[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Space-Time-Frequency Coding for MIMO Relay System Based on Tensor Decomposition

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Space-time-frequency (STF) coding can obtain the diversity gain from three dimensions (space, time and frequency) to effectively improve the transmission performance of the multi-input multi-output (MIMO) relay system. In this study, a MIMO one-way two-hop amplify-and-forward (AF) relay communication system is presented by means of triple Khatri–Rao space-time-frequency (KRSTF) coding, which forms a five-dimensional tensor at the destination node that satisfies a new multi-dimensional tensor decomposition approach called asymmetric nested PARAFAC decomposition (ANPD). Then based on this model, a semi-blind receiver is derived to perform the joint channel and symbol estimation in terms of three-step alternating least squares (ALS) algorithm. Compared with the existing two-hop symmetry methods, the proposed scheme uses an asymmetric nested model to obtain additional frequency coding diversity, which significantly improves the performance of the system in parameter estimation accuracy as demonstrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. B. Kokhanov, “Automatic Synchronizer of Digital Signals and Telecommunication Streams,” Radioelectron. Commun. Syst., vol. 62, no. 4, pp. 181–188, Apr. 2019, doi: https://doi.org/10.3103/S0735272719040046.

    Article  Google Scholar 

  2. Z. Chen, P. Fan, and D. O. Wu, “Joint Power Allocation and Strategy Selection for Half-Duplex Relay System,” IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2144–2157, Mar. 2017, doi: https://doi.org/10.1109/TVT.2016.2570816.

    Article  Google Scholar 

  3. X. Liang, Z. Ding, and C. Xiao, “On linear precoding of nonregenerative MIMO relay networks for finite-alphabet source,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 9761–9775, Nov. 2017, doi: https://doi.org/10.1109/TVT.2017.2717925.

    Article  Google Scholar 

  4. M. H. Shariat and S. Gazor, “Optimal non-regenerative linear MIMO relay for orthogonal space time codes,” IEEE Signal Process. Lett., vol. 21, no. 2, pp. 163–167, Feb. 2014, doi: https://doi.org/10.1109/LSP.2013.2295919.

    Article  Google Scholar 

  5. K. C. Lee, C. P. Li, T. Y. Wang, and H. J. Li, “Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference,” IEEE Trans. Wirel. Commun., vol. 13, no. 6, pp. 3070–3087, 2014, doi: https://doi.org/10.1109/TWC.2014.042814.130047.

    Article  Google Scholar 

  6. R. Zhao, H. Lin, Y. C. He, D. H. Chen, Y. Huang, and L. Yang, “Secrecy Performance of Transmit Antenna Selection for MIMO Relay Systems with Outdated CSI,” IEEE Trans. Commun., vol. 66, no. 2, pp. 546–559, Feb. 2018, doi: https://doi.org/10.1109/TCOMM.2017.2747554.

    Article  Google Scholar 

  7. L. H. Lim and P. Comon, “Multiarray signal processing: Tensor decomposition meets compressed sensing,” Comptes Rendus - Mec., vol. 338, no. 6, pp. 311–320, Jun. 2010, doi: https://doi.org/10.1016/j.crme.2010.06.005.

    Article  MATH  Google Scholar 

  8. A. Cichocki et al., “Tensor decompositions for signal processing applications: From two-way to multiway component analysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015, doi: https://doi.org/10.1109/MSP.2013.2297439.

    Article  Google Scholar 

  9. N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos, “Tensor Decomposition for Signal Processing and Machine Learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3551–3582, Jul. 2017, doi: https://doi.org/10.1109/TSP.2017.2690524.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Roemer and M. Haardt, “Tensor-based channel estimation (TENCE) for two-way relaying with multiple antennas and spatial reuse,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2009, pp. 3641–3644, doi: https://doi.org/10.1109/ICASSP.2009.4960415.

    Chapter  Google Scholar 

  11. F. Roemer and M. Haardt, “Tensor-based channel estimation and iterative refinements for two-way relaying with multiple antennas and spatial reuse,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5720–5735, Nov. 2010, doi: https://doi.org/10.1109/TSP.2010.2062179.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Rong, M. R. A. Khandaker, and Y. Xiang, “Channel estimation of dual-hop MIMO relay system via parallel factor analysis,” IEEE Trans. Wirel. Commun., vol. 11, no. 6, pp. 2224–2233, Jun. 2012, doi: https://doi.org/10.1109/TWC.2012.032712.111251.

    Article  Google Scholar 

  13. X. Han, A. L. F. de Almeida, and Z. Yang, “Channel estimation for MIMO multi-relay systems using a tensor approach,” EURASIP J. Adv. Signal Process., vol. 2014, no. 1, pp. 1–14, Dec. 2014, doi: https://doi.org/10.1186/1687-6180-2014-163.

    Article  Google Scholar 

  14. L. R. Ximenes, G. Favier, A. L. F. De Almeida, and Y. C. B. Silva, “PARAFAC-PARATUCK semi-blind receivers for two-hop cooperative MIMO relay systems,” IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3604–3615, Jul. 2014, doi: https://doi.org/10.1109/TSP.2014.2328323.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Du, C. Yuan, and J. Zhang, “Semi-blind parallel factor based receiver for joint symbol and channel estimation in amplify-and-forward multiple-input multiple-output relay systems,” IET Commun., vol. 9, no. 6, pp. 737–744, Apr. 2015, doi: https://doi.org/10.1049/iet-com.2014.0553.

    Article  Google Scholar 

  16. L. R. Ximenes, G. Favier, and A. L. F. De Almeida, “Semi-Blind Receivers for Non-Regenerative Cooperative MIMO Communications Based on Nested PARAFAC Modeling,” IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4985–4998, Sep. 2015, doi: https://doi.org/10.1109/TSP.2015.2454473.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Favier, C. A. R. Fernandes, and A. L. F. De Almeida, “Nested Tucker tensor decomposition with application to MIMO relay systems using tensor space-time coding (TSTC),” Signal Processing, vol. 128, pp. 318–331, Nov. 2016, doi: https://doi.org/10.1016/j.sigpro.2016.04.009.

    Article  Google Scholar 

  18. D. S. Rocha, G. Favier, and C. A. R. Fernandes, “Tensor coding for three-hop MIMO relay systems,” in Proceedings - IEEE Symposium on Computers and Communications, 2018, vol. 2018-June, pp. 384–389, doi: https://doi.org/10.1109/ISCC.2018.8538497.

    Chapter  Google Scholar 

  19. N. D. Sidiropoulos and R. S. Budampati, “Khatri-Rao space-time codes,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2396–2407, Oct. 2002, doi: https://doi.org/10.1109/TSP.2002.803341.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in sensor array processing,” IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2377–2388, Aug. 2000, doi: https://doi.org/10.1109/78.852018.

    Article  Google Scholar 

  21. J. B. Kruskal, “Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics,” Linear Algebra Appl., vol. 18, no. 2, pp. 95–138, Jan. 1977, doi: https://doi.org/10.1016/0024-3795(77)90069-6.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. L. F. De Almeida and G. Favier, “Double Khatri-Rao space-time-frequency coding using semi-blind PARAFAC based receiver,” IEEE Signal Process. Lett., vol. 20, no. 5, pp. 471–474, 2013, doi: https://doi.org/10.1109/LSP.2013.2248149.

    Article  Google Scholar 

  23. N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decomposition of N-way arrays,” J. Chemom., vol. 14, no. 3, pp. 229–239, May 2000, doi: https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N.

    Article  Google Scholar 

  24. G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numer. Math., vol. 14, no. 5, pp. 403–420, Apr. 1970, doi: https://doi.org/10.1007/BF02163027.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore: Johns Hopkins University Press, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhu Wang.

Ethics declarations

ADDITIONAL INFORMATION

Qingzhu Wang, Lijuan Zhang, Bin Li, and Yihai Zhu

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S002134702002003X with DOI: https://doi.org/10.20535/S002134702002003X

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, L., Li, B. et al. Space-Time-Frequency Coding for MIMO Relay System Based on Tensor Decomposition. Radioelectron.Commun.Syst. 63, 77–87 (2020). https://doi.org/10.3103/S073527272002003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272002003X