Abstract
The Aki-Utsu maximum likelihood method is widely used for estimation of the Gutenberg-Richter b-value, but not all authors are conscious of the method’s limitations and implicit requirements. The Aki/Utsu method requires a representative estimate of the population mean magnitude; a requirement seldom satisfied in b-value studies, particularly in those that use data from small geographic and/or time windows, such as b-mapping and b-vs-time studies. Monte Carlo simulation methods are used to determine how large a sample is necessary to achieve representativity, particularly for rounded magnitudes. The size of a representative sample weakly depends on the actual b-value. It is shown that, for commonly used precisions, small samples give meaningless estimations of b. Our results give estimates on the probabilities of getting correct estimates of b for a given desired precision for samples of different sizes. We submit that all published studies reporting b-value estimations should include information about the size of the samples used.
Similar content being viewed by others
References
Aki K (1965) Maximum likelihood estimate of b in the formula log(N) = a - bM and its confidence limits. Bull Earthq Res Inst Tokio Univ 43:237–239
Aki K (1981) A probabilistic synthesis of precursory phenomena In: Simpson DW Richards PG (eds) Earthquake prediction: an international review (vol. 4). American Geophysical Union, Washington, p 566–574
Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seism Soc Am 73:831–851
Bhattacharya P, Majumdar R, Kayal J (2002) Fractal dimension and b-value mapping in northeast India. Curr Sci 82:1486–1491
Enescu B, Ito K (2001) Some premonitory phenomena of the 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension. Tectonophysics 338:297–314
Epstein B, Lomnitz C (1966) A model for the occurrence of large earthquakes. Nature 211:954–956
Ghosh A, Newman A, Amanda M, Thomas A, Farmer G (2008) Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys Res Lett 35:L01301. doi:10.1029/2007GL031617
Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188
Ishimoto M, Iida K (1939) Observations sur les seisms enregistrés par le microseismograph construit dernièrement (I). Bull Earthquake Res Inst Univ of Tokyo 17:443–478
Kamer Y, Hiemer S (2015) Data-driven spatial b-value estimation with applications to California seismicity: to b or not to b. doi: 10.1002/2014JB011510.
Khan P (2005) Mapping of b-value beneath the Shillong plateau. Gondwana Res 8:271–276. doi:10.1016/S1342-937X(05)71126-6
Kijko A (1988) Maximum likelihood estimation of Gutenberg-Richter b parameter for uncertain magnitude values. PAGEOPH 127:573–579
Kijko A, Selevoll M (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seism Soc Am 79:645–654
Kijko A, Selevoll M (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seism Soc Am 82:120–134
Lomnitz C (1966) Statistical prediction of earthquakes. Rev Geophys 4:377–393
Lomnitz C (1974) Global tectonics and earthquake risk. Elsevier Sc. Pub. Co., CH.
Márquez-Ramírez V. (2012) Análisis multifractal de la distribución espacial de sismicidad y su posible aplicación premonitora. Exploración de un posible mecanismo para la fractalidad mediante modelado semiestocástico. PhD Thesis, Programa de Posgrado en Ciencias de la Tierra, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México.
Márquez-Ramírez V, Nava F, Zúñiga F (2015) Correcting the Gutenberg-Richter b-value for effects of rounding and noise. Earthq Sci 28:129–134. doi:10.1007/s11589-015-0116-1
Montuori C, Falcone G, Murru M, Thurber C, Reyners M, Eberhart-Phillips D (2010) Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand. Geophys J Int 183:451–460. doi:10.1111/j.1365-246X.2010.04750.x
Richter C (1958) Elementary seismology. W H Freeman and Co, USA
Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415
Shaw E, Carlson J, Langer J (1992) Patterns of seismic activity preceding large earthquakes. J Geophys Res 97(B1):479–488
Shi Y, Bolt B (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72:1677–1687
Singh C, Singh S (2015) Imaging b-value variation beneath the Pamir-Hindu Kush region. Bull Seismol Soc Am 105:808–815. doi:10.1785/0120140112
Singh C, Singh A, Chadha R (2009) Fractal and b-value mapping in Eastern Himalaya and Southern Tibet. Bull Seismol Soc Am 99:3529–3533. doi:10.1785/0120090041
Tinti S, Mulargia F (1987) Confidence intervals of b-values for grouped magnitudes. Bull Seismol Soc Am 77:2125–2134
Utsu T (1965) A method for determining the value of b in a formula 329 log n = a - bM showing the magnitude-frequency relation for 330 earthquakes. Geophys Bull Hokkaido Univ 13:99–103
Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102(B7):15115–15128
Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869
Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys 45:259–302
Wyss M, Wiemer S (2000) Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake. Science 290:1334
Zúñiga R, Wyss M (2001) Most-and least-Likely locations of large to great earthquakes along the Pacific coast of Mexico estimated from local recurrence times based on b-values. Bull Seismol Soc Am 91:1717–1728
Acknowledgments
We sincerely thank two anonymouis reviewers for useful comments and suggestions. Thanks to Dr. J.L. Brioso for his guidance and patience. Many thanks to José Mojarro for technical support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nava, F.A., Márquez-Ramírez, V.H., Zúñiga, F.R. et al. Gutenberg-Richter b-value maximum likelihood estimation and sample size. J Seismol 21, 127–135 (2017). https://doi.org/10.1007/s10950-016-9589-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10950-016-9589-1