On Optimal and Quantum Code Construction from Cyclic Codes over
qPQ with Applications
Abstract
:1. Introduction
2. Preliminaries
- (i).
- R has a unique maximal left ideal.
- (ii).
- R has a unique maximal right ideal.
- (iii).
- The sum of any two nonunit elements of R is also a nonunit as well as .
- (iv).
- If x is an arbitrary element of R, then x or is unit as well as .
3. Linear Codes and Gray Images over P and Q
- (i).
- (ii).
- , further, is a self-orthogonal code over P if and only if each is self-orthogonal code over and is a self-dual code over P if and only if each is self-dual code over , for
- (i).
- (ii).
- ; further, is self-orthogonal if and only if is self-orthogonal, and is self-dual if and only if is self-dual, for
4. Gray Image over
- (i).
- φ is an -linear and distance preserving map from to .
- (ii).
- If is a linear code of length over , then Gray image of is also a linear code with the parameters [] over .
5. Main Results
5.1. Cyclic Codes over
5.2. Cyclic Codes over P
5.3. Cyclic Codes over Q
5.4. Cyclic Codes over
- (i)
- , and , .
- (ii)
- , and .
- (i)
- if and only if .
- (ii)
- if and only if .
- (i)
- is separable.
- (ii)
- , .
- (iii)
- .
5.5. Quantum Error-Correcting Codes
- 1.
- , where (larger code rate with same distance);
- 2.
- where (larger distance with the same code rate).
6. Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prange, E. Some Cyclic Error-Correcting Codes with Simple Decoding Algorithm; AFCRC-TN-58-156: Cambridge, MA, USA, 1985.
- Sloane, N.; Thompson, J. Cyclic self-dual codes. IEEE Trans. Inf. Theory 1983, 29, 364–366. [Google Scholar] [CrossRef]
- Hammons, A.R.; Kumar, P.V.; Calderbank, A.R.; Slone, N.J.A.; Sole, P. The 4 linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 1994, 40, 301–319. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Meng, X.; Fu, F.W. Minimal linear codes from defining sets over Fp + uFp. Discret. Math. 2023, 346, 113584. [Google Scholar] [CrossRef]
- Gao, J.; Meng, X.; Fu, F.W. Weight distributions of generalized quasi-cyclic codes over Fq + uFq. Finite Fields Their Appl. 2023, 88, 102181. [Google Scholar] [CrossRef]
- Pereira, F.R.F.; Mancini, S. Entanglement-assisted quantum codes from cyclic codes. Entropy 2022, 25, 37. [Google Scholar] [CrossRef]
- Brouwer, A.; Hamalainen, H.; Ostergard, P.; Sloane, N.J.A. Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 1998, 44, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Borges, J.; Cordoba, C.F.; Valls, R.T. 2-double cyclic codes. Des. Codes Cryptogr. 2018, 86, 463–479. [Google Scholar] [CrossRef]
- Abualrub, T.; Siap, I.; Aydin, N. 24-Additive cyclic and codes. IEEE Trans. Inf. Theory 2014, 60, 1508–1514. [Google Scholar] [CrossRef]
- Aydogdu, I.; Siap, I. On prps-additive codes. Linear Multilinear Algebra 2015, 63, 2089–2102. [Google Scholar] [CrossRef]
- Aydogdu, I.; Siap, I. The structure of 22s-additive codes: Bounds on the minimum distance. Appl. Math. Inf. Sci. 2013, 7, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Borges, J.; Fernández-Córdoba, C.; Ten-Valls, R. 24-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory 2016, 62, 6348–6354. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, I.; Abualrub, T.; Siap, I. On 22[u]-additive codes. Int. J. Comput. Math. 2015, 92, 1806–1814. [Google Scholar] [CrossRef]
- Shi, M.; Wu, R.; Krotov, D.S. On zpzpk-Additive codes and their duality. IEEE Trans. Inf. Theory 2018, 65, 3841–3847. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, I.; Abualrub, T.; Siap, I. On 22[u]-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 2017, 63, 4883–4893. [Google Scholar] [CrossRef]
- Srinivasulu, B.; Bhaintwal, M. 2(2 + uZ2)-additive cyclic codes and their duals. Discrete Math. Algorithm. Appl. 2016, 8, 1650027. [Google Scholar] [CrossRef]
- Gao, J.; Wu, T.; Fu, F.W. Hulls of double cyclic codes. Finite Fields Their Appl. 2023, 88, 102189. [Google Scholar] [CrossRef]
- Gao, J.; Shi, M.J.; Wu, T.; Fu, F.W. On double cyclic codes over 4. Finite Fields Appl. 2016, 39, 233–250. [Google Scholar] [CrossRef]
- Mostafanasab, H. Triple cyclic codes over 2. Palest. J. Math. 2017, 46, 123–134. [Google Scholar]
- Wu, T.; Gao, J.; Gao, Y.; Fu, F.W. 224-additive cyclic codes. Adv. Math. Commun. 2018, 12, 641–657. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, I.; Gursoy, F. 248-cyclic codes. J. Appl. Math. Comput. 2019, 60, 327–341. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Liu, Y.; Fu, F.W. New MDS EAQECCs derived from constacyclic codes over Fq2 + vFq2. Discret. Math. 2023, 346, 113513. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, Y.; Hou, X.; Gao, J. New MDS EAQECCs from constacyclic codes over finite nonchain rings. Quantum Inf. Process. 2023, 22, 250. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Hou, X.; Gao, J. New MDS operator quantum error-correcting codes derived from constacyclic codes over F q 2 + v F q 2. Quantum Inf. Process. 2023, 22, 247. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Bag, T.; Upadhyay, A.K.; Bandi, R.; Chinnakum, W. On the Structure of Cyclic Codes Over FqRS and Applications in Quantum and LCD Codes Constructions. IEEE Access 2020, 8, 18902–18914. [Google Scholar] [CrossRef]
- Ashraf, M.; Khan, N.; Mohammad, G. Quantum codes from cyclic codes over the mixed alphabet structure. Quantum Inf. Process. 2022, 21, 1–25. [Google Scholar] [CrossRef]
- Ali, S.; Alali, A.S.; Oztas, E.S.; Sharma, P. Construction of quantum codes over the class of commutative rings and their applications to DNA codes. Mathematics 2023, 11, 1430. [Google Scholar] [CrossRef]
- Hill, R. A First Course in Coding Theory; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Grassl, M.; Beth, T.; Roetteler, M. On optimal quantum codes. Int. J. Quantum Inform. 2004, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Calderbank, A.R.; Rains, E.M.; Shor, P.M.; Sloane, N.J.A. Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 1998, 44, 1369–1387. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Mohammad, G. Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq. Quantum Inf. Process. 2016, 15, 4089–4098. [Google Scholar] [CrossRef]
- Ashraf, M.; Mohammad, G. Quantum codes over Fp from cyclic codes over . Cryptogr. Commun. 2019, 11, 325–335. [Google Scholar] [CrossRef]
- Islam, H.; Prakash, O. Construction of LCD and new quantum codes from cyclic codes over a finite nonchain ring. Cryptogr. Commun. 2022, 14, 59–73. [Google Scholar] [CrossRef]
- Islam, H.; Prakash, O. Quantum codes from the cyclic codes over Fp[u,v,w]/〈u2 − 1,v2 − 1,w2 − 1,uv − vu,vw − wv,uw − wu〉. J. Appl. Math. Comput. 2019, 60, 625–635. [Google Scholar] [CrossRef]
- Islam, H.; Prakash, O.; Verma, R.K. Quantum codes from the cyclic codes over Fp[v,w]/〈v2 − 1,w2 − 1,vw − wv〉. Proc. Math. Stat. 2019, 307, 67–74. [Google Scholar]
- Bosma, W.; Cannon, J. Handbook of Magma Functions; University of Sydney: Camperdown, Australia, 1995. [Google Scholar]
- Grassl, M. Code Tables: Bounds on the Parameters of Various Types of Codes. Available online: http://www.codetables.de/ (accessed on 20 April 2021).
- Aydin, N.; Liu, P.; Yoshino, B. A Database of Quantum Codes. 2021. Available online: http://quantumcodes.info/ (accessed on 7 August 2021).
n | Remarks | ||||
---|---|---|---|---|---|
4 | optimal | ||||
5 | optimal | ||||
6 | optimal | ||||
7 | … | ||||
8 | optimal | ||||
10 | 1 | optimal | |||
12 | optimal |
Parameters of | Quantum Codes | Remarks | ||
---|---|---|---|---|
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
7 | ||||
8 |
Gray Image over P | Quantum Codes | Known Quantum Codes | ||||
---|---|---|---|---|---|---|
25 | 1 | |||||
30 | 1 | [32] | ||||
40 | 1 | [31] | ||||
60 | 1 | [25] | ||||
7 | … | |||||
21 | 1 | |||||
28 | 1 | [33] | ||||
35 | [34] | |||||
77 | 1 | [35] | ||||
11 | ||||||
11 | ||||||
17 |
Gray Image over P | Quantum Codes | Known Quantum Codes | ||||
---|---|---|---|---|---|---|
5 | 1 | |||||
8 | 1 | … | ||||
10 | 1 | |||||
14 | [34] | |||||
18 | [34] | |||||
30 | 1 | [32] | ||||
35 | 1 | [32] | ||||
38 | 1 | [34] | ||||
42 | 1 | [34] |
Gray Image over | New Quantum Codes | ||||||
---|---|---|---|---|---|---|---|
10 | 5 | 1 | |||||
15 | 10 | 1 | |||||
20 | 20 | 1 | |||||
30 | 20 | 1 | |||||
7 | 7 | ||||||
14 | 7 | ||||||
28 | 28 | ||||||
42 | 56 |
Gray Image over | New Quantum Codes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 5 | 5 | 1 | 1 | |||||||
10 | 10 | 10 | 1 | 1 | |||||||
10 | 20 | 30 | 1 | 1 | |||||||
30 | 20 | 40 | 1 | 1 | |||||||
7 | 21 | 14 | 1 | ||||||||
14 | 28 | 35 | |||||||||
48 | 84 | 70 | 1 | 1 | |||||||
63 | 56 | 98 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Alali, A.S.; Sharma, P.; Wong, K.B.; Öztas, E.S.; Jeelani, M.
On Optimal and Quantum Code Construction from Cyclic Codes over
Ali S, Alali AS, Sharma P, Wong KB, Öztas ES, Jeelani M.
On Optimal and Quantum Code Construction from Cyclic Codes over
Ali, Shakir, Amal S. Alali, Pushpendra Sharma, Kok Bin Wong, Elif Segah Öztas, and Mohammad Jeelani.
2023. "On Optimal and Quantum Code Construction from Cyclic Codes over
Ali, S., Alali, A. S., Sharma, P., Wong, K. B., Öztas, E. S., & Jeelani, M.
(2023). On Optimal and Quantum Code Construction from Cyclic Codes over