Spatial Heterogeneity of Values in Northeastern Tibetan Plateau and Its Interpretation
<p>The spatial and temporal distribution of earthquakes in the NE Tibetan Plateau from January 1970 to June 2023 with main faults and focal mechanisms of large historical earthquakes. In the upper map (<b>a</b>), fault belts discussed in this paper are drawn in dark gray traces with abbreviated names, modified from Deng [<a href="#B51-entropy-26-00182" class="html-bibr">51</a>]; small hollow circles denote earthquakes with a magnitude of less than 5.0; red solid circles denote earthquakes with a magnitude equal to or larger than 5.0 from January 1970 to June 2023; the green solid star indicates the 18 December 2023 <span class="html-italic">M</span>6.3 earthquake that happened in the Linxia Hui autonomous region in Gansu, which was not included for <span class="html-italic">b</span> value estimation, and the size of the circle was scaled to the magnitude; yellow stars represent historic large earthquakes based on the Catalogue of Chinese Historical Strong Earthquakes from the 23<sup>RD</sup> century BC to 1911 and the Catalogue of Chinese Present Strong Earthquakes from 1912 to 1990 [<a href="#B52-entropy-26-00182" class="html-bibr">52</a>,<a href="#B53-entropy-26-00182" class="html-bibr">53</a>]; focal-mechanism solutions of large earthquakes are shown as beach balls, estimated by empirical formulae using geometric information of seismic faults, tectonic stress, and rupture scales, referenced from previous studies, which are listed in <a href="#entropy-26-00182-t001" class="html-table">Table 1</a>; bold red lines denote the 230 km rupture zone of the 1920 <span class="html-italic">M</span>8<sup>1</sup>/<sub>2</sub> Haiyuan earthquake [<a href="#B54-entropy-26-00182" class="html-bibr">54</a>,<a href="#B55-entropy-26-00182" class="html-bibr">55</a>,<a href="#B56-entropy-26-00182" class="html-bibr">56</a>]; and provincial borders are shown by orange lines with names in the center of each province. The inset figure shows active blocks in the NE Tibetan Plateau and the blue frame circles the extent of the study area. The lower map (<b>b</b>) is the temporal–magnitude distribution of seismic events. Abbreviated names of faults are labeled as follows: ZWF = Zhongwei fault; HYF = Haiyuan fault; LSF = Luoshan fault; LPSF = Liupanshan fault; ZLHF = Zhuanglanghe fault; MXSF = Maxianshan fault; WQLF = Western Qinling fault.</p> "> Figure 2
<p>(<b>a</b>) The upper map shows the spatial distribution of <span class="html-italic">M</span><sub>C</sub> of the NE Tibetan Plateau based on the catalog from 1970 to June 2023, and the lower map shows the standard deviation of <span class="html-italic">M</span>c. The gray boxes denote the grids with null results; the black dots represent the events shown in <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>. The purple and black solid lines are provincial borders and active faults [<a href="#B51-entropy-26-00182" class="html-bibr">51</a>]. (<b>b</b>) The number of events above magnitude 2.9 for <span class="html-italic">b</span> value estimation; purple lines encircle the region with a low number of events. (<b>c</b>) The frequency and magnitude distribution of the catalog; the squares represent the accumulated number of events above a certain magnitude, and the triangles represent the non-accumulated number of events. The red line represents the best fitted relationship of log<span class="html-italic">N</span> = a − <span class="html-italic">bM</span> calculated by Zmap. (<b>d</b>) The time variations of <span class="html-italic">M</span>c; the solid black line represents <span class="html-italic">M</span>c, and the dashed line represents <span class="html-italic">M</span>c’s standard deviation.</p> "> Figure 3
<p>The spatial <span class="html-italic">b</span> value distribution is based on different <span class="html-italic">M</span>cs by HIST-PPM. The red solid circle denotes earthquakes above and equal to a magnitude of 5.0 since 1970 in the NE Tibetan Plateau. The white hollow circle is the event above the <span class="html-italic">M</span>c. Dark gray solid lines are the main fault trace in the NE Tibetan Plateau, modified from Deng [<a href="#B51-entropy-26-00182" class="html-bibr">51</a>]; the abbreviated name for each fault trace is the same as <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>. Bold red lines denote the 230 km rupture zone of the 1920 <span class="html-italic">M</span>8<sup>1</sup>/<sub>2</sub> Haiyuan earthquake [<a href="#B55-entropy-26-00182" class="html-bibr">55</a>,<a href="#B56-entropy-26-00182" class="html-bibr">56</a>]. Main cities and counties are also shown. Solid purple lines encircle the events with high <span class="html-italic">b</span> values. The green solid star indicates the 18 December 2023 <span class="html-italic">M</span>6.3 earthquake in the Linxia Hui autonomous region in Gansu, which was not included in the <span class="html-italic">b</span> value estimation.</p> "> Figure 4
<p>Spatial distribution of <span class="html-italic">b</span> value based on events with <span class="html-italic">M</span>c ≤ <span class="html-italic">M</span> ≤ 5.0 (<b>left</b>) and events with <span class="html-italic">M</span>c ≤ <span class="html-italic">M</span> ≤ 5.5 (<b>right</b>).</p> "> Figure 5
<p>The spatial <span class="html-italic">b</span> value distribution is based on different <span class="html-italic">M</span>cs by Zmap. Other factors are the same as in <a href="#entropy-26-00182-f003" class="html-fig">Figure 3</a>.</p> "> Figure 6
<p>Histograms of the hourly events in the cities of Huating and Tianzhu. These two regions are encircled with purple lines in <a href="#entropy-26-00182-f007" class="html-fig">Figure 7</a>. The value of D/N is shown in the upper right corner for each.</p> "> Figure 7
<p>The spatial distribution of the <span class="html-italic">b</span> value estimated by all the events (<b>left</b>) and by excluding events with depths less than and equal to 3 km in the Huating and Tianzhu regions (<b>right</b>). These two regions are encircled with purple lines.</p> "> Figure 8
<p>The spatial distribution of HIST-PPM <span class="html-italic">b</span> values concentrated around ZWF and LSF. The color bar for the <span class="html-italic">b</span> value and other elements is illustrated in <a href="#entropy-26-00182-f003" class="html-fig">Figure 3</a> and is not repeated here. The red frame in the upper map encricle the ZWFR in large scale. The yellow star represents the historic earthquake, which is also shown in <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>.</p> "> Figure 9
<p>The spatial distribution of HIST-PPM <span class="html-italic">b</span> values concentrated around HYF. Bold black lines denote the segmentation of HYF [<a href="#B110-entropy-26-00182" class="html-bibr">110</a>]. The yellow stars denote the 1920 <span class="html-italic">M</span>8<sup>1</sup>/<sub>2</sub> Haiyuan earthquake and the 1920 <span class="html-italic">M</span>7 Haiyuan earthquake. The color bar for the <span class="html-italic">b</span> value and other elements is illustrated in <a href="#entropy-26-00182-f003" class="html-fig">Figure 3</a> and is not repeated here. The red frame in the upper map encricle the HYFR in large scale. The yellow stars represents the historic earthquakes, which are also shown in <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>.</p> "> Figure 10
<p>The spatial distribution of HIST-PPM <span class="html-italic">b</span> values concentrated around LXFR. The color bar for the <span class="html-italic">b</span> value and other elements is illustrated in <a href="#entropy-26-00182-f003" class="html-fig">Figure 3</a> and is not repeated here. The red frame in the upper map encricle the LXFR in large scale. The yellow stars represents the historic earthquakes, which are also shown in <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>.</p> "> Figure 11
<p>The spatial distribution of HIST-PPM <span class="html-italic">b</span> values concentrated around WQLFR. The yellow star represents the 2013 <span class="html-italic">M</span>6.6 Minxian–Zhangxian earthquake. The color bar for the <span class="html-italic">b</span> value and other elements is illustrated in <a href="#entropy-26-00182-f003" class="html-fig">Figure 3</a> and is not repeated here. The red frame in the upper map encricle the WQLFR in large scale. The yellow stars represents the historic earthquakes, which are also shown in <a href="#entropy-26-00182-f001" class="html-fig">Figure 1</a>.The high degree of spatial heterogeneity in <span class="html-italic">b</span> values can provide clues for observing the segmented features of fault zones, which are usually proved by geological methods. Earthquakes usually cluster along the fault belts, providing sufficient samples for the <span class="html-italic">b</span> value and making the <span class="html-italic">b</span> value more accurate here. Therefore, it is suggested that regions far away from faults may not acquire reliable information on <span class="html-italic">b</span> values for regions including complex fault systems.</p> ">
Abstract
:1. Introduction
Time (Year-Month-Day) | Epicenter (Longitude°, Latitude°) | Strike | Dip | Slip | Magnitude | City | References |
---|---|---|---|---|---|---|---|
143-10-01 1 | 104.0, 35.0 | 40 | 65 | 38.6 | 7 | Weiyuan | [59,60,61] |
734-03-23 1 | 105.5, 34.5 | 40 | 65 | 30 | 7 | Tianshui | [59,60,62] |
1125-09-06 1 | 103.6, 36.1 | 295 | 80 | 15 | 7 | Lanzhou | [63,64,65] |
1352-04-26 | 105.3, 35.6 | 130 | 45 | 90 | 7 | Huining | [66] |
1561-08-04 | 106.1, 37.5 | 170 | 70 | 164 | 71/4 | Wuzhong | [67] |
1622-10-25 | 106.3, 36.5 | 180 | 60 | 90 | 7 | Guyuan | [66,67] |
1654-07-21 | 105.5, 34.3 | 58 | 70 | 20 | 8 | Lixian | [67,68] |
1709-10-14 | 105.3, 37.4 | 115 | 50 | 30 | 71/2 | Zhongwei | [66,67] |
1718-06-19 | 105.1, 35.0 | 150 | 65 | 0 | 71/2 | Tongwei | [67] |
1920-12-16 1 | 104.9, 36.7 | 115 | 90 | 0 | 81/2 | Haiyuan | [59,66,69,70,71] |
1920-12-25 1 | 105.2, 36.6 | 120 | 90 | 18.5 | 7 | Haiyuan | [59,72] |
2013-07-22 | 104.23, 34.52 | 300 | 66 | 47.7 | 6.6 | Minxian–Zhangxian | [73] |
2023-12-18 | 102.81, 35.70 | 164 | 46 | 22 | 6.3 | Linxia | GCMT 2 |
2. Data and Method
2.1. Data
2.2. b-Value-Estimation Method
2.2.1. HIST-PPM
2.2.2. Zmap
3. Results
3.1. Spatial b Value of HIST-PPM
3.2. Spatial b Value of Zmap
4. Discussion
4.1. ZW-LSFR
4.2. HYFR
4.3. LXFR
4.4. WQLFR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Utsu, T. A method for determining the value of b in a formula logn = a − bM showing the magnitude frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ. 1965, 13, 99–103. [Google Scholar]
- Scholz, C.H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 1968, 58, 399–415. [Google Scholar] [CrossRef]
- Scholz, C.H. On the stress dependence of the earthquake b value. Geophys. Res. Lett. 2015, 42, 1399–1402. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, S.K.; Huang, T.C.; Huang, H.H.; Chao, W.A.; Koulakov, I. Relationship between earthquake b-values and crustal stresses in a young orogenic belt. Geophys. Res. Lett. 2018, 45, 1832–1837. [Google Scholar] [CrossRef]
- Amitrano, D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Goebel, T.H.; Kwiatek, G.; Becker, T.W.; Brodsky, E.E.; Dresen, G. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 2017, 45, 815–818. [Google Scholar] [CrossRef]
- Nanjo, K.Z.; Izutsu, J.; Orihara, Y.; Kamogawa, M.; Nagao, T. Changes in Seismicity Pattern Due to the 2016 Kumamoto Earthquakes Identify a Highly Stressed Area on the Hinagu Fault Zone. Geophys. Res. Lett. 2019, 46, 9489–9496. [Google Scholar] [CrossRef]
- Nanjo, K.Z.; Izutsu, J.; Orihara, Y.; Kamogawa, M. Changes in seismicity pattern due to the 2016 Kumamoto earthquake sequence and implications for improving the foreshock traffic-light system. Tectonophysics 2022, 822, 229175. [Google Scholar] [CrossRef]
- Kulhánek, O. Seminar on b-Value, Uppsala, Sweden. 2005. Available online: https://geo.mff.cuni.cz/~jz/prednaska_seismologie/2020_6/cetba/Kulhanek_seminar2005.pdf (accessed on 28 December 2023).
- Petruccelli, A.; Schorlemmer, D.; Tormann, T.; Rinaldi, A.P.; Wiemer, S.; Gasperini, P.; Vannucci, G. The influence of faulting style on the size-distribution of global earthquakes. Earth Planet. Sci. Lett. 2019, 527, 115791. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophys. Res. Solid Earth 1997, 102, 15115–15128. [Google Scholar] [CrossRef]
- Tormann, T.; Wiemer, S.; Metzger, S.; Michael, A.; Hardebeck, J.L. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate. Geophys. J. Int. 2013, 193, 1474–1478. [Google Scholar] [CrossRef]
- Sobiesiak, M.; Meyer, U.; Schmidt, S.; Götze, H.J.; Krawczyk, C. Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Ghosh, A.; Newman, A.V.; Thomas, A.M.; Farmer, G.T. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Mogi, K. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bull. Earthq. Res. Inst. Tokyo Univ. 1962, 40, 831–853. [Google Scholar]
- Hainzl, S.; Fischer, T. Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. J. Geophys. Res. Solid Earth 2002, 107, ESE 5-1–ESE 5-9. [Google Scholar] [CrossRef]
- Shelly, D.R.; Ellsworth, W.L.; Hill, D.P. Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. J. Geophys. Res. Solid Earth 2016, 121, 1776–1795. [Google Scholar] [CrossRef]
- Bachmann, C.E.; Wiemer, S.; Goertz-Allmann, B.; Woessner, J. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Passarelli, L.; Hainzl, S.; Cesca, S.; Maccaferri, F.; Mucciarelli, M.; Roessler, D.; Corbi, F.; Dahm, T.; Rivalta, E. Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy. Geophys. J. Int. 2015, 201, 1553–1567. [Google Scholar] [CrossRef]
- El-Isa, Z.H.; Eaton, D.W.J.T. Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics 2014, 615, 1–11. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Miao, M.; Zeng, Z.; Chen, H.; Shi, H.; Li, D.; Liu, L.; Su, Y.; Han, P.J.E. Assessing earthquake forecast performance based on b value in Yunnan Province, China. Entropy 2021, 23, 730. [Google Scholar] [CrossRef]
- Roberts, N.S.; Bell, A.F.; Main, I.G. Mode switching in volcanic seismicity: El Hierro 2011–2013. Geophys. Res. Lett. 2016, 43, 4288–4296. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv. Geophys. 2002, 45, 259–302. [Google Scholar]
- Marzocchi, W.; Sandri, L. A review and new insights on the estimation of the b-value and its uncertainty. Ann. Geophys. 2003, 46. [Google Scholar]
- Nava, F.; Márquez-Ramírez, V.; Zúñiga, F.; Ávila-Barrientos, L.; Quinteros, C. Gutenberg-Richter b-value maximum likelihood estimation and sample size. J. Seismol. 2017, 21, 127–135. [Google Scholar] [CrossRef]
- Herrmann, M.; Piegari, E.; Marzocchi, W. Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence. Nat. Commun. 2022, 13, 5087. [Google Scholar] [CrossRef]
- Gitis, V.; Derendyaev, A.; Pirogov, S.; Spokoiny, V.; Yurkov, E. Adaptive estimation of seismic parameter fields from earthquake catalogs. J. Commun. Technol. Electron. 2015, 60, 1459–1465. [Google Scholar] [CrossRef]
- Gitis, V.G.; Derendyaev, A.B.; Pirogov, S.A.; Spokoiny, V.G.; Yurkov, E. Earthquake prediction using the fields estimated by an adaptive algorithm. In Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, Amantea, Italy, 19–22 June 2017; pp. 1–8. [Google Scholar]
- Shcherbakov, R.; Zhuang, J.; Zöller, G.; Ogata, Y.J.N.c. Forecasting the magnitude of the largest expected earthquake. Nat. Commun. 2019, 10, 4051. [Google Scholar] [CrossRef]
- Kamer, Y.; Hiemer, S. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. J. Geophys. Res. Solid Earth 2015, 120, 5191–5214. [Google Scholar] [CrossRef]
- Si, Z.; Jiang, C. Research on Parameter Calculation for the Ogata–Katsura 1993 Model in Terms of the Frequency–Magnitude Distribution Based on a Data-Driven Approach. Seismol. Res. Lett. 2019, 90, 1318–1329. [Google Scholar] [CrossRef]
- Ogata, Y. Statistics of earthquake activity: Models and methods for earthquake predictability studies. Annu. Rev. Earth Planet. Sci. 2017, 45, 497–527. [Google Scholar] [CrossRef]
- Ogata, Y.; Imoto, M.; Katsura, K. 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto District, Japan. Geophys. J. Int. 1991, 104, 135–146. [Google Scholar] [CrossRef]
- Ogata, Y.; Katsura, K. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int. 1993, 113, 727–738. [Google Scholar] [CrossRef]
- Kumazawa, T.; Ogata, Y.; Tsuruoka, H. Characteristics of seismic activity before and after the 2018 M6. 7 Hokkaido Eastern Iburi earthquake. Earth Planets Space 2019, 71, 130. [Google Scholar] [CrossRef]
- Kumazawa, T.; Ogata, Y.; Tsuruoka, H. Measuring seismicity diversity and anomalies using point process models: Case studies before and after the 2016 Kumamoto earthquakes in Kyushu, Japan. Earth Planets Space 2017, 69, 169. [Google Scholar] [CrossRef]
- Ogata, Y. Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity. Earth Planets Space 2011, 63, 217–229. [Google Scholar] [CrossRef]
- Meyer, B.; Tapponnier, P.; Bourjot, L.; Métivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, G.; Zhitai, C. Crustal thickening in Gansu–Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 1998, 135, 1–47. [Google Scholar] [CrossRef]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Palumbo, L.; Hetzel, R.; Tao, M.; Li, X.; Guo, J. Deciphering the rate of mountain growth during topographic presteady state: An example from the NE margin of the Tibetan Plateau. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Zheng, W.-j.; Zhang, P.-z.; He, W.-g.; Yuan, D.-y.; Shao, Y.-x.; Zheng, D.-w.; Ge, W.-p.; Min, W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; Ge, W.P.; Molnar, P.; Zhang, H.P.; Yuan, D.Y.; Liu, J.H. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics 2013, 32, 271–293. [Google Scholar] [CrossRef]
- Yuan, D.; Ge, W.; Chen, Z.; Li, C.; Wang, Z.; Zhang, H.; Zhang, P.; Zheng, D.; Zheng, W.; Craddock, W.H.; et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics 2013, 32, 1358–1370. [Google Scholar] [CrossRef]
- Hetzel, R.; Niedermann, S.; Tao, M.; Kubik, P.W.; Ivy-Ochs, S.; Gao, B.; Strecker, M.R. Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 2002, 417, 428–432. [Google Scholar] [CrossRef]
- Hetzel, R.; Tao, M.; Stokes, S.; Niedermann, S.; Ivy-Ochs, S.; Gao, B.; Strecker, M.R.; Kubik, P.W. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics 2004, 23, 54–71. [Google Scholar] [CrossRef]
- Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Shunmin, G.; Zhitai, C.; Huagung, D.; Cifuentes, I. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys. J. Int. 1995, 120, 599–645. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Zhang, P.; Wang, Y.; Zhang, W.; Song, F.; Deng, Q.; Molnar, P.; Royden, L. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics 1992, 10, 1091–1110. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.-z.; Yin, J.; Min, W. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic Characteristics of Active Tectonics of China. Sci. China-Earth Sci. 2003, 46, 356–372. [Google Scholar] [CrossRef]
- Department of Earthquake Defense, China Earthquake Administration. Catalog of Historical Strong Earthquakes in China (from 23RD Century BC to 1911); Earthquake Press: Beijing, China, 1995. [Google Scholar]
- Department of Earthquake Defense, China Earthquake Administration. Catalog of Modern Earthquakes in China; China Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Peltzer, G.; Avouac, J.P.; Sun, J.; Dailu, R. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties. Earth Planet. Sci. Lett. 2013, 377–378, 23–33. [Google Scholar] [CrossRef]
- Deng, Q.; Chen, S.; Song, F.; Zhu, S.; Wang, Y.; Zhang, W.; Jiao, D.; Burchfiel, B.C.; Molnar, P.; Royden, L.; et al. Variations in the Geometry and Amount of Slip on the Haiyuan (Nanxihaushan) Fault Zone, China and the Surface Rupture of the 1920 Haiyuan Earthquake. In Proceedings of the AGU, Washington, DC, USA, 1 January 1986; pp. 169–182. [Google Scholar]
- Zhang, W.; Jiao, D.; Zhang, P.; Molnar, P.; Burchfield, B.C.; Deng, Q.; Wang, Y.; Song, F. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake. Bull. Seismol. Soc. Am. 1987, 77, 117–131. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Wu, J.; Guo, H. Reevaluating on casualty in the Haiyuan Ms 8.5 earthquake on 16 December 1920. Earthq. Res. China 2003, 19, 386–399. [Google Scholar]
- ISC (International Seismological Center). ISC-GEM Earthquake Catalogue; ISC, International Seismological Center: Seongnam-si, Republic of Korea, 2013. [Google Scholar] [CrossRef]
- Wang, X.; Lv, J.; Xie, Z.; Long, F.; Zhao, X.; Zheng, Y. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chin. J. Geophys. 2015, 58, 4149–4162. [Google Scholar] [CrossRef]
- Shao, Y.-X.; Yuan, D.-Y.; Wang, A.-G.; Liang, M.-J.; Liu, K.; Feng, J.-G. The segmentation of rupture and estimate of earthquake risk along the north margin of western Qinling fault zone. Seismol. Geol. 2011, 33, 79–90. [Google Scholar] [CrossRef]
- Yuan, D.; Lei, Z.; Ge, W.; Liu, X.; Liu, B.; Zhang, J. A new opinion about the west of Gangu M7. 0 earthquake in 143 AD in Gansu Province. Northwestern Seismol. J. 2007, 29, 58–63. [Google Scholar]
- Lei, Z.; Yuan, D.; Ge, W.; He, W.; Liu, X. Textual research on the Tianshui M 7 earthquake in 734 AD and analysis of its causative structure. Seismol. Geol. 2007, 29, 51–62. [Google Scholar]
- Bu, Y.; Wan, Y.; Zhang, Y. Tectonic stress analysis in Gansu and its adjacent areas. Seismol. Geol. 2013, 35, 833–841. [Google Scholar] [CrossRef]
- Yuan, D.; Lei, Z.; Liu, B. Textual research on the 1125 Lanzhou M7. 0 earthquake and the causative structure. Earthq. Res. China 2002, 18, 67–75. [Google Scholar]
- Zhou, D.-M.; Can, W.-J.; Ren, J.-W.; Ni, G.-H.; Ning, S.-Z. Inversion of slip rates of the Zhuanglanghe Faults and the northern marginal fault of Maxianshan based on GPS measurements. Seismol. Geol. 2005, 27, 706–714. [Google Scholar]
- Wesnousky, S.; Jones, L.; Scholz, C.; Deng, Q. Historical seismicity and rates of crustal deformation along the margins of the Ordos block, north China. Bull. Seismol. Soc. Am. 1984, 74, 1767–1783. [Google Scholar] [CrossRef]
- Mei, X.; Shao, Z.; Zhang, L.; Feng, J.; Dai, W. Study on potential earthquake risk of unbroken active faults in the northern segment of the North-South seismic zone. Acta Seismol. Sin. 2012, 34, 509–525. [Google Scholar]
- Shan, B.; Xiong, X.; Jin, B.-K.; Zheng, Y. Earthquake stress interaction in the northeastern Songpan-Garz? block and its implication for earthquake hazard. Chin. J. Geophys. 2012, 55, 2329–2340. [Google Scholar] [CrossRef]
- Luo, G.; Liu, M. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics 2010, 491, 127–140. [Google Scholar] [CrossRef]
- Song, F.; Zhu, S.; Wang, Y.; Deng, Q.; Zhang, W. The maximum horizontal displacement in the Haiyuan earthquake of 1920 and the estimation of the earthquake recurrence along the northern marginal fault of the Xihuashan. Seismol. Geol. 1983, 5, 29–37. [Google Scholar]
- Wan, Y.; Shen, Z.; Zeng, Y.; Sheng, S. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence. Acta Seismol. Sin. 2007, 20, 117–132. [Google Scholar] [CrossRef]
- Li, T.; Shen, Z.; Xu, J.; Wan, Y. Analysis on the parameters of seismogenic fault of the earthquake more than 6.5 in North China. Prog. Geophys. 2007, 22, 95–103. [Google Scholar]
- Sun, M.; Wang, W.; Wang, X.; He, J. Rupture process of the Minxian-Zhangxian, Gansu, China MS6. 6 earthquake on 22 July 2013. Chin. J. Geophys. 2015, 58, 1909–1918. [Google Scholar] [CrossRef]
- Cheng, J.; Rong, Y.; Magistrale, H.; Chen, G.; Xu, X. Earthquake Rupture Scaling Relations for Mainland China. Seismol. Res. Lett. 2019, 91, 248–261. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, H.; Shao, Z.; Xu, J.; Shao, H.; Li, Y. Coulomb stress evolution and stress interaction among strong earthquakes in North China. Chin. J. Geophys. 2020, 63, 3338–3354. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, Y.; Ji, L.; Diao, F.; Shi, F.; Li, Y.; Long, F.; Zhang, H.; Zhu, L.; Chen, C. Comprehensive determination for the late stage of the interseismic period of major faults in the boundary zone of active tectonic blocks in Chinese mainland. Chin. J. Geophys. 2022, 65, 4643–4658. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Z.; Wang, P. Digital Seismology; Seismological Press: Beijing, China, 2000. [Google Scholar]
- Zhou, Y.; Zhou, S.; Zhuang, J. A test on methods for MC estimation based on earthquake catalog. Earth Planet. Phys. 2018, 2, 150–162. [Google Scholar] [CrossRef]
- Woessner, J.; Wiemer, S. Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bull. Seismol. Soc. Am. 2005, 95, 684–698. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Wiemer, S.J.S.R.L. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Mignan, A.; Jiang, C.; Zechar, J.D.; Wiemer, S.; Wu, Z.; Huang, Z. Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Forecast Testing Center. Bull. Seismol. Soc. Am. 2013, 103, 845–859. [Google Scholar] [CrossRef]
- Herrmann, M.; Marzocchi, W. Inconsistencies and lurking pitfalls in the magnitude–frequency distribution of high-resolution earthquake catalogs. Seismol. Res. Lett. 2021, 92, 909–922. [Google Scholar] [CrossRef]
- Ogata, Y.; Katsura, K.; Tanemura, M.; Harte, D.; Zhuang, J. Hierarchical Space-Time Point-Process Models (HIST-PPM): Software Documentation 2020. 2021. Available online: http://bemlar.ism.ac.jp/ogata.HIST-PPM-V3/programs/ (accessed on 7 June 2021).
- Delaunay, B. Sur la sphere vide. Izv. Akad. Nauk. SSSR Otd. Mat. I Estestv. Nauk. 1934, 7, 793–800. [Google Scholar]
- Akaike, H. A new look at the Bayes procedure. Biometrika 1978, 65, 53–59. [Google Scholar] [CrossRef]
- Akaike, H. On Entropy Maximization Principle; Krishnaish, P.R., Ed.; Application of Statistic: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Akaike, H. Likelihood and the Bayes Procedure; Bernardo, J.M., Degroot, M.H., Lindley, D.V., Smith, A.F.M., Eds.; University Press: Valencia, Spain, 1998; Volume 3, pp. 143–166. [Google Scholar]
- Aki, K. Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ. 1965, 43, 237–239. [Google Scholar]
- Hamilton, R.M. Mean magnitude of an earthquake sequence. Bull. Seismol. Soc. Am. 1967, 57, 1115–1116. [Google Scholar] [CrossRef]
- Dijkstra, T. Some comments on maximum likelihood and partial least squares methods. J. Econom. 1983, 22, 67–90. [Google Scholar] [CrossRef]
- Yang, X.; Feng, Q.; Liu, W.; Xia, H.; Zhang, J.; Yang, L.; Zhang, C.; Wang, Z.; Feng, Y. Community structure and plant diversity under different degrees of restored grassland in mining areas of the Qilian Mountains, Northwestern China. Front. Environ. Sci. 2023, 11, 1191599. [Google Scholar] [CrossRef]
- Yang, G.; Wu, Y.; Xu, H. Study on the Strengthing Small Earthquake Activity Phenomenon in Huating Region. Northwestern Seismol. J. 2006, 28, 163–166. [Google Scholar]
- Wang, W.; Yin, X.; Yang, X.; Zhang, S.; Lu, X.; Wang, Z.; Ju, H. Research on Huating earthquake classification in Gansu Province based on machine learning method. Prog. Geophys. 2022, 37, 2308–2317. [Google Scholar]
- Gulia, L.; Gasperini, P. Contamination of frequency–magnitude slope (b-Value) by Quarry Blasts: An example for Italy. Seismol. Res. Lett. 2021, 92, 3538–3551. [Google Scholar] [CrossRef]
- Wiemer, S.; Baer, M. Mapping and Removing Quarry Blast Events from Seismicity Catalogs. Bull. Seismol. Soc. Am. 2000, 90, 525–530. [Google Scholar] [CrossRef]
- Goldthorpe, J.H. Technical Organization as a Factor in Supervisor-Worker Conflict: Some Preliminary Observations on a Study Made in the Mining Industry. Br. J. Sociol. 1959, 10, 213–230. [Google Scholar] [CrossRef]
- Jiang, P.; Liwu, L.; Shu’an, J. Geosites and Their Protection in China. In Geosciences and Human Survival, Environment, Natural Hazards, Global Change: Proceedings of the 30th International Geological Congress; CRC Press: Boca Raton, FL, USA, 2023; Volume 2–3, pp. 269–281. [Google Scholar]
- Li, X.; Li, C.; Wesnousky, S.G.; Zhang, P.; Zheng, W.; Pierce, I.K.D.; Wang, X. Paleoseismology and slip rate of the western Tianjingshan fault of NE Tibet, China. J. Asian Earth Sci. 2017, 146, 304–316. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, A.; Li, Y.; Liu, H.; Zhang, Y. Research on active features and tectonic stability in the late Quaternary of the Northern Piedmont Fault of Changlingshan. Earthq. Res. China 2006, 22, 11, (In Chinese with English abstract). [Google Scholar]
- Cai, Z.; Zhang, W.; Jiao, D. Discussion of the level active severity in different time intervals and segments on late Quaternary along Tianjingshan fault zone. Earthq. Res. China 1997, 13, 8. [Google Scholar]
- Zhou, J.; Liu, B. The research of active Zhongwei-Tongxin Fault. Northwestern Seismol. J. 1987, 9, 8. [Google Scholar]
- Yin, G.; Jiang, Y.; Yu, G. The study of the left-lateral displacement on the Xiangshan-Tianjingshan Fault in late Quaternary. Seismol. Geol. 2013, 35, 8. [Google Scholar]
- Min, W.; Jiao, D.; Chai, Z.; Zhang, P.; Mao, F. Characteristics of the active Luoshan fault since late Pleistocene, north central China. Ann. Geophys. 2003, 46, 997–1013. [Google Scholar]
- Zhang, P.; Burchfiel, B.; Molnar, P.; Zhang, W.; Jiao, D.; Deng, Q.; Wang, Y.; Royden, L.; Song, F. Late Cenozoic tectonic evolution of the Ningxia-Hui autonomous region, China. Geol. Soc. Am. Bull. 1990, 102, 1484–1498. [Google Scholar]
- Zhou, M.; Lü, T.; Zhang, Y.; Ruan, A. The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan Plateau. Acta Seismol. Sin. 2000, 13, 687–697. [Google Scholar] [CrossRef]
- Min, W.; Chai, C.; Wang, P.; Yang, P. The study on the paleoearthquakes on the eastern piedmont fault of the Luoshan mountains in Holocene. Earthq. Res. Plateau 1993, 5, 97–102. [Google Scholar]
- Min, W.; Chai, Z.; Wang, P.; Yang, P.; Chai, C.; Wang, P.; Yang, P. Preliminary study on the Holocene active fault features at the eastern piedmont of the Luoshan Mountain. Earthq. Res. China 1992, 8, 49–54. [Google Scholar]
- Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Automous Province. Haiyuan Active Fault; Seismological Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Zhang, P.; Min, W.; Deng, Q.; Mao, F. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Sci. China-Earth Sci. 2005, 48, 364–375. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, P.Z.; Liu, J.; Li, C.Y.; Ren, Z.K.; Hudnut, K.W. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR. Chin. Sci. Bull. 2014, 59, 2396–2409. [Google Scholar] [CrossRef]
- Yuan, D.; Liu, B.; Lu, T.; He, W. Study on the segmentation in east segment of the northern Qilianshan fault zone. Northwestern Seismol. J. 1998, 20, 27–34. [Google Scholar]
- Cavalié, O.; Lasserre, C.; Doin, M.-P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z. Measurement of interseismic strain across the Haiyuan Fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 12. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Hu, F.; Chen, X. Dynamic Rupture Simulations of the 1920 Ms 8.5 Haiyuan Earthquake in China. Bull. Seismol. Soc. Am. 2019, 109, 2009–2020. [Google Scholar] [CrossRef]
- Yuan, D. Tectonic Deformation Feature and Mechanism of the Maxianshan-Xinglongshan Active Fault System in the Lanzhou Area. Earthq. Res. China 2003, 19, 125–131. [Google Scholar]
- Chen, P.; Lin, A. Tectonic topography and Late Pleistocene activity of the West Qinling Fault, northeastern Tibetan Plateau. J. Asian Earth Sci. 2019, 176, 68–78. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yu, J.; Yuan, D.; Zhang, P.; Ge, W.; Pang, J.; Liu, B. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China. Tectonophysics 2016, 687, 1–13. [Google Scholar] [CrossRef]
- Specialized Working Groups for Magnitude 7.0 Earthquakes. Study on the Medium- and Long-Term Risk of Large Earthquakes in Mainland China; Earthquake Press: Beijing, China, 2012. [Google Scholar]
- Wessel, P.; Luis, J.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.; Tian, D. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, N.; Han, P.; Wang, R.; Shi, F.; Chen, L.; Li, H.
Spatial Heterogeneity of
Hu N, Han P, Wang R, Shi F, Chen L, Li H.
Spatial Heterogeneity of
Hu, Nan, Peng Han, Rui Wang, Fuqiang Shi, Lichun Chen, and Hongyi Li.
2024. "Spatial Heterogeneity of
Hu, N., Han, P., Wang, R., Shi, F., Chen, L., & Li, H.
(2024). Spatial Heterogeneity of