Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires
<p>Land covers of the study area and the burned area of the Camp Fire (pink boundary), Btu Fire (dark red boundary), and Humboldt Fire (blue boundary).</p> "> Figure 2
<p>Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series for a pixel affected by two fires (<b>a</b>), one fire (<b>b</b>), and no fire (<b>c</b>). Upper panels: Terra MODIS collection; Lower panels: Aqua MODIS collection.</p> "> Figure 3
<p>Periodogram of an Aqua EVI pixel time series of a site not affected by any fire (<b>a</b>), affected by one fire (<b>b</b>), and affected by two fires (<b>c</b>). The dotted lines represent the 95% confidence level (see text for details). Two main periodicities at about 6 and 12 months are significant at 95%. They represent the meteo-climatic fluctuations.</p> "> Figure 4
<p>Mean periodogram of Aqua EVI pixel time series in site not affected by any fire, affected by one, and affected by two fires. The two periodicities at about 6 and 12 months are well-identified.</p> "> Figure 5
<p>Residuals of the pixels, whose periodograms are shown in <a href="#entropy-24-01748-f003" class="html-fig">Figure 3</a>, after removing the two periodicities at 6 and 12 months by Fourier filtering.</p> "> Figure 6
<p>Residual Normalized Difference Vegetation Index (NDVI<sub>r</sub>) and Residual Enhanced Vegetation Index (EVI<sub>r</sub>) time series corresponding to the example pixel time series shown in <a href="#entropy-24-01748-f002" class="html-fig">Figure 2</a>, affected by two fires (<b>a</b>), one fire (<b>b</b>), and no fire (<b>c</b>). Upper panels: Terra MODIS collection; Lower panels: Aqua MODIS collection.</p> "> Figure 7
<p>Fluctuation functions for <span class="html-italic">q</span> = −10 and <span class="html-italic">q</span> = 10 of the binomial series generated with <span class="html-italic">a</span> = 0.75 and (<b>a</b>) <span class="html-italic">N</span> = 2<sup>14</sup> and (<b>b</b>) <span class="html-italic">N</span> = 2<sup>9</sup>.</p> "> Figure 8
<p>The <span class="html-italic">h<sub>q</sub></span> spectrum of the binomial series. The comparison is between the theoretical case for <span class="html-italic">a</span> = 0.75 and the simulated cases with size <span class="html-italic">N</span> = 2<sup>14</sup> and <span class="html-italic">N</span> = 2<sup>9</sup>.</p> "> Figure 9
<p>Comparison among the mean <span class="html-italic">h<sub>q</sub></span> spectra of the binomial series with different gap filling for <span class="html-italic">a</span> = 0.9, size <span class="html-italic">N</span> = 2<sup>9</sup>, and 5% of gap percentage.</p> "> Figure 10
<p>Comparison among the mean RMS with different gap filling and 3% to 10% of gap percentage for a BMM with size <span class="html-italic">N</span> = 2<sup>9</sup> and (<b>a</b>) <span class="html-italic">a</span> = 0.75 and (<b>b</b>) <span class="html-italic">a</span> = 0–9.</p> "> Figure 11
<p>Fluctuation functions for <span class="html-italic">q</span> = 10 (<b>a</b>) and <span class="html-italic">q</span> = −10 (<b>b</b>) of the residual NDVI of a pixel affected by two fires (polynomial degrees, <span class="html-italic">p,</span> from 1 to 5). (<b>c</b>) Fluctuation functions for <span class="html-italic">q</span> = −10 of the residual EVI of a pixel affected by two fires. (<b>d</b>) Fluctuation functions from <span class="html-italic">q</span> = −10 to <span class="html-italic">q</span> = 10 for the residual NDVI of an Aqua pixel not affected by any fire. (<b>e</b>) Fluctuation functions from <span class="html-italic">q</span> = −10 to <span class="html-italic">q</span> = 10 for the residual EVI of a Terra pixel not affected by any fire.</p> "> Figure 12
<p>Distribution of the coefficient of determination, <span class="html-italic">R,</span> for each series and each <span class="html-italic">q</span> value for the data of Aqua NDVI with no fire occurrence for (<b>a</b>) <span class="html-italic">T</span> = 0.9 and (<b>b</b>) <span class="html-italic">T</span> = 0.95. The white boxes correspond to <span class="html-italic">R</span> values smaller than the threshold.</p> "> Figure 13
<p>Box plots of <span class="html-italic">h<sub>2</sub></span> for (<b>a</b>) residual NDVI and EVI of MODIS/Aqua and (<b>b</b>) residual NDVI and EVI of MODIS/Terra.</p> "> Figure 14
<p>Multifractal spectrum of residual NDVI/Terra of one pixel not affected by any fire.</p> "> Figure 15
<p>Box plots of the <span class="html-italic">h<sub>q</sub></span> range for (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> "> Figure 16
<p>Box plots of the width, W, of the multifractal spectrum of (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> "> Figure 17
<p>Box plots of the asymmetry, R, of (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> "> Figure 17 Cont.
<p>Box plots of the asymmetry, R, of (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> "> Figure 18
<p>Box plots of the maximum, <span class="html-italic">α</span><sub>0</sub>, of (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> "> Figure 18 Cont.
<p>Box plots of the maximum, <span class="html-italic">α</span><sub>0</sub>, of (<b>a</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Aqua and (<b>b</b>) NDVI<sub>r</sub> and EVI<sub>r</sub> of MODIS/Terra.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preprocessing
2.2. The Multifractal Detrended Fluctuation Analysis (MFDFA)
2.3. The Binomial Multifractal Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yapp, G.; Walker, J.; Thackway, R. Linking vegetation type and condition to ecosystem goods and services. Ecol. Complex. 2010, 7, 292–301. [Google Scholar] [CrossRef]
- Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol. Indic. 2016, 60, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, L.C.; Bernardo, S.O.; Orgaz, M.D.M.; Yamazaki, Y. Forest Fires Mapping and Monitoring of current and past forest fire activity from Meteosat Second Generation Data. Environ. Model. Softw. 2010, 25, 1909–1914. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. Uncertainty associated with model predictions of surface and crown fire rates of spread. Environ. Model. Softw. 2013, 47, 16–28. [Google Scholar] [CrossRef]
- Eastaugh, C.S.; Hasenauer, H. Deriving forest fire ignition risk with biogeochemical process modelling. Environ. Model. Softw. 2014, 55, 132–142. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- FAO. Global Forest Fire Assessment 1990–2000. Available online: http://www.fire.uni-freiburg.de/programmes/un/fao/Wp55_eng.pdf (accessed on 6 October 2022).
- FAO. Global Forest Resources Assessment 2010; FAO: Rome, Italy, 2010. [Google Scholar]
- UNCCD. United Nations Convention to Combat Desertification; UNCCD: Paris, France, 1994. [Google Scholar]
- Diaz-Delgado, R.; Llorett, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; McCaughey, J.H.; Hall, F.G. High temporal resolution NDVI phenology from micrometeorological radiation sensors. J. Geophys. Res.-Atmos. 1999, 104, 27935–27944. [Google Scholar] [CrossRef]
- Lasaponara, R. Estimating interannual variations in vegetated areas of Sardinia island using SPOT/VEGETATION NDVI temporal series. IEEE Geosci. Remote Sci. 2006, 3, 481–483. [Google Scholar] [CrossRef]
- Lasaponara, R. Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecol. Model. 2006, 196, 265–270. [Google Scholar] [CrossRef]
- Lasaponara, R. Geospatial analysis from space: Advanced approaches for data processing, information extraction and interpretation. Int. J. Appl. Earth Obs. 2013, 20, 1–3. [Google Scholar] [CrossRef]
- Xie, Z.; Song, W.; Ba, R.; Li, X.; Xia, L. A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data. Remote Sens. 2018, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- Ba, R.; Chen, C.; Yuan, J.; Song, W.; Lo, S. SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention. Remote Sens. 2019, 11, 1702. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; van Leeuwen, W.; Miura, T.; Glenn, E. MODIS vegetation indices. In Land Remote Sensing and Global Environmental Change; Springer: Berlin/Heidelberg, Germany, 2010; pp. 579–602. [Google Scholar]
- Testa, S.; Soudani, K.; Boschetti, L.; Mondino, E.B. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Analysis of time-scaling properties in forest-fire sequence observed in Italy. Ecol. Model. 2010, 221, 90–93. [Google Scholar] [CrossRef]
- Telesca, L.; Lanorte, A.; Lasaponara, R. Investigating dynamical trends in burned and unburned vegetation covers using SPOT-VGT NDVI data. J. Geophys. Eng. 2007, 4, 128–138. [Google Scholar] [CrossRef]
- Telesca, L. Fractal Methods in the Investigation of the Time Dynamics of Fires: An Overview. In Fractal Solutions for Understanding Complex Systems in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2016; pp. 117–152. [Google Scholar]
- Telesca, L.; Lasaponara, R. Discriminating dynamical patterns in burned and unburned vegetational covers by using SPOT-VGT NDVI data. Geophys. Res. Lett. 2005, 32, L21401. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Vegetational patterns in burned and unburned areas investigated by using the detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2006, 368, 531–535. [Google Scholar] [CrossRef]
- Li, X.; Lanorte, A.; Lasaponara, R.; Lovallo, M.; Song, W.; Telesca, L. Fisher–Shannon and detrended fluctuation analysis of MODIS normalized difference vegetation index (NDVI) time series of fire-affected and fire-unaffected pixels. Geomat. Nat. Hazards Risk 2017, 8, 1342–1357. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Lo, S.; Xie, Z. Spectral Characteristic Analysis of Burned Area Based on MODIS Data. In Proceedings of the Asia-Oceania Symposium on Fire Science and Technology, Taipei, Taiwan, 21–25 October 2018; pp. 391–404. [Google Scholar]
- Ba, R.; Song, W.; Lovallo, M.; Zhang, H.; Telesca, L. Informational analysis of MODIS NDVI and EVI time series of sites affected and unaffected by wildfires. Phys. A Stat. Mech. Its Appl. 2022, 604, 127911. [Google Scholar] [CrossRef]
- ORNL DAAC. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. 2018. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1379 (accessed on 6 October 2022).
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 6 October 2022).
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Drożdż, S.; Oświȩcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series. Phys. Rev. E 2015, 91, 030902. [Google Scholar] [CrossRef] [Green Version]
- Grech, D.; Pamuła, G. On the multifractal effects generated by monofractal signals. Phys. A Stat. Mech. Its Appl. 2013, 392, 5845–5864. [Google Scholar] [CrossRef] [Green Version]
- Monterrubio-Velasco, M.; Lana, X.; Dolors Martínez, M.; Ramón Zúñiga, F.; de la Puente, J. Evolution of the multifractal parameters along different steps of a seismic activity. The example of Canterbury 2000–2018 (New Zealand). AIP Adv. 2020, 10, 115109. [Google Scholar] [CrossRef]
Wildfire Event | Duration | Cause | Burned Area (Acres) | Tree Coverage (%) |
---|---|---|---|---|
Humboldt Fire | 11–21 June 2008 | Arson | 23,344 | Grasslands 54.59%, Savannas 32.02%, Woody Savannas 12.86% |
Btu Fire | 21 June–29 July 2008 | Lightning strikes | 57,815 | Woody Savannas 59.94%, Evergreen Needleleaf Forests 23.78%, Savannas 7.29%, Grasslands 5.71% |
Camp Fire | 8–25 November 2018 | Electrical transmission lines | 153,336 | Evergreen Needleleaf Forests 37.20%, Woody Savannas 31.20%, Grasslands 16.06%, Savannas 9.38% |
VI Product | VI | Spatial Resolution (m) | Frequency (Days) | Temporal Extent (Year) | Sensor/Satellite |
---|---|---|---|---|---|
MOD13Q1 | NDVI, EVI | 250 | 16 | 2000–2020 | MODIS/Terra |
MYD13Q1 | NDVI, EVI | 250 | 16 | 2002–2020 | MODIS/Aqua |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire | 54 | 39 | 37 | 48 |
One Fire | 136 | 62 | 174 | 113 |
Two Fires | 149 | 80 | 184 | 138 |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire–One Fire | 0.073337 | 0.001878 | 0.666646 | 0.778663 |
One Fire–Two Fires | 1.83 × 10−23 | 0.325468 | 6.25 × 10−10 | 6.94 × 10−14 |
No Fire–Two Fires | 3.20 × 10−16 | 2.06 × 10−6 | 0.001233 | 3.14 × 10−5 |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire–One Fire | 0.897719 | 0.042757 | 0.321087 | 0.960532 |
One Fire–Two Fires | 6.95 × 10−11 | 0.595574 | 3.14 × 10−7 | 0.688014 |
No Fire–Two Fires | 8.71 × 10−9 | 0.007061 | 1.77 × 10−7 | 0.679548 |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire–One Fire | 0.733290 | 0.045961 | 0.288707 | 0.348462 |
One Fire–Two Fires | 7.66 × 10−10 | 0.669236 | 1.26 × 10−6 | 0.941305 |
No Fire–Two Fires | 3.04 × 10−8 | 0.010015 | 7.83 × 10−7 | 0.230172 |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire–One Fire | 0.909562 | 0.562129 | 0.194883 | 0.904868 |
One Fire–Two Fires | 0.001069 | 0.745943 | 0.009704 | 0.711969 |
No Fire–Two Fires | 0.003398 | 0.778580 | 0.790529 | 0.880401 |
Aqua-EVI | Aqua-NDVI | Terra-EVI | Terra-NDVI | |
---|---|---|---|---|
No Fire–One Fire | 0.225453 | 3.77 × 10−4 | 0.125898 | 0.002197 |
One Fire–Two Fires | 3.39 × 10−25 | 0.757963 | 8.55 × 10−13 | 1.70 × 10−8 |
No Fire–Two Fires | 7.87 × 10−17 | 5.84 × 10−6 | 0.002117 | 2.45 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba, R.; Lovallo, M.; Song, W.; Zhang, H.; Telesca, L. Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires. Entropy 2022, 24, 1748. https://doi.org/10.3390/e24121748
Ba R, Lovallo M, Song W, Zhang H, Telesca L. Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires. Entropy. 2022; 24(12):1748. https://doi.org/10.3390/e24121748
Chicago/Turabian StyleBa, Rui, Michele Lovallo, Weiguo Song, Hui Zhang, and Luciano Telesca. 2022. "Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires" Entropy 24, no. 12: 1748. https://doi.org/10.3390/e24121748
APA StyleBa, R., Lovallo, M., Song, W., Zhang, H., & Telesca, L. (2022). Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires. Entropy, 24(12), 1748. https://doi.org/10.3390/e24121748