Abstract
Let p be an odd prime, \(q=p^m\), \(R_1=\mathbb F_{q}+u{\mathbb {F}}_{q}+v{\mathbb {F}}_{q}+uv{\mathbb {F}}_{q}\) with \(u^2=1\), \(v^2=1\), \(uv=vu\) and \(R_2={\mathbb {F}}_{q}[u,v,w]/\langle u^2-1, v^2-1,w^2-1, uv-vu,vw-wv,wu-uw\rangle \) with \(u^2=1\), \(v^2=1\), \(w^2=1\), \(uv=vu\), \(vw=wv\), \(wu=uw\). In this paper, \({\mathbb {F}}_q R_1R_2\)-cyclic codes are introduced. We construct quantum error-correcting codes from \({\mathbb {F}}_q R_1R_2\)-cyclic codes and introduced a Gray map to find new and better quantum error-correcting codes than previously known quantum error-correcting codes over \({\mathbb {F}}_{q}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Abualrub, T., Siap, I., Aydin, N.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)
Abualrub, T., Siap, I.: On \({\mathbb{Z}}_p^r{\mathbb{Z}}_p^s\)-additive cyclic codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_3+v{\mathbb{F}}_3\). Int. J. Quantum Inf. 12(6), 1450042 (2014)
Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_{q}+u{\mathbb{F}}_{q}+v{\mathbb{F}}_{q}+uv{\mathbb{F}}_{q} \). Quantum Inf. Process. 15(10), 4089–4098 (2016)
Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F}}_p\) from cyclic codes over \({\mathbb{F}}_p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)
Aydin, N., Liu, P., Yoshino, B.: A database of quantum codes. Online available at http://quantumcodes.info/ (2021). Accessed on 2021-08-07
Aydogdu, I., Siap, I.: The structure of \({\mathbb{Z}}_2{\mathbb{Z}}_2^s\)-additive codes; bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)
Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-additive codes. Int. J. Comput. Math. 90(9), 1806–1814 (2015)
Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017)
Aydogdu, I., Siap, I., Ten-Valls, R.: On structure of \({\mathbb{Z}}_2{\mathbb{Z}}_2[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017)
Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G.: Quantum code from cyclic code over the ring \({\mathbb{F}}_p[u]/\langle u^3-u\rangle \). Asian Eur. J. Math. 13(1), 2050008 (2020). https://doi.org/10.1142/S1793557120500084
Borges, J., Cordoba, C.F., Pujol, J., Rifa, J., Vllanueva, M.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-linear codes; generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)
Borges, J., Fernandez-Cordoba, C., Ten-Valls, R.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes; generator polynomials and dual codes. IEEE Trans. Inf. Theory 62(11), 6348–6354 (2016)
Borges, J., Cordoba, C.F., Valls, R.T.: \({\mathbb{Z}}_2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
Brouwer, A., Hamalainen, H., Ostergard, P., Sloane, N.J.: Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 44(1), 140–161 (1998)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A2\). Int. J. Quantum Inf. 13(3), 1550031 (2015)
Diao, L., Gao, J., Lu, J.: Some results on \({\mathbb{Z}}_p{\mathbb{Z}}_p[v]\)-additive cyclic codes. Adv. Math. Commun. 14(4), 555–572 (2020)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \({\mathbb{F}}_q\)RS and applications in quantum and LCD codes constructions. IEEE Access 8, 18902–18914 (2020)
Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \({\mathbb{F}}_q+v_{1}{\mathbb{F}}_q+\cdots +v_{r}{\mathbb{F}}_q\). AAECC 30, 161–174 (2019)
Gao, J., Shi, M.J., Wu, T., Fu, F.W.: On double cyclic codes over \({\mathbb{Z}}_4\). Finite Fields Appl. 39, 233–250 (2016)
Hammons, A.R., Kumar, P.V., Calderbank, A.R., Slone, N.J.A., Sole, P.: The \({\mathbb{Z}}_4\)- linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)
Hill, R.: A First Course in Coding Theory. Clarendom Press, Oxford (1986)
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \({\mathbb{F}}_{p} [u, v, w]/\langle u^{2} - 1, v^{2} - 1, w^{2} - 1, uv - vu, vw - wv, uw - wu\rangle \). J. Appl. Math. Comput. 60, 625–635 (2019)
Islam, H., Prakash, O., Verma, R.K.: Quantum codes from the cyclic codes over \({ F}_P[v,w]/\langle v^2-1,w^2-1,vw-wv\rangle \). In: Springer Proceedings in Mathematics and Statistics, vol. 307. https://doi.org/10.1007/978-981-15-1157-8-6 (2019)
Li, P., Dai, W., Kai, X.: \(\mathbb{Z}_2 \mathbb{Z}_2[u]\)-(1+u)-additive constacyclic codes (2016). arXiv:1611.03169v1
Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over \({\mathbb{F}}_p[u, v]/\langle u^2-1, v^2-v, uv-vu\rangle \). Adv. Math. Commun. 13(2), 421–434 (2019)
Mostafanasab, H.: Triple cyclic codes over \({\mathbb{Z}}_2\). Palest. J. Math. 46, 123–134 (2017)
Prange, E.: Some cyclic error-correcting codes with simple decoding algorithm. In: Air Force Cambridge Research, Cambridge, MA, USA, Technical Research Center-TN-58-156 (1958)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52, 2493–2496 (1995)
Sloane, N., Thompson, J.: Cyclic self-dual codes. IEEE Trans. Inf. Theory 29(3), 364–366 (1983)
Srinivasulu, B., Bhaintwal, M.: \({\mathbb{Z}}_2({\mathbb{Z}}_2+u{\mathbb{Z}}_2)\)-additive cyclic codes and their duals. Discrete Math. Algorithms Appl. 8(2), 1650027 (2016)
Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A. 54, 4741–4751 (1996)
Wu, T., Gao, J., Gao, Y., Fu, F.W.: \({\mathbb{Z}}_2{\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes. Adv. Math. Commun. 12(4), 641–657 (2018)
Acknowledgements
The authors are thankful to the anonymous reviewers for their fruitful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ashraf, M., Khan, N. & Mohammad, G. Quantum codes from cyclic codes over the mixed alphabet structure. Quantum Inf Process 21, 180 (2022). https://doi.org/10.1007/s11128-022-03491-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03491-z