[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Gutenberg-Richter b-value maximum likelihood estimation and sample size

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The Aki-Utsu maximum likelihood method is widely used for estimation of the Gutenberg-Richter b-value, but not all authors are conscious of the method’s limitations and implicit requirements. The Aki/Utsu method requires a representative estimate of the population mean magnitude; a requirement seldom satisfied in b-value studies, particularly in those that use data from small geographic and/or time windows, such as b-mapping and b-vs-time studies. Monte Carlo simulation methods are used to determine how large a sample is necessary to achieve representativity, particularly for rounded magnitudes. The size of a representative sample weakly depends on the actual b-value. It is shown that, for commonly used precisions, small samples give meaningless estimations of b. Our results give estimates on the probabilities of getting correct estimates of b for a given desired precision for samples of different sizes. We submit that all published studies reporting b-value estimations should include information about the size of the samples used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log(N) = a - bM and its confidence limits. Bull Earthq Res Inst Tokio Univ 43:237–239

    Google Scholar 

  • Aki K (1981) A probabilistic synthesis of precursory phenomena In: Simpson DW Richards PG (eds) Earthquake prediction: an international review (vol. 4). American Geophysical Union, Washington, p 566–574

  • Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seism Soc Am 73:831–851

    Google Scholar 

  • Bhattacharya P, Majumdar R, Kayal J (2002) Fractal dimension and b-value mapping in northeast India. Curr Sci 82:1486–1491

    Google Scholar 

  • Enescu B, Ito K (2001) Some premonitory phenomena of the 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension. Tectonophysics 338:297–314

    Article  Google Scholar 

  • Epstein B, Lomnitz C (1966) A model for the occurrence of large earthquakes. Nature 211:954–956

    Article  Google Scholar 

  • Ghosh A, Newman A, Amanda M, Thomas A, Farmer G (2008) Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys Res Lett 35:L01301. doi:10.1029/2007GL031617

    Google Scholar 

  • Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Ishimoto M, Iida K (1939) Observations sur les seisms enregistrés par le microseismograph construit dernièrement (I). Bull Earthquake Res Inst Univ of Tokyo 17:443–478

    Google Scholar 

  • Kamer Y, Hiemer S (2015) Data-driven spatial b-value estimation with applications to California seismicity: to b or not to b. doi: 10.1002/2014JB011510.

  • Khan P (2005) Mapping of b-value beneath the Shillong plateau. Gondwana Res 8:271–276. doi:10.1016/S1342-937X(05)71126-6

    Article  Google Scholar 

  • Kijko A (1988) Maximum likelihood estimation of Gutenberg-Richter b parameter for uncertain magnitude values. PAGEOPH 127:573–579

    Article  Google Scholar 

  • Kijko A, Selevoll M (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seism Soc Am 79:645–654

    Google Scholar 

  • Kijko A, Selevoll M (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seism Soc Am 82:120–134

    Google Scholar 

  • Lomnitz C (1966) Statistical prediction of earthquakes. Rev Geophys 4:377–393

    Article  Google Scholar 

  • Lomnitz C (1974) Global tectonics and earthquake risk. Elsevier Sc. Pub. Co., CH.

  • Márquez-Ramírez V. (2012) Análisis multifractal de la distribución espacial de sismicidad y su posible aplicación premonitora. Exploración de un posible mecanismo para la fractalidad mediante modelado semiestocástico. PhD Thesis, Programa de Posgrado en Ciencias de la Tierra, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México.

  • Márquez-Ramírez V, Nava F, Zúñiga F (2015) Correcting the Gutenberg-Richter b-value for effects of rounding and noise. Earthq Sci 28:129–134. doi:10.1007/s11589-015-0116-1

    Article  Google Scholar 

  • Montuori C, Falcone G, Murru M, Thurber C, Reyners M, Eberhart-Phillips D (2010) Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand. Geophys J Int 183:451–460. doi:10.1111/j.1365-246X.2010.04750.x

    Article  Google Scholar 

  • Richter C (1958) Elementary seismology. W H Freeman and Co, USA

    Google Scholar 

  • Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Shaw E, Carlson J, Langer J (1992) Patterns of seismic activity preceding large earthquakes. J Geophys Res 97(B1):479–488

    Article  Google Scholar 

  • Shi Y, Bolt B (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  • Singh C, Singh S (2015) Imaging b-value variation beneath the Pamir-Hindu Kush region. Bull Seismol Soc Am 105:808–815. doi:10.1785/0120140112

    Article  Google Scholar 

  • Singh C, Singh A, Chadha R (2009) Fractal and b-value mapping in Eastern Himalaya and Southern Tibet. Bull Seismol Soc Am 99:3529–3533. doi:10.1785/0120090041

    Article  Google Scholar 

  • Tinti S, Mulargia F (1987) Confidence intervals of b-values for grouped magnitudes. Bull Seismol Soc Am 77:2125–2134

    Google Scholar 

  • Utsu T (1965) A method for determining the value of b in a formula 329 log n = a - bM showing the magnitude-frequency relation for 330 earthquakes. Geophys Bull Hokkaido Univ 13:99–103

  • Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102(B7):15115–15128

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys 45:259–302

    Article  Google Scholar 

  • Wyss M, Wiemer S (2000) Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake. Science 290:1334

    Article  Google Scholar 

  • Zúñiga R, Wyss M (2001) Most-and least-Likely locations of large to great earthquakes along the Pacific coast of Mexico estimated from local recurrence times based on b-values. Bull Seismol Soc Am 91:1717–1728

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank two anonymouis reviewers for useful comments and suggestions. Thanks to Dr. J.L. Brioso for his guidance and patience. Many thanks to José Mojarro for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Nava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava, F.A., Márquez-Ramírez, V.H., Zúñiga, F.R. et al. Gutenberg-Richter b-value maximum likelihood estimation and sample size. J Seismol 21, 127–135 (2017). https://doi.org/10.1007/s10950-016-9589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9589-1

Keywords

Navigation