <inline-formula><mml:math id="mm1134"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>6</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 10
<p>Graph of the NGTD-7 model for a seventh-order tensor <inline-formula><mml:math id="mm1135"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>7</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 11
<p>Graph of the NGTD-5 model for a fifth-order tensor <inline-formula><mml:math id="mm1136"><mml:semantics><mml:mrow><mml:mi mathvariant="script">X</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mi mathvariant="double-struck">K</mml:mi><mml:msub><mml:munder><mml:mi>I</mml:mi><mml:mo>̲</mml:mo></mml:munder><mml:mn>5</mml:mn></mml:msub></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 12
<p>Two families of TD- and CPD-based decompositions.</p> "> Figure 13
<p>Classification of relay systems according to the coding scheme and tensor model.</p> "> Figure 14
<p>One-way, two-hop cooperative system.</p> "> Figure 15
<p>Tucker train model of a two-hop relay system using TSTF codings.</p> "> Figure 16
<p>Tucker train model of a two-hop relay system using TST codings.</p> "> Figure 17
<p>NCPD-5 model for the DKRSTF system as a cascade of three CPD-3 models.</p> "> Figure 18
<p>NCPD-4 model for the SKRST system.</p> "> Figure 19
<p>Plan of simulations for performance comparison.</p> "> Figure 20
<p>SER comparison with different receivers for STST and SKRST.</p> "> Figure 21
<p>Comparison of (<bold>a</bold>) computation time for ZF, KronF/KRF, and ALS receivers and (<bold>b</bold>) number of iterations for convergence of ALS receivers for STST and SKRST.</p> "> Figure 22
<p>NMSE of estimated channels with the KronF/KRF and ALS receivers for STST and SKRST: (<bold>a</bold>) <inline-formula><mml:math id="mm1137"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula> and (<bold>b</bold>) <inline-formula><mml:math id="mm1138"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula>.</p> "> Figure 23
<p>Impact of time-spreading lengths with ZF receivers of STST and SKRST.</p> "> Figure 24
<p>Impact of numbers of antennas with ZF receivers of (<bold>a</bold>) SKRST and (<bold>b</bold>) STST.</p> "> Figure 25
<p>SER comparison for the DKRSTF, STSTF, and TSTF systems with <inline-formula><mml:math id="mm1139"><mml:semantics><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mo>≥</mml:mo><mml:msub><mml:mi>M</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 26
<p>Impact of the number <italic>Q</italic> of symbol matrices in combined codings with ZF receivers.</p> "> Figure 27
<p>Impact of AF/DF protocols on SER performance of STST and SKRST.</p> "> Figure 28
<p>Impact of AF/DF protocols on NMSE of estimated channels for STST and SKRST: (<bold>a</bold>) <inline-formula><mml:math id="mm1140"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula> and (<bold>b</bold>) <inline-formula><mml:math id="mm1141"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula>.</p> "> Figure 29
<p>SER comparison for all considered relay systems.</p> "> Figure 30
<p>NMSE of estimated channels for all considered relay systems: (<bold>a</bold>) <inline-formula><mml:math id="mm1142"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula> and (<bold>b</bold>) <inline-formula><mml:math id="mm1143"><mml:semantics><mml:msup><mml:mover accent="true"><mml:mi mathvariant="bold">H</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula>.</p> "> Figure 31
<p>Comparison of considered relay systems in terms of (<bold>a</bold>) NMSE of reconstructed received signals and (<bold>b</bold>) computation time.</p> ">
Abstract
:1. Introduction
- To provide a self-contained overview of tensor models used to design wireless communication systems. After a reminder of tensor prerequisites, standard tensor decompositions are first recalled, more particularly the CPD/PARAFAC and Tucker decompositions, as well as some variants. Then, two important classes of tensor decompositions, namely the NCPD and NTD, are presented in an unified and original way, using a new representation by means of graphs and highlighting their link with the tensor train decomposition (TTD) [44]. This link is exploited to demonstrate the uniqueness property of NTD models. Some of the models to be used when designing new relay systems are introduced for the first time.
- To present two families of algorithms that estimate the parameters of NCPD and NTD models: iterative algorithms based on alternating least squares (ALS) and closed-form solutions using Khatri–Rao and Kronecker factorization methods, denoted as KRF and KronF, which consist of SVD-based rank-one matrix or tensor approximations. These closed-form algorithms result from the fact that unfoldings of CPD and TD are expressed in terms of Khatri–Rao and Kronecker products of matrix factors, respectively.
- To provide an overview of tensor-based cooperative MIMO communication systems from a semi-blind receiver perspective, with a focus on two-hop relay systems, as complement of our companion paper [45]. The goal of this presentation is first to show how the choices of coding, relay protocol (AF (amplify-and-forward) or DF), and assumptions made about communication channels (flat fading or frequency-selective fading channels) impact the modeling of relay systems. Then, assuming knowledge of coding tensors and matrices at the destination and exploiting the multilinear structure of the system model, we devise semi-blind receivers to jointly estimate the transmitted symbols and the individual channels for each considered relay system. Uniqueness conditions for the tensor model of each system and necessary conditions for parameter identifiability using the associated receivers are established.
- To compare the performance of main two-hop relay systems and associated semi-blind receivers in terms of the symbol error rate (SER), channel estimate normalized mean-square error (NMSE), and computation time, by means of extensive Monte Carlo simulations, with the aim of showing how the best performance–complexity–identifiability condition tradeoff can be achieved.
- Tensor-based codings, including TSTF, STSTF, TST, and STST codings (TSTF = tensor space-time frequency; STSTF = simplified TSTF; TST = tensor space-time; STST = simplified TST);
- Matrix-based codings, including DKRSTF and SKRST codings (DKRSTF = doubly Khatri–Rao space-time frequency; SKRST = simplified Khatri–Rao space-time);
- STST and SKRST codings combined with MSMKron and MSMKR codings (MSMKron = multiple symbol matrices’ Kronecker product; MSMKR = multiple symbol matrices’ Khatri–Rao product), respectively.
2. Tensor Prerequisites
2.1. Index Convention
- Each index can be repeated more than twice in an expression;
- Ordered index sets are allowed.
- The order of the column indices is independent of the order of the row indices;
- Consecutive row and column indices (or index sets) can be permuted.
2.2. Notion of Slice
2.3. Matrix Unfoldings of a Tensor
2.4. Basic Tensor Operations
2.5. Inner Product and Frobenius Norm
3. Overview of Tensor Models
3.1. TD and CPD Models
3.2. TTD Models
3.3. Nested Tensor Models
3.3.1. NCPD-4 Model
3.3.2. NTD-4 Model
- The equations in Table 16 can be used to build a five-step ALS-based algorithm to separately and iteratively estimate the factors of the NTD-4 model.
- When the tensors and are known, the equations in Table 16 can be used to estimate the unknown matrix factors of the NTD-4 model using a three-step ALS algorithm. In Section 4.3, equations in Table 15 will be exploited to derive two closed-form algorithms based on the Kronecker factorization (KronF) method. These algorithms will be used to develop semi-blind receivers for relay systems where the tensors and are STST coding tensors assumed to be known at the destination.
- When the core tensors and are perfectly known, as will be the case with the coding tensors in the context of relay systems, the ambiguity matrices become identity matrices multiplied by a scalar:
3.3.3. NTD-6 and NGTD-7 Models
4. Parameter Estimation Algorithms
4.1. CPD/PARAFAC Model
4.2. NCPD-4 Model
4.2.1. ALS Algorithm
4.2.2. KRF-Based Closed-Form Algorithms
4.3. NTD-4 Model
4.3.1. ALS Algorithm
4.3.2. Closed-Form Algorithms
4.4. NTD-6 Model
4.5. NGTD-7 Model
5. Overview of Cooperative and Two-Hop Relay Systems
5.1. Overview of Cooperative Systems
- Cooperation scheme: Most cooperative systems use relays for the exchange of information between source and destination nodes. Relay stations are equipped with hardware and signal processing capability that allow signal decoding/coding steps, depending on the relay protocol. Recent works have addressed cooperation schemes using intelligent reflecting surfaces (IRSs), which act as a large number of passive re-reflecting elements with low energy consumption and limited processing capacity to process the received signals. For a comprehensive presentation of IRS-assisted MIMO communication systems and, more generally, of various applications of IRS-assisted wireless networks, the reader is referred to the following review papers: [75,76,77,78,79,80].Note that, unlike the semi-blind receivers proposed in this paper that allow an estimation of individual channels in two-hop relay systems with the use of very few pilot symbols, most existing works regarding IRS-assisted wireless communications have presented supervised solutions using a pilot sequence to estimate the individual transmitter-to-IRS and IRS-to-receiver channels or the cascaded transmitter–IRS receiver channel, view as a single channel [65,68,69,81,82,83,84,85]. The use of pilot sequences results in a reduction in transmission rates.Channel estimation for IRS-assisted MIMO communication systems is a very challenging task due to the following: (i) the large number of passive IRS elements and, therefore, of channel coefficients to be estimated; and (ii) the lack of processing capacity at the IRS.A lot of methods have been proposed in the literature to solve the channel estimation problem, depending on the channel model, system configuration (SISO/MISO/MIMO, single-/multi-user, single-/multi-IRS, or narrowband/broadband communication), type of receiver (supervised using pilot sequences versus semi-blind), and algorithm (ALS, closed-form, compressed sensing, or deep learning) used for individual or cascaded channel estimation. The reader is invited to consult the survey paper [86] for a more detailed presentation of IRS channel estimation methods.Another type of cooperative system involves UAV-assisted communications [70,87]. Consult [88] for a survey on civil UAV applications. In the context of 6G wireless networks, from the perspective of connecting everyone and everything, integrated satellite–terrestrial networks [89], also known as integrated satellite terrestrial/aerial networks (IST/ANs) [90], have been the subject of recent studies. Other recent works consider IRS-UAV-assisted wireless communication networks for assisting the communication between a base station and multiple users [91,92] or an Internet of Things (IoT) terminal [71].In the future, highly digitized world of all connected objects, 6G wireless networks will integrate different functionalities, including sensing, communication, computing, localization, navigation, signal and image processing, and object recognition, combined with artificial intelligence (AI) technology. This is the case of recent integrated (radar) sensing and communication (ISAC) systems [93,94,95], also known as joint communication and radar/radio sensing (JCAS) systems [96], which aim to improve spectral efficiency while minimizing hardware cost and power consumption.
- Relaying protocols: The two most common relaying protocols are DF and AF, depending on whether the relay decodes the received signals. Although the DF protocol generally offers better performance, most of the relay systems presented in Table 22 use the AF protocol. In [55], the authors compare the system performance obtained with both protocols to jointly and semi-blindly estimate the transmitted symbols and individual channels in a one-way two-hop relay system.
- Coding schemes: Various coding schemes are used in the cooperative systems reported in Table 22. However, much of the works propose cooperative systems employing KRST and TST codings. In the present paper, we consider two coding families: tensor-based (e.g., TST and TSTF, and simplified versions denoted as STST and STSTF) and matrix-based (e.g., SKRST and DKRSTF) codings employed at the source and the relay. Two combined codings, denoted as SKRST-MSMKR and STST-MSMKron, are also considered.
- Communication channels: Two types of channels are most often considered, namely flat-fading and frequency-selective fading channels. In the latter case, the channels, which depend on frequency, are represented by means of third-order tensors, implying more channel coefficients to be estimated.
- Receiver algorithms: Parameter estimation algorithms can be classified into two main categories: iterative and closed-form algorithms. The works cited in Table 22 mainly use ALS-based algorithms and closed-form solutions based on KRF and KronF methods, described respectively in Appendix B and Appendix C. These algorithms will be applied in Section 6 to devise semi-blind receivers for the joint estimation of symbol matrices and channel coefficients for all considered relay systems.
5.2. Overview of Two-Hop Relay Systems
- One-way/two-way;
- AF/DF relaying protocol;
- Two-hop/multihop;
- Half-duplex/full-duplex (the relay can then transmit and receive simultaneously in both directions, during the same time slot).
5.3. AF Two-Hop Relay Systems Using Tensor-Based Codings
5.3.1. TSTF Coding
5.3.2. TST Coding
5.3.3. STSTF and STST Codings
5.4. AF Two-Hop Relay Systems Using Matrix-Based Codings
5.4.1. DKRSTF Coding
5.4.2. SKRST Coding
5.5. DF Two-Hop Relay Systems Using STST-MSMKron and SKRST-MSMKR Codings
5.5.1. STST-MSMKron Coding
5.5.2. SKRST-MSMKR Coding
- In the case of tensor-based codings, the nested models of signals received at the relay and the destination result from the nesting of two TD-(2,4) and two TD-(2,3) models for the TST and STST systems, respectively, and two GTD-(2,5) and two GTD-(2,4) models for the TSTF and STSTF systems, respectively, with coding tensors as core tensors.
- In the case of matrix-based codings, the nested models are cascades of three and two CPD-3 models for the DKRSTF and SKRST systems, respectively, with a coding matrix as factor of each CPD-3 model.
- In the case of combined codings, with the DF protocol, the signals received at relay and destination form -order tensor models which satisfy a CPD model with a coding matrix as a factor for the SKRST-MSMKR system, and a TD model with a coding tensor as a core tensor for the STST-MSMKron system.
6. Semi-Blind Receivers
- -
- KronF receiver for the TSTF system (Table 21, for a NGTD-7 model);
- -
- KronF receiver for the TST system (Table 20, for a NTD-6 model);
- -
- KronF receiver for the STSTF system (Remark 7, for a NGTD-5 model);
- -
- KronF receiver for the STST system (Table 19, for a NTD-4 model);
- -
- ALS receiver for the STST system (Equations (82)–(84), for a NTD-4 model);
- -
- KRF receiver for the SKRST system (Table 18, for a NCPD-4 model);
- -
- ALS receiver for the SKRST system (Equations (67), (68) and (70), for a NCPD-4 model).
6.1. KronF Receiver for the TSTF System
6.2. KronF Receiver for the STST System and KRF Receiver for the SKRST System
6.3. ALS Receivers for the STST and SKRST Systems
6.4. KRF Receiver for the DKRSTF System
6.5. KronF Receiver for the STST-MSMKron System
6.6. KRF Receiver for the SKRST-MSMKR System
6.7. Zero-Forcing Receivers for the STST and SKRST Systems
6.8. Ambiguity Relations, Identifiability Conditions, and Transmission Rates
- ALS-based receivers are less constraining than closed-form ones. The matrices to be inverted in the ALS steps induce greater flexibility in the choice of design parameters compared to closed-form receivers which impose more restrictive conditions on these parameters.
- Matrix-based coding schemes induce fewer restrictions than tensor codings, i.e., softer constraints for the choice of design parameters.
- Exploiting chip diversity in the encoding process leads to identifiability conditions that are less constraining without degrading transmission rate.
7. Simulation Results
7.1. Comparison of Receiver Algorithms
7.2. Impact of Design Parameters and Relay Protocol
7.2.1. Impact of Time-Spreading Lengths: and
7.2.2. Impact of Numbers of Antennas: , , , and
7.2.3. Impact of the Number Q of Symbol Matrices in Combined Codings
7.2.4. Impact of Relaying Protocol: AF and DF
7.3. Comparison of Coding Schemes
- Diversity: All coding schemes used at both the source and the relay include space-time (ST) coding. TST coding incorporates additional chip diversity, while STSTF and DKRSTF take into account frequency diversity. TSTF is the most comprehensive coding simultaneously exploiting the space-time–chip–frequency diversities , resulting in the best performance.
- Channels: Systems based on TSTF and STSTF codings consider frequency-selective fading channels, i.e., third-order channel tensors, while all other systems assume flat fading channels, i.e., channel matrices. It is worth noting that, despite a larger number of channel coefficients to be estimated, the best SER is obtained with TSTF coding due to the exploitation of all diversities, at the cost of a higher computation time.
- Necessary identifiability conditions: These conditions are related to the uniqueness of the pseudo-inverses of coding matrices or matrix unfoldings of coding tensors, depending on both the coding and the receiver type (ALS/KronF/KRF). ALS receivers are the least restrictive, i.e., the most flexible in the choice of design parameters. TSTF and TST are less restrictive than their simplified versions (STSTF and STST), thanks to the incorporation of chip diversity. Matrix codings entail fewer constraints than tensor codings. Note that frequency diversity has no impact on the identifiability conditions.
- A priori knowledge: With matrix codings (SKRST and DKRSTF) leading to CP models for received signals, associated semi-blind receivers use the KRF algorithm, which requires knowledge of an entire row of symbol and RD-channel matrices to remove ambiguities. On the other hand, systems based on tensor codings are modeled using Tucker or generalized Tucker models for which the semi-blind receivers use the KronF algorithm, which requires knowledge of only one element of the symbol and RD-channel matrices. With the DF protocol, only a few pilot symbols are needed, with receivers performing blind channel estimation in the sense that no a priori channel information is needed. In particular, the STST-MSMKron system requires knowledge of only one pilot symbol in each symbol matrix.
- SER and NMSE of estimated channels: These performances have already been commented in detail previously. It is worth highlighting that the TSTF and STST-MSMKron systems provide the best performance in terms of symbol estimation. Regarding channel estimation, the performance of the TSTF and TST systems are particularly remarkable.
- Computation time: As expected, iterative receivers based on the ALS algorithm require the highest computation times due to their iterative nature, which leads to a refinement in the estimation of unknown parameters. In general, the computation time reflects the amount of diversity taken into account. Higher diversity leads to higher-order tensors, which induce higher computation times. Matrix coding systems perform the best in terms of computational complexity.
8. Conclusions and Perspectives
Funding
Conflicts of Interest
Appendix A. List of Acronyms
Acronyms | Definitions | References |
Tensor models | ||
TD | Tucker decomposition | [7] |
TTD | Tensor train decomposition | [44] |
NTD | Nested TD | [41] |
CNTD | Coupled NTD | [42] |
DCNTD | Doubly coupled NTD | [43] |
GTD | Generalized TD | [38] |
NGTD | Nested GTD | – |
CPD | Canonical polyadic decomposition | [34] |
NCPD | Nested CPD | [39,40] |
CCPD | Coupled CPD | [101,102] |
CNCPD | Coupled NCPD | – |
DCNCPD | Doubly coupled NCPD | [43] |
PARALIND | PARAFAC with linearly dependent loadings | [103] |
CONFAC | Constrained factor decomposition | [35,36] |
BTD | Block-term decomposition | [104] |
PARAFAC | Parallel factors decomposition | [8,47] |
PARATUCK | PARAFAC-Tucker decomposition | [51,52,53] |
CNTD-CPD | Coupled nested TD-CPD | [97] |
Codings | ||
STST | Simplified tensor space-time | [41] |
STSTF | Simplified tensor space-time-frequency | – |
TST | Tensor space-time | [37] |
TSTF | Tensor space-time frequency | [38] |
SKRST | Simplified Khatri–Rao space-time | [40,53] |
DKRSTF | Double Khatri–Rao space-time frequency | [39] |
MSMKR | Multiple symbol matrices Khatri–Rao (product) | [98] |
MSMKron | Multiple symbol matrices Kronecker (product) | [97] |
Algorithms | ||
ALS | Alternating least squares | |
KRF | Khatri–Rao factorization | |
KronF | Kronecker factorization | |
ZF | Zero-forcing | |
Other acronyms | ||
AF | Amplify-and-forward | |
DF | Decode-and-forward | |
SISO | Single-input single-output | |
MISO | Multiple-input single-output | |
MIMO | Multiple-input multiple-output | |
CDMA | Code division multiple access | |
OFDM | Orthogonal frequency-division multiplexing | |
IRS | Intelligent reflecting surface | |
UAV | Unmanned aerial vehicular | |
SER | Symbol error rate | |
NMSE | Normalized mean square error |
Appendix B. KRF Method
- The R columns of and can be estimated in parallel by computing the rank-one approximation of R matrices;
- Each vector, and , , is only estimated up to a scaling factor, since for every . To eliminate this scaling ambiguity, we need to know one component of one of these two vectors. For example, if we assume that the first component is equal to 1, then , and the ambiguity is removed as follows:
Appendix C. KronF Method
Appendix D. Complexity of the Receiver Algorithms
System/Receiver | Matrix Dimension | Complexity |
---|---|---|
Tensor-based codings-AF protocol | ||
TSTF/KronF | ||
TST/KronF | ||
STSTF/KronF | ||
STST/KronF | ||
STST/ALS | ||
Matrix-based codings-AF protocol | ||
DKRSTF/KRF | ||
SKRST/KRF | ||
SKRST/ALS | ||
Combined codings-DF protocol | ||
STST-MSMKron/KronF | ||
SKRST-MSMKR/KRF | ||
References
- Boulogeorgos, A.A.A.; Alexiou, A. Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access 2020, 8, 94463–94483. [Google Scholar] [CrossRef]
- Di Renzo, M.; Ntontin, K.; Song, J.; Danufane, F.; Qian, X.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.T.; Simeone, O.; Zhang, R.; et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 2020, 1, 798–807. [Google Scholar] [CrossRef]
- Bjornson, E.; Ozdogan, O.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying. IEEE Wireless Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef]
- Ding, Q.; Yang, J.; Luo, Y.; Luo, C. Intelligent reflecting surfaces vs. full-duplex relays: A comparison in the air. IEEE Commun. Lett. 2024, 28, 397–401. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, R. IRS meets relaying: Joint resource allocation and passive beamforming optimization. IEEE Wirel. Commun. Lett. 2021, 10, 2080–2084. [Google Scholar] [CrossRef]
- Yildirim, I.; Kilinc, F.; Basar, E.; Alexandropoulos, G.C. Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension. IEEE Commun. Lett. 2021, 25, 1692–1696. [Google Scholar] [CrossRef]
- Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [Google Scholar] [CrossRef]
- Harshman, R.A. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Work. Pap. Phon. 1970, 16, 1–84. [Google Scholar]
- Comon, P.; Cardoso, J.F. Eigenvalue decomposition of a cumulant tensor with applications. In Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations, San Diego, CA, USA, 8–13 July 1990; pp. 361–372. [Google Scholar]
- Bro, R. Parafac. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- de Lathauwer, L. Signal Processing Based on Multilinear Algebra. Ph.D. Thesis, KUL, Leuven, Belgium, 1997. [Google Scholar]
- Sidiropoulos, N.D.; Giannakis, G.B.; Bro, R. Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Process. 2000, 48, 810–823. [Google Scholar] [CrossRef]
- Vasilescu, M.A.O.; Terzopoulos, D. Multilinear analysis of image ensembles: TensorFaces. In Proceedings of the European Conference on Computer Vision (ECCV’02), Copenhagen, Denmark, 28–31 May 2002; pp. 447–460. [Google Scholar]
- Acar, E.; Aykut-Bingol, C.; Bingol, H.; Bro, R.; Yener, B. Multiway analysis of epilepsy tensors. Bioinformatics 2007, 23, i10–i18. [Google Scholar] [CrossRef]
- Cong, F.; Lin, Q.H.; Kuang, L.D.; Gong, X.F.; Astikainen, P.; Ristaniemi, T. Tensor decomposition of EEG signals: A brief review. J. Neurosci. Methods 2015, 248, 59–69. [Google Scholar] [CrossRef]
- Padhy, S.; Goovaerts, G.; Boussé, M.; De Lathauwer, L.; Van Huffel, S. The Power of Tensor-Based Approaches in Cardiac Applications, Chapter in Biomedical Signal Processing. Advances in Theory, Algorithms and Applications; Naik, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 291–323. [Google Scholar]
- Makantasis, K.; Doulamis, A.; Nikitakis, A. Tensor-based classification models for hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6884–6898. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Wang, K.; Jia, H.; Han, Z.; Tang, Y. Multi-dimensional low-rank with weighted Schatten p-norm minimization for hyperspectral anomaly detection. Remote Sens. 2024, 16, 74. [Google Scholar] [CrossRef]
- Tan, H.; Feng, G.; Feng, J.; Wang, W.; Zhang, Y.J.; Li, F. A tensor-based method for missing traffic data completion. Transp. Res. Part Emerg. Technol. 2013, 28, 15–27. [Google Scholar] [CrossRef]
- Lyu, C.; Lu, Q.L.; Wu, X.; Antoniou, C. Tucker factorization-based tensor completion for robust traffic data imputation. Transp. Res. Part Emerg. Technol. 2024, 160, 104502. [Google Scholar] [CrossRef]
- Chen, P.; Li, F.; Wei, D.; Lu, C. Spatiotemporal traffic data completion with truncated minimax-concave penalty. Transp. Res. Part Emerg. Technol. 2024, 164, 104657. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Frolov, E.; Oseledets, I. Tensor methods and recommender systems. WIREs Data Min. Knowl. Discov. 2017, 7, e1201. [Google Scholar] [CrossRef]
- Favier, G.; Kibangou, A. Tensor-based approaches for nonlinear and multilinear systems modeling and identification. Algorithms 2023, 16, 443. [Google Scholar] [CrossRef]
- Morup, M. Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- Lahat, D.; Adah, T.; Jutten, C. Multimodal data fusion: An overview of methods, challenges and prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef]
- Papalexakis, E.; Faloutsos, C.; Sidiropoulos, N. Tensors for data mining and data fusion: Models, applications, and scalable algorithms. SIAM Trans. Intell. Syst. Technol. 2016, 8, 16.1–16.44. [Google Scholar] [CrossRef]
- Chatzichristos, C.; Van Eyndhoven, S.; Kofidis, E.; Van Huffel, S. Coupled tensor decompositions for data fusion. In Tensors for Data Processing; Liu, Y., Ed.; Academic Press: Cambridge, MA, USA, 2022; Chapter 10; pp. 341–370. [Google Scholar]
- Novikov, A.; Podoprikhin, D.; Osokin, A.; Vetrov, D. Tensorizing neural networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 1, pp. 442–450. [Google Scholar]
- Cichocki, A.; Phan, A.H.; Zhao, Q.; Lee, N.; Oseledets, I.; Sugiyama, M.; Mandic, D.P. Tensor networks for dimensionality reduction and large-scale optimization: Part 2-Applications and future perspectives. Found. Trends Mach. Learn. 2017, 9, 431–673. [Google Scholar] [CrossRef]
- Cichocki, A.; Mandic, D.; de Lathauwer, L.; Zhou, G.; Zhao, Q.; Caiafa, C.; Phan, A. Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag. 2015, 32, 145–163. [Google Scholar] [CrossRef]
- Sidiropoulos, N.; de Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.; Faloutsos, C. Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [Google Scholar] [CrossRef]
- Favier, G. Matrix and Tensor Decompositions in Signal Processing; Wiley: Hoboken, NJ, USA, 2021; Volume 2. [Google Scholar]
- Hitchcock, F.L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927, 6, 164–189. [Google Scholar] [CrossRef]
- de Almeida, A.L.; Favier, G.; Mota, J.C.M. A constrained factor decomposition with application to MIMO antenna systems. IEEE Trans. Signal Process. 2008, 56, 2429–2442. [Google Scholar] [CrossRef]
- Favier, G.; de Almeida, A.L.F. Overview of constrained PARAFAC models. EURASIP J. Adv. Signal Process. 2014, 2014, 142. [Google Scholar] [CrossRef]
- Favier, G.; da Costa, M.; de Almeida, A.; Romano, J. Tensor space-time (TST) coding for MIMO wireless communication systems. Signal Process. 2012, 92, 1079–1092. [Google Scholar] [CrossRef]
- Favier, G.; de Almeida, A.L.F. Tensor space-time-frequency coding with semi-blind receivers for MIMO wireless communication systems. IEEE Trans. Signal Process. 2014, 62, 5987–6002. [Google Scholar] [CrossRef]
- de Almeida, A.L.; Favier, G. Double Khatri–Rao space-time-frequency coding using semi-blind PARAFAC based receiver. IEEE Signal Process. Lett. 2013, 20, 471–474. [Google Scholar] [CrossRef]
- Ximenes, L.R.; Favier, G.; de Almeida, A.L. Semi-blind receivers for non-regenerative cooperative MIMO communications based on nested PARAFAC modeling. IEEE Trans. Signal Process. 2015, 63, 4985–4998. [Google Scholar] [CrossRef]
- Favier, G.; Fernandes, C.A.R.; de Almeida, A.L. Nested Tucker tensor decomposition with application to MIMO relay systems using tensor space–time coding (TSTC). Signal Process. 2016, 128, 318–331. [Google Scholar] [CrossRef]
- Rocha, D.S.; Fernandes, C.A.R.; Favier, G. MIMO multi-relay systems with tensor space-time coding based on coupled nested Tucker decomposition. Digit. Signal Process. 2019, 89, 170–185. [Google Scholar] [CrossRef]
- Rocha, D.S.; Fernandes, C.A.R.; Favier, G. Doubly coupled nested tensor decompositions with application to multirelay multicarrier MIMO communication networks. Digit. Signal Process. 2023, 140, 104143. [Google Scholar] [CrossRef]
- Oseledets, I.V. Tensor-train decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Favier, G.; Rocha, D.S. Overview of tensor-based cooperative MIMO communication systems—Part 1: Tensor modeling. Entropy 2023, 25, 1181. [Google Scholar] [CrossRef]
- Pollock, D.S.G. On Kronecker Products, Tensor Products and Matrix Differential Calculus; Discussion Papers in Economics 11/34; Division of Economics, School of Business, University of Leicester: Leicester, UK, 2011. [Google Scholar]
- Carroll, J.D.; Chang, J. Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika 1970, 35, 283–319. [Google Scholar] [CrossRef]
- de Lathauwer, L.; de Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278. [Google Scholar] [CrossRef]
- Kibangou, A.Y.; Favier, G. Non-iterative solution for PARAFAC with a Toeplitz matrix factor. In Proceedings of the European Signal Processing Conference (EUSIPCO), Glasgow, Scotland, 24–28 August 2009. [Google Scholar]
- Kruskal, J.B. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 1977, 18, 95–138. [Google Scholar] [CrossRef]
- Harshman, R.A.; Lundy, M.E. Uniqueness proof for a family of models sharing features of Tucker’s three-mode factor analysis and PARAFAC/CANDECOMP. Psychometrika 1996, 61, 133–154. [Google Scholar] [CrossRef]
- Kibangou, A.Y.; Favier, G. Blind joint identification and equalization of Wiener-Hammerstein communication channels using PARATUCK-2 tensor decomposition. In Proceedings of the European Signal Processing Conference (EUSIPCO), Poznan, Poland, 3–7 September 2007. [Google Scholar]
- Ximenes, L.R.; Favier, G.; de Almeida, A.L.; Silva, Y.C. PARAFAC-PARATUCK semi-blind receivers for two-hop cooperative MIMO relay systems. IEEE Trans. Signal Process. 2014, 62, 3604–3615. [Google Scholar] [CrossRef]
- Ximenes, L.R.; Favier, G.; de Almeida, A.L. Closed-form semi-blind receiver for MIMO relay systems using double Khatri–Rao space-time coding. IEEE Signal Process. Lett. 2016, 23, 316–320. [Google Scholar] [CrossRef]
- Freitas, W., Jr.; Favier, G.; de Almeida, A.L. Generalized Khatri-Rao and Kronecker space-time coding for MIMO relay systems with closed-form semi-blind receivers. Signal Process. 2018, 151, 19–31. [Google Scholar] [CrossRef]
- Roemer, F.; Haardt, M. Tensor-based channel estimation and iterative refinements for two-way relaying with multiple antennas and spatial reuse. IEEE Trans. Signal Process. 2010, 58, 5720–5735. [Google Scholar] [CrossRef]
- Freitas, W., Jr.; Favier, G.; de Almeida, A.L. Tensor-based joint channel and symbol estimation for two-way MIMO relaying systems. IEEE Signal Process. Lett. 2019, 26, 227–231. [Google Scholar] [CrossRef]
- Freitas, W.d.C.; Favier, G.; de Almeida, A.L. Sequential closed-form semiblind receiver for space-time coded multihop relaying systems. IEEE Signal Process. Lett. 2017, 24, 1773–1777. [Google Scholar] [CrossRef]
- Han, X.; Ying, J.; Liu, A.; Ma, L. A nested tensor-based receiver employing triple constellation precoding for three-hop cooperative communication systems. Digit. Signal Process. 2023, 133, 103862. [Google Scholar] [CrossRef]
- Rong, Y.; Khandaker, R.; Xiang, Y. Channel estimation of dual-hop MIMO relay system via parallel factor analysis. IEEE Trans. Wirel. Commun. 2012, 11, 2224–2233. [Google Scholar] [CrossRef]
- Sokal, B.; de Almeida, A.L.; Haardt, M. Semi-blind receivers for MIMO multi-relaying systems via rank-one tensor approximations. Signal Process. 2020, 166, 107254. [Google Scholar] [CrossRef]
- Cavalcante, Í.V.; de Almeida, A.L.; Haardt, M. Joint channel estimation for three-hop MIMO relaying systems. IEEE Signal Process. Lett. 2015, 22, 2430–2434. [Google Scholar] [CrossRef]
- Du, J.; Han, M.; Jin, L.; Hua, Y.; Li, X. Semi-blind receivers for multi-user massive MIMO relay systems based on block Tucker2-PARAFAC tensor model. IEEE Access 2020, 8, 32170–32186. [Google Scholar] [CrossRef]
- Lin, Y.; Matthaiou, M.; You, X. Tensor-based channel estimation for millimeter wave MIMO-OFDM with dual-wideband effects. IEEE Trans. Commun. 2020, 68, 4218–4232. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, S.; Matthaiou, M.; You, X. Tensor-based channel estimation for hybrid IRS-assisted MIMO-OFDM. IEEE Trans. Wirel. Commun. 2021, 20, 3770–3784. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, G.; Mo, W.; Lan, T.; Zhang, Z.; Ye, S. PARAFAC-Based Channel Estimation for Relay Assisted mmWave Massive MIMO Systems. In Proceedings of the 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021; pp. 1869–1874. [Google Scholar]
- Du, J.; Han, M.; Chen, Y.; Jin, L.; Gao, F. Tensor-based joint channel estimation and symbol detection for time-varying mmWave massive MIMO systems. IEEE Trans. Signal Process. 2021, 69, 6251–6266. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yuen, C. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication. arXiv 2020, arXiv:2001.09413. [Google Scholar]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yang, Z.; Yuen, C.; Zhang, Z. Joint channel estimation and signal recovery in RIS-assisted multi-user MISO communications. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Du, J.; Luo, X.; Jin, L.; Gao, F. Robust tensor-based algorithm for UAV-assisted IoT communication systems via nested PARAFAC analysis. IEEE Trans. Signal Process. 2022, 70, 5117–5132. [Google Scholar] [CrossRef]
- Li, M.; Luo, X.; Jia, W.; Wang, S. Channel estimation and symbol detection for UAV-RIS assisted IoT systems via tensor decomposition. IEEE Access 2024, 12, 84020–84032. [Google Scholar] [CrossRef]
- Du, J.; Ye, S.; Jin, L.; Li, X.; Ngo, H.Q.; Dobre, O. Tensor-based joint channel estimation for multi-way massive MIMO hybrid relay systems. IEEE Trans. Veh. Technol. 2022, 71, 9571–9585. [Google Scholar] [CrossRef]
- Rocha, D.S.; Fernandes, C.A.R.; Favier, G. Space-Time-Frequency (STF) MIMO Relaying System with Receiver Based on Coupled Tensor Decompositions. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 328–332. [Google Scholar]
- Wang, Q.; Zhang, L.; Li, B.; Zhu, Y. Space-time-frequency coding for MIMO relay system based on tensor decomposition. Radioelectron. Commun. Syst. 2020, 63, 77–87. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, A.R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Sur, S.N.; Bera, R. Intelligent reflecting surface assisted MIMO communication system: A review. Phys. Commun. 2021, 47, 101386. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Kaur, R.; Bansal, B.; Majhi, S.; Jain, S.; Huang, C.; Yuen, C. A survey on reconfigurable intelligent surface for physical layer security of next-generation wireless communications. IEEE Open J. Veh. Technol. 2024, 5, 172–199. [Google Scholar] [CrossRef]
- He, Z.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 2019, 9, 210–214. [Google Scholar] [CrossRef]
- Kang, J.M. Intelligent reflecting surface: Joint optimal training sequence and reflection pattern. IEEE Commun. Lett. 2020, 24, 1784–1788. [Google Scholar] [CrossRef]
- You, C.; Zheng, B.; Zhang, R. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement. IEEE J. Sel. Areas Commun. 2020, 38, 2604–2620. [Google Scholar] [CrossRef]
- Guo, H.; Lau, V.K.N. Cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems. arXiv 2021, arXiv:2108.09002v1. [Google Scholar] [CrossRef]
- Noh, S.; Yu, H.; Sung, Y. Training signal design for sparse channel estimation in intelligent reflecting surface-assisted millimeter-wave communication. IEEE Trans. Wirel. Commun. 2022, 21, 2399–2413. [Google Scholar] [CrossRef]
- Zheng, B.; You, C.; Mei, W.; Zhang, R. A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface-aided wireless communications. IEEE Commun. Surv. Tutor. 2022, 24, 1035–1071. [Google Scholar] [CrossRef]
- Dai, M.; Huang, N.; Wu, Y.; Gao, J.; Su, Z. UAV-assisted wireless networks. IEEE Internet Things J. 2023, 10, 4117–4147. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned aerial vehicles: A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, C. Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges. IEEE Internet Things J. 2022, 9, 437–461. [Google Scholar] [CrossRef]
- Peng, D.; He, D.; Li, Y.; Wang, Z. Integrating terrestrial and satellite multibeam systems toward 6G: Techniques and challenges for interference mitigation. IEEE Wirel. Commun. 2022, 29, 24–31. [Google Scholar] [CrossRef]
- Singh, S.K.; Agrawal, K.; Singh, K.; Li, C.P.; Ding, Z. NOMA enhanced hybrid RIS-UAV-assisted full-duplex communication system with imperfect SIC and CSI. IEEE Trans. Commun. 2022, 70, 7609–7627. [Google Scholar] [CrossRef]
- Pogaku, A.C.; Do, D.T.; Lu, B.M.; Nguyen, N.D. UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis. IEEE Access 2022, 10, 16320–16336. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Joung, J. A survey on system configurations of integrated sensing and communication (ISAC) systems. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022. [Google Scholar]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. arXiv 2021, arXiv:2108.07165. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Wang, S.; Lou, Y.; Gao, Y.; Wu, W.; Ng, D.W.K. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation. arXiv 2024, arXiv:2401.01738v1. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling joint communication and radar sensing in mobile networks—A survey. arXiv 2021, arXiv:2006.07559v4. [Google Scholar] [CrossRef]
- Couras, M.; de Pinho, P.; Favier, G.; Zarzoso, V.; de Almeida, A.; da Costa, J. Semi-blind receivers based on a coupled nested Tucker-PARAFAC model for dual-polarized MIMO systems using combined TST and MSMKron codings. Digit. Signal Process. 2023, 137, 104043. [Google Scholar] [CrossRef]
- Randriambelonoro, S.V.N.; Favier, G.; Boyer, R. Semi-blind joint symbols and multipath parameters estimation of MIMO systems using KRST/MKRSM coding. Digit. Signal Process. 2021, 109, 102908. [Google Scholar] [CrossRef]
- Sidiropoulos, N.; Budampati, R. Khatri-Rao space time codes. IEEE Trans. Signal Process. 2002, 50, 2396–2407. [Google Scholar] [CrossRef]
- Han, X.; de Almeida, A.L.; Yang, Z. Channel estimation for MIMO multi-relay systems using a tensor approach. EURASIP J. Adv. Signal Process. 2014, 2014, 163. [Google Scholar] [CrossRef]
- Sørensen, M.; De Lathauwer, L. Coupled tensor decompositions for applications in array signal processing. In Proceedings of the 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Saint Martin, French West Indies, France, 15–18 December 2013; pp. 228–231. [Google Scholar]
- Sørensen, M.; De Lathauwer, L.D. Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr, n, Lr, n, 1) terms—Part I: Uniqueness. SIAM J. Matrix Anal. Appl. 2015, 36, 496–522. [Google Scholar] [CrossRef]
- Bro, R.; Harshman, R.A.; Sidiropoulos, N.D.; Lundy, M.E. Modeling multi-way data with linearly dependent loadings. Chemometrics 2009, 23, 324–340. [Google Scholar] [CrossRef]
- De Lathauwer, L. Decompositions of a higher-order tensor in block terms—Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 2008, 30, 1033–1066. [Google Scholar] [CrossRef]
- Van Loan, C.F.; Pitsianis, N. Approximation with Kronecker products. In Linear Algebra for Large Scale and Real-Time Applications; Moonen, M.S., Golub, G.H., De Moor, B.L.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 293–314. [Google Scholar]
Symbols | Definitions |
---|---|
or | Set of real or complex numbers |
Set of first N integers | |
Set of N indices | |
Size of an Nth-order tensor | |
a, , , | Scalar, column vector, matrix, tensor |
or | -th element of |
, , | Transpose, complex conjugate, Hermitian transpose of |
Moore–Penrose pseudo-inverse of | |
i-th (j-th) row (column) of | |
Identity matrix of size | |
nth canonical basis vector of the Euclidean space | |
Vectorization operator | |
Diagonalization operator that forms a diagonal matrix from its vector argument | |
Diagonal matrix whose diagonal entries are the elements of the i-th row of | |
Block-diagonal matrix whose diagonal blocks are horizontal slices * of | |
Inner product | |
Euclidian and Frobenius norms | |
∘ | Outer product |
⊙ | Hadamard product |
⋄ | Khatri–Rao product |
⊗ | Kronecker product |
Mode-n product | |
Modes- product |
; |
; |
; |
Slices | Definitions | Dimensions |
---|---|---|
Vectors | Fibers | |
column | I | |
row | J | |
tube | K | |
Matrices | Matrix slices | |
frontal | ||
lateral | ||
horizontal |
Vectors/Matrices/Tensors | Operations | Definitions |
---|---|---|
with |
Nth-Order Tensor | Third-Order Tensor | |
---|---|---|
Tensors | ||
Core tensors | ||
Matrix factors | ||
Scalar writing | ||
With mode-n products | ||
With outer products | ||
Matrix unfoldings | ||
Nth-Order Tensor | Third-Order Tensor | |
---|---|---|
Tensors | ||
Core tensors | ||
Matrix factors | ||
Scalar writing | ||
With mode-n products | ||
With outer products | ||
Matrix unfoldings | ||
TD- model, |
, for , , for , |
Special cases for |
Tucker model |
, |
, |
Tucker model |
, |
GTD-(2,4) model |
and |
Models | Notations | Element |
---|---|---|
CPD | ||
TD | ||
TTD | ||
Models | Parameters | Complexity |
CPD | ||
TD | ||
TTD |
TTD-4 model |
NCPD-4 model |
NTD-4 model |
CPD model of |
CPD model of |
CPD model of |
CPD model of |
NCPD-4 model of |
TD model of |
TD model of |
TD model of |
TD model of |
NTD-4 model of |
NTD-6 model |
NGTD-7 model |
Models | Closed-Form Algorithm 1 | Closed-Form Algorithm 2 |
---|---|---|
NCPD-4 | ||
Models | Closed-Form Algorithm 1 | Closed-Form Algorithm 2 |
---|---|---|
NTD-4 | ||
Models | Closed-Form Algorithm 1 | Closed-Form Algorithm 2 |
---|---|---|
NTD-6 | ||
Closed-Form Algorithms 1 | Closed-Form Algorithms 2 |
---|---|
Ref. | OFDM/mmW | Relay/IRS/UAV | Coding/Training | Tensor Models | Receiver Algorithms |
---|---|---|---|---|---|
[53] | Two-hop relay | Simplified KRST | CPD-PARATUCK | ALS + KRF | |
[40] | Two-hop relay | Simplified KRST | NCPD | ALS | |
[54] | Two-hop relay | Simplified KRST | NCPD | KRF | |
[41] | Two-hop relay | TST | NTD | ALS, KronF | |
[55] | Two-hop relay | MKRST | NCPD | KRF | |
MKronST | |||||
[56] | Two-hop relay | Matrices + Training | Tucker-2 | KRF + Structured LS | |
[57] | Two-hop relay | TST | Block Tucker-2 | KronF | |
[58] | Multi-hop relay | Simplified KRST | Generalized NCPD | KRF | |
[59] | Three-hop relay | KRST | NCPD | ALS + KRF | |
[60] | Two-hop relay | Matrices + Training | CPD | ALS, MMSE | |
[61] | Three-hop relay | TST-CPD | NTD | Coupled SVD, ALS | |
[42] | Two-hop relay | TST | Coupled NTD | KronF | |
[62] | Three-hop relay | Matrices + Training | CPD + structured Tucker | ALS | |
[63] | Two-hop relay | TST | Block Tucker2-CPD | ALS, KronF | |
[64] | OFDM/mmW | Two-hop relay | Matrices + Training | Structured CPD | SS * + ESPRIT |
[65] | OFDM/mmW | IRS | Matrices + Training | CPD | Tensor completion |
[66] | mmW | Two-hop relay | Matrices + Training | CPD | ALS, KRF |
[67] | mmW | One-hop | Simplified KRST | NCPD | SVP *-ALS |
[68,69] | IRS | Training | CPD | ALS | |
[70] | UAV | Simplified KRST | NCPD | KRF-ALM * | |
+ Training | |||||
[71] | UAV-IRS | Simplified KRST | CPD | ALS + KRF | |
[72] | Two-hop relay | TST + Training | Tucker-2 | LM * + LMMSE * | |
[73] | OFDM | Two-hop relay | TST + simplified TSTF | Coupled NTD | KronF |
[74] | OFDM | Two-hop relay | KRSTF | NCPD | ALS |
Design Parameters | Definitions | ||
---|---|---|---|
, | Numbers of transmit antennas at the source and relay nodes | ||
, | Numbers of receive antennas at the relay and destination nodes | ||
N | Number of symbols per data stream | ||
R | Number of data streams | ||
F | Number of subcarriers | ||
, | Time-spreading lengths at source and relay | ||
, | Numbers of chips at source and relay | ||
Matrices/Tensors | Definitions | Dimensions | Codings |
Symbol matrix | TSTF, TST, STSTF, STST, DKRSTF, STST-MSMKron | ||
Symbol matrix | SKRST, SKRST-MSMKR | ||
Source–relay channel tensor | TSTF, STSTF | ||
Relay–destination channel tensor | TSTF, STSTF | ||
Source–relay channel matrix | TST, STST, SKRST, DKRSTF, | ||
STST-MSMKron, SKRST-MSMKR | |||
Relay–destination channel matrix | TST, STST, DKRSTF | ||
Relay–destination channel matrix | SKRST | ||
Relay–destination channel matrix | STST-MSMKron, SKRST-MSMKR | ||
Source-coding tensor | TSTF | ||
Source-coding tensor | STSTF | ||
Source-coding tensor | TST | ||
Source-coding tensor | STST | ||
Source-coding tensor | STST-MSMKron | ||
Relay-coding tensor | TSTF | ||
Relay-coding tensor | STSTF | ||
Relay-coding tensor | TST | ||
Relay-coding tensor | STST | ||
Relay-coding tensor | STST-MSMKron | ||
Source space-time coding matrix | SKRST, DKRSTF, SKRST-MSMKR | ||
Relay space-time coding matrix | SKRST, DKRSTF | ||
Relay space-time coding matrix | SKRST-MSMKR | ||
Source space-coding matrix | DKRSTF | ||
Relay space-coding matrix | DKRSTF | ||
Source frequency-coding matrix | DKRSTF |
Coded and Received Signals | Symbols/Codings | Channels | Encoded/Received Signals | Dimensions |
---|---|---|---|---|
First hop | ||||
Signals coded at source | , , | |||
Signals received at relay | ||||
Second hop | ||||
Signals coded at relay | , | |||
Signals received at destination |
Systems | Tensor Writing | Scalar Writing | Models of |
---|---|---|---|
Tensor-based codings-AF protocol | |||
TSTF | |||
NGTD-7 | |||
TST | |||
NTD-6 | |||
STSTF | |||
NGTD-5 | |||
STST | |||
NTD-4 | |||
Matrix-based codings-AF protocol | |||
DKRSTF | |||
NCPD-5 | |||
SKRST | |||
NCPD-4 | |||
Combined codings-DF protocol | |||
STST-MSMKron | |||
TD- | |||
SKRST-MSMKR | |||
CPD- | |||
Tensor-Based Codings | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | |||||||||||||||||
TSTF/NGTD-7 | F | N | R | ||||||||||||||
TST/NTD-6 | N | - | R | ||||||||||||||
STSTF/NGTD-5 | F | N | - | - | R | ||||||||||||
STST/NTD-4 | N | - | - | - | R | ||||||||||||
Matrix-Based Codings | |||||||||||||||||
Models | - | - | - | - | - | ||||||||||||
SKRST/NCPD-4 | N | - | - | - | - | - |
System/Receiver | Closed-Form Receiver 1 | Closed-Form Receiver 2 |
---|---|---|
SKRST/KRF | ||
STST/KronF | ||
Tensor-Based codings—AF protocol | |||
System | Unfoldings | Estimated parameters | Corresp. |
TSTF | NGTD-7 | ||
Equation (52) | |||
Equation (49) | |||
Receiver | Estimation steps | ||
KronF | Table 21 | ||
Algorithm 1 | |||
System | Unfoldings | Estimated parameters | Corresp. |
TST | NTD-6 | ||
Equation (118) | |||
Equation (114) | |||
Receiver | Estimation steps | ||
KronF | Table 20 | ||
Algorithm 1 | |||
System | Unfoldings | Estimated parameters | Corresp. |
STSTF | NGTD-5 | ||
Equation (52) | |||
Equation (49) | |||
Receiver | Estimation steps | ||
KronF | – | ||
System | Unfoldings | Estimated parameters | Corresp. |
STST | NTD-4 | ||
Equation (86) | |||
Equation (87) | |||
Receiver | Estimation steps | ||
KronF | Table 20 | ||
Algorithm 1 | |||
System | Estimation steps | Estimated parameters | Corresp. |
STST | Equation (82) | ||
Receiver | Equation (83) | ||
ALS | Equation (84) | ||
Matrix-based codings—AF protocol | |||
System | Unfoldings | Estimated parameters | Corresp. |
DKRSTF | NCPD-5 | ||
with | Equation (178) | ||
with | Equation (179) | ||
Equation (182) | |||
Receiver | Estimation steps | ||
KRF | Equation (180) | ||
and | |||
Equation (181) | |||
and | Equation (183) | ||
System | Unfoldings | Estimated parameters | Corresp. |
SKRST | NCPD-4 | ||
Equation (72) | |||
Equation (73) | |||
Receiver | Estimation steps | ||
KRF | Table 18 | ||
Table 18 | |||
System | Estimation steps | Estimated parameters | Corresp. |
SKRST | Equation (67) | ||
Receiver | Equation (68) | ||
ALS | Equation (70) | ||
Combined codings—DF protocol | |||
System | Unfoldings | Estimated parameters | Corresp. |
STST-MSMKron | Equation (185) | ||
Equation (186) | |||
Receiver | Estimation steps | ||
Multiple KronF | First hop: | Equation (187) | |
Second hop: | Equation (188) | ||
System | Unfoldings | Estimated parameters | Corresp. |
SKRST-MSMKR | Equation (189) | ||
Equation (190) | |||
Receiver | Estimation steps | ||
Multiple KRF | First hop: | Equation (191) | |
Second hop: | Equation (192) |
Systems/Receivers | Necessary Conditions | Corresp. | Transmission Rates |
---|---|---|---|
Tensor-based codings—AF protocol | |||
TSTF/KronF | , | (96) | |
TST/KronF | , | (95) | |
STSTF/KronF | , | (97) | |
STST/KronF | , | (173) | |
STST/ALS | , , | (85) | |
STST/ZF | (85) * | ||
Matrix-based codings—AF protocol | |||
DKRSTF/KRF | , , , | (184) | |
SKRST/KRF | , | (172) | |
SKRST/ALS | , , | (71) | |
SKRST/ZF | (71) * | ||
Combined codings—DF protocol | |||
STST-MSMKron/KronF | , | (193) | |
SKRST-MSMKR/KRF | , | (194) |
Systems/Receivers | NMSE | ||
---|---|---|---|
TSTF/KronF | −12.33 | −22.08 | −12.09 |
TST/KronF | −11.27 | −23.81 | −10.41 |
STSTF/KronF | −8.33 | −16.23 | −8.33 |
STST/KronF | −7.52 | −18.02 | −6.67 |
DKRSTF/KRF | −7.48 | −20.98 | −6.61 |
SKRST/KRF | −6.73 | −18.04 | −5.76 |
STST-MSMKron/KronF | −8.05 | −8.06 | −6.91 |
SKRST-MSMKR/KRF | −9.96 | −9.90 | −8.99 |
TSTF | TST | STSTF | STST | DKRSTF | SKRST | STST-MSMKron | SKRST-MSMKR | ||
---|---|---|---|---|---|---|---|---|---|
KronF | KronF | KronF | KronF | KRF | KRF | KronF | KRF | ||
SER | −4 dB | −1 dB | 0 dB | 2 dB | 4 dB | 6 dB | −5 dB | −1 dB | |
−2 dB | – | – | 4 dB | 9 dB | 12 dB | – | 5 dB | ||
NMSE | −10 dB | −2 dB | 0 dB | 1 dB | 3 dB | 4 dB | 3 dB | 3 dB | 1 dB |
−20 dB | 7 dB | 9 dB | 11 dB | 12 dB | 13 dB | 12 dB | 12 dB | 11 dB |
Systems/Receivers | Diversities * | Channels | Performance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FF | FSF | NIC | AK | SER | CT | |||||||
TSTF/KronF | + | + | + | + | + | −− | −− | +++ | +++ | +++ | −−− | |
TST/KronF | + | + | + | + | −− | −− | ++ | +++ | +++ | −−− | ||
STSTF/KronF | + | + | + | + | −−− | −− | ++ | ++ | ++ | −− | ||
STST/KronF | + | + | + | −−− | −− | ++ | + | ++ | −− | |||
STST/ALS | + | + | + | − | −− | ++ | + | ++ | −−− | |||
DKRSTF/KRF | + | + | + | + | −− | −−− | + | + | +++ | − | ||
SKRST/KRF | + | + | + | −− | −−− | + | + | ++ | − | |||
SKRST/ALS | + | + | + | − | −−− | + | + | ++ | −−− | |||
STST-MSMKron/KronF | + | + | + | −−− | − | +++ | + | + | −− | |||
SKRST-MSMKR/KRF | + | + | + | −− | −− | ++ | ++ | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favier, G.; Rocha, D.S. Overview of Tensor-Based Cooperative MIMO Communication Systems—Part 2: Semi-Blind Receivers. Entropy 2024, 26, 937. https://doi.org/10.3390/e26110937
Favier G, Rocha DS. Overview of Tensor-Based Cooperative MIMO Communication Systems—Part 2: Semi-Blind Receivers. Entropy. 2024; 26(11):937. https://doi.org/10.3390/e26110937
Chicago/Turabian StyleFavier, Gérard, and Danilo Sousa Rocha. 2024. "Overview of Tensor-Based Cooperative MIMO Communication Systems—Part 2: Semi-Blind Receivers" Entropy 26, no. 11: 937. https://doi.org/10.3390/e26110937
APA StyleFavier, G., & Rocha, D. S. (2024). Overview of Tensor-Based Cooperative MIMO Communication Systems—Part 2: Semi-Blind Receivers. Entropy, 26(11), 937. https://doi.org/10.3390/e26110937