[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Remote sensing techniques to assess active fire characteristics and post-fire effects

Leigh B. Lentile* A D , Zachary A. Holden* A , Alistair M. S. Smith* A , Michael J. Falkowski A , Andrew T. Hudak B , Penelope Morgan A , Sarah A. Lewis B , Paul E. Gessler A and Nate C. Benson C
+ Author Affiliations
- Author Affiliations

A Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA.

B Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA.

C National Park Service, National Interagency Fire Center, 3833 S. Development Avenue, Boise, ID 83705-5354, USA.

D Corresponding author. Email: lentile@uidaho.edu

International Journal of Wildland Fire 15(3) 319-345 https://doi.org/10.1071/WF05097
Submitted: 16 October 2005  Accepted: 19 May 2006   Published: 5 September 2006

Abstract

Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous remote sensing products for fire management. The objective of the present paper is to provide a comprehensive review of current and potential remote sensing methods used to assess fire behavior and effects and ecological responses to fire. We clarify the terminology to facilitate development and interpretation of comprehensible and defensible remote sensing products, present the potential and limitations of a variety of approaches for remotely measuring active fires and their post-fire ecological effects, and discuss challenges and future directions of fire-related remote sensing research.

Additional keywords: burn severity; burned area; ecological change; fire atlas; fire intensity; fire perimeters; fire radiative power; fire severity; Normalized Burn Ratio; Normalized Difference Vegetation Index; radiative energy.


References


Agee JK (1993) ‘Fire ecology of Pacific Northwest forests.’ (Island Press: Washington, DC)

Albini FA (1976) ‘Estimating wildfire behavior and effects.’ USDA Forest Service, Intermountain Forestry and Range Experimental Station General Technical Report INT-GTR-30. (Ogden, UT)

Alexander ME (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany  60, 349–357.
Andreae MO, Atlas E, Cachier H, Cofer WR, III, Harris GW, Helas G, Koppermann R, Lacaux JP, Ward DE (1996) Trace gas and aerosol emissions from savanna fires. In ‘Biomass burning and global change: Remote sensing, modelling and inventory development and biomass burning in Africa’. (Ed. JS Levine) pp. 278–295. (MIT Press: Cambridge, MA)

Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing  54, 199–214.
Crossref | GoogleScholarGoogle Scholar | Barrett SW, Arno SF, Menakis JP (1997) ‘Fire episodes in the Inland Northwest (1540–1940) based on fire history data.’ USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-370. (Odgen, UT)

Beebe GS , Omi PN (1993) Wildland burning: the perception of risk. Journal of Forestry  91((9)), 19–24.
Bobbe T, Finco MV, Quayle B, Lannom K, Sohlberg R, Parsons A (2003) ‘Field measurements for the training and validation of burn severity maps from spaceborne remotely sensed imagery.’ USDI Joint Fire Science Program Final Project Report JFSP RFP 2001–2. (Boise, ID)

Borchers JG, Perry DA (1990) Effects of prescribed fire on soil organisms. In ‘Natural and prescribed fire in Pacific Northwest forests’. (Eds JD Walstad, SR Radosevich, DV Sandberg) pp. 143–158. (Oregon State University Press: Corvallis)

Bradshaw WG (1988) Fire protection in the urban/wildland interface: who plays what role? Fire Technology  24, 195–203.
Crossref | GoogleScholarGoogle Scholar | Brauer M (1999) Health impacts of biomass air. In ‘Health guidelines for vegetation fire events background papers’. (Eds K-T Goh, D Schwela, JG Goldammer, O Simpson) pp. 186–254. (WHO/UNEP/WMO: Singapore)

Brewer CK, Winne JC, Redmond RL, Opitz DW , Magrich MV (2005) Classifying and mapping wildfire severity: a comparison of methods. Photogrammetric Engineering and Remote Sensing  71, 1311–1320.
Byram GM (1959) Combustion of Forest Fuels. In ‘Forest fire: Control and use’. (Ed. KP Davis) pp. 61–89. (McGraw-Hill: New York)

Chappell C , Agee JK (1996) Fire severity and tree seedling establishment in Abies magnifica forests, southern Cascades, Oregon. Ecological Applications  6, 628–640.
Crossref | Abies magnifica forests, southern Cascades, Oregon.&journal=Ecological Applications&volume=6&pages=628-640&publication_year=1996&author=C%20Chappell&hl=en&doi=https://doi.org/10.2307/2269397" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | Cohen JD, Butler BW (1998) Modeling potential ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In ‘Proceedings of the 13th conference on fire and forest meteorology’. 27–31 October, Lorne, Victoria, Australia. Fairfield, WA. pp. 81–86. (International Association of Wildland Fire: Montana City, MT)

Conard SG , Ivanova GA (1997) Wildfire in Russian boreal forests – potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environmental Pollution  10, 267–275.
Cotrell WH (1989) ‘The book of fire.’ (Mountain Press: Missoula, MT)

Covington WW , Moore MM (1994) South-western ponderosa pine forest structure: changes since Euro-American settlement. Journal of Forestry  92, 39–47.
DeBano LF (1981) ‘Water repellent soils: A state-of-the-art.’ USDA Forest Service Pacific Southwest Forest and Range Experiment Station General Technical Report PSW-46. (Berkeley, CA)

DeBano LF, Rice RN, Conrad CE (1979) ‘Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion and runoff.’ USDA Forest Service, Pacific Northwest Forest and Range Experimental Station Research Paper PSW-145. (Berkeley, CA)

DeBano LF, Neary DG, Ffolliott PF (1998) ‘Fire’s effects on ecosystems.’ (John Wiley and Sons: New York)

Dellasala DA, Williams JE, Williams CD , Franklin JF (2004) Beyond smoke and mirrors: a synthesis of fire policy and science. Conservation Biology  18, 976–986.
Crossref | GoogleScholarGoogle Scholar | Drake NA, White K (1991) Linear mixture modelling of Landsat Thematic Mapper data for mapping the distribution and abundance of gypsum in the Tunisian Southern Atlas. In ‘Spatial data 2000: Proceedings of a joint conference of the Photogrammetric Society, the Remote Sensing Society, the American Society for Photogrammetry and Remote Sensing’, Christ Church, Oxford. (Ed. I Dowman) pp. 168–177. (Remote Sensing Society: Nottingham)

Drake NA, Mackin S , Settle JJ (1999) Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modelling of SWIR AVIRIS imagery. Remote Sensing of Environment  68, 12–25.
Crossref | GoogleScholarGoogle Scholar | Graham RT (2003) ‘Hayman fire case study.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-114. (Fort Collins, CO)

Gresswell RE (1999) Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society  128, 193–221.
2.0.CO;2" target="_blank" rel="nofollow noopener noreferrer" class="reftools">Crossref | 2.0.CO;2" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | Hardy CC, Menakis JP, Long DG, Brown JK, Brunnell DL (1998) Mapping historic fire regimes for the western United States: integrating remote sensing and biophysical data. In ‘Proceedings of the 7th biennial Forest Service remote sensing applications conference’, 6–9 April 1998, Nassau Bay, TX. pp. 288–300. (American Society for Photogrammetery and Remote Sensing: Bethesda, MD)

Hardy CC, Brunnell DL, Menakis JP, Schmidt KM, Long DG, Simmerman DG, Johnston CM (1999) ‘Coarse-scale spatial data for wildland fire and fuel management.’ USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available at http://www.fs.fed.us/fire/fuelman [Verified 29 June 2006]

Hardy CC, Ottmar RD, Peterson JL, Core JE, Seamon P (2001) ‘Smoke management guide for prescribed and wildland fire.’ USDA National Wildfire Coordination Group Publication PMS 420-2. (Ogden, UT)

Hartford RA , Frandsen WH (1992) When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend soil heating). International Journal of Wildland Fire  2, 139–144.
Crossref | GoogleScholarGoogle Scholar | Hudak AT, Robichaud P, Evans J, Clark J, Lannom K, Morgan P, Stone C (2004) Field validation of Burned Area Reflectance Classification (BARC) products for post-fire assessment. In ‘Proceedings of the tenth biennial forest service remote sensing applications conference’. (CD-ROM) (USDA Forest Service RSAC: Salt Lake City, UT)

Hudak AT, Morgan P, Bobbitt M, Lentile LB (2005) Characterizing clearcut harvest and severe fire disturbance patches in a forested landscape: A case study from Cooney Ridge, Montana. In ‘Forest disturbance and spatial patterns, GIS and remote sensing approaches’. (Eds M Wulder, S Francis) Chapter 8. (Taylor and Francis–CRC Press: London)

Hudak AT, Crookston NL, Evans JS, Falkowski MJ, Smith AMS, Gessler PE , Morgan P (2006) Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral data. Canadian Journal of Remote Sensing  32, 126–138.
Hungerford RD, Babbitt RE (1987) ‘Overstory removal and residue treatments affect soil surface, air, and soil temperatures: implications for seedling survival.’ USDA Forest Service, Intermountain Research Station Research Paper INT-377. (Ogden, UT)

Ice GG, Neary DG , Adams PW (2004) Effects of wildfire on soils and watershed processes. Journal of Forestry  102(6), 16–20.
Justice CO, Malingreau J-P, Setzer AW (1993) Satellite remote sensing of fires: potential and limitations. In ‘fire in the environment.’ (Eds PJ Crutzen, JG Goldammer) pp. 77–88. (John Wiley: New York)

Justice CO, Kendall JD, Dowty PR , Scholes RJ (1996) Satellite remote sensing of fires during the SAFARI campaign using NOAA-AVHRR data. Journal of Geophysical Research  101, 23851–23863.
Crossref | GoogleScholarGoogle Scholar | Key CH (2005) Remote sensing sensitivity to fire severity and fire recovery. In ‘Proceedings of the 5th international workshop on remote sensing and GIS applications to forest fire management: Fire effects assessment’. (Eds J De la Riva, F Perez-Cabello, E Chuvieco) pp. 29–39. (Universidad de Zaragoza: Spain)

Key CH, Benson NC (2002) Measuring and remote sensing of burn severity. US Geological Survey Wildland Fire Workshop, 31 October to 3 November 2000, Los Alamos, NM. USGS Open-File Report 02-11.

Key CH, Benson NC (2006) ‘Landscape assessment: sampling and analysis methods.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. (Ogden, UT)

Kushla JD , Ripple WJ (1998) Assessing wildfire effects with Landsat Thematic Mapper data. International Journal of Remote Sensing  19, 2493–2507.
Crossref | GoogleScholarGoogle Scholar | Laes D, Maus P, Lewis S, Robichaud P, Kokaly R (2004) ‘Postfire burn-severity classification of the Hayman Fire, CO: Based on hyperspectral data-JFSP RFP 2001–2, Task 1. Project report: Integration of remote sensing.’ USDI Joint Fire Sciences Program Report RSAC-0068-RPT1. (Boise, ID)

Lamont BB, Witkowski ETF , Enright NJ (1993) Post-fire litter microsites safe for seeds, unsafe for seedlings. Ecology  74, 501–512.
Crossref | GoogleScholarGoogle Scholar | Lentile LB (2004) Causal factors and consequences of mixed-severity fire in Black Hills ponderosa pine forests. PhD Thesis, Colorado State University.

Lentile LB, Smith FW , Shepperd WD (2005) Patch structure, fire-scar formation and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Canadian Journal of Forest Research  35, 2875–2885.
Crossref | GoogleScholarGoogle Scholar | Li X, Kaufman YJ, Ichoku C, Fraser R, Trishcenko A, Giglio L, Kin J, Yu X (2001) A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. In ‘Global and regional vegetation fire monitoring from space: planning and coordinated international effort.’ (Eds F Ahern, JG Goldammer, CO Justice) pp. 199–225. (SPB Academic Publishing: The Hague)

Li Z, Nadon S , Chilar J (2000a) Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. International Journal of Remote Sensing  21, 3057–3069.
Crossref | GoogleScholarGoogle Scholar | Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi LJ (2006) ‘FIREMON: The fire effects monitoring and inventory system.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. (Fort Collins, CO)

Lyon LJ, Stickney PF (1976) Early vegetal succession following large northern Rocky Mountain wildfires. In ‘Proceedings of the Montana tall timbers fire ecology conference and fire and land management symposium’ No. 14. 8–10 October, Missoula, MT. pp. 355–375. (Tall Timbers Research Station: Tallahassee, FL)

McHugh C , Kolb TE (2003) Ponderosa pine mortality following fire in northern Arizona. International Journal of Wildland Fire  12, 7–22.
Crossref | GoogleScholarGoogle Scholar | Morgan P, Bunting SC, Black AE, Merrill T, Barrett S (1996) ‘Fire regimes in the Interior Columbia River Basin: Past and Present.’ USDA Forest Service, Rocky Mountain Research Station Final Report for RJVA-INT-94913. (Fire Sciences Laboratory: Missoula, MT)

Morgan P, Hardy CC, Swetnam T, Rollins MG , Long LG (2001) Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire  10, 329–342.
Crossref | GoogleScholarGoogle Scholar | Mottram GN, Wooster MJ, Balster H, George C, Gerrard F, Beisley J (2005) The use of MODIS-derived Fire radiative power to characterise Siberian boreal forest fires. In ‘Proceedings of the 31st international symposium on remote sensing of environment’, 20–24 June 2005. (Saint Petersburg: Russian Federation)

National Wildfire Coordination Group (2005) ‘Glossary of wildland fire terminology.’ US National Wildfire Coordination Group Report PMS-205. (Ogden, UT)

Neary DG (2004) An overview of fire effects on soils. Southwest Hydrology  3, 18–19.
Ottmar RD, Sandberg DV (2003) Predicting forest floor consumption from wildland fire in boreal forests of Alaska – preliminary results. In ‘Proceedings of fire ecology 2000: The first national congress on fire ecology, prevention and management’. (Eds KEM Galley, RC Klinger, NG Sugihara) pp. 218–224. Miscellaneous Publication No. 13. (Tall timbers Research Station: Tallahassee, FL)

Parsons A (2003) Burned Area Emergency Rehabilitation (BAER) soil burn severity definitions and mapping guidelines. USDA Forest Service, Forest Service Regional BAER Coordinators 2003 Draft Report. Available at http://fire.r9.fws.gov/ifcc/esr/Remote%20Sensing/soil_burnsev_summary_guide042203.pdf [Verified 29 June 2006]

Parsons A, Orlemann A (2002) Burned Area Emergency Rehabilitation (BAER)/Emergency Stabilization and Rehabilitation (ESR). Burn Severity Definitions/Guidelines Draft Version 1.5. (Remote Sensing Application Center: Salt Lake City) Available at http://gis.esri.com/library/userconf/proc02/pap0431/p0431.htm [Verified 27 July 2006]

Patterson MW , Yool SR (1998) Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sensing of Environment  65, 132–142.
Crossref | GoogleScholarGoogle Scholar | Picket ST, White PS (1985) Natural disturbance and patch dynamics: an introduction. In ‘The ecology of natural disturbance and patch dynamics’. (Eds ST Picket, PS White) pp. 3–13. (Academic Press: New York)

Poth M, Anderson IC, Miranda HS, Miranda AC , Riggan PJ (1995) The magnitude and persistence of soil NO, N2O, CH4, and CO2 fluxes from burned tropical savanna in Brazil. Global Biochemical Cycles  9, 503–513.
Crossref | GoogleScholarGoogle Scholar | Reinhardt ED, Keane RE, Brown JK (1997) ‘First order fire effects model: FOFEM 4.0, user’s guide.’ USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-344. (Ogden, UT)

Reinhardt ED, Keane RE , Brown JK (2001) Modeling fire effects. International Journal of Wildland Fire  10, 373–380.
Crossref | GoogleScholarGoogle Scholar | Richards JA, Jia X (1999) ‘Remote sensing digital image analysis: an introduction.’ (Springer-Verlag: New York)

Riggan PJ, Tissell RG, Lockwood RN, Brass JA, Pereira JAR, Miranda HS, Miranda AC, Campos T , Higgins R (2004) Remote measurement of energy and carbon flux from wildfires in Brazil. Ecological Applications  14, 855–872.
Robichaud PR, Beyers JL, Neary DG (2000) ‘Evaluating the effectiveness of postfire rehabilitation treatments.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS- GTR-63. (Fort Collins, CO)

Robinson JM (1991) Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing  12, 3–24.
Ryan KC, Noste NV (1985) Evaluating prescribed fires. In ‘Proceedings of the symposium and workshop on wilderness fire. 15–18 November 1983, Missoula, MT’. (Eds JE Lotan, BM Kilgore, WC Fischer, RW Mutch) pp. 230–238. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-GTR-182. (Ogden, UT)

Ryan KC , Reinhardt ED (1988) Predicting postfire mortality of seven western conifers. Canadian Journal of Forest Research  18, 1291–1297.
Smith AMS (2004) Determining nitrogen volatised within African savanna fires via ground-based remote sensing. PhD Thesis, University of London.

Smith AMS , Hudak AT (2005) Estimating combustion of large downed woody debris from residual white ash. International Journal of Wildland Fire  14, 245–248.
Crossref | GoogleScholarGoogle Scholar | Wells CG, Campbell RE, DeBano LF, Lewis CE, Fredriksen RL, Franklin EC, Froelich RC, Dunn PH (1979) ‘Effects of fire on soil, a state-of-knowledge review.’ USDA Forest Service, Washington Office General Technical Report WO-7. (Washington, DC)

Wessman CA, Bateson CA , Benning TL (1997) Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis. Ecological Applications  7, 493–511.
Crossref | GoogleScholarGoogle Scholar | Whelan RJ (1995) ‘The ecology of fire.’ (Cambridge University Press: Cambridge)

White JD, Ryan KC, Key CC , Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire  6, 125–136.
Crossref | GoogleScholarGoogle Scholar | Wilson RA, Hirsch SN, Madden FH, Losensky BJ (1971) ‘Airborne infrared forest fire detection system: final report.’ USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-93. (Ogden, UT)

Wondzell SM , King JG (2003) Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. Forest Ecology and Management  178, 75–87.
Crossref | GoogleScholarGoogle Scholar |

Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters  29, 2027.
Crossref | GoogleScholarGoogle Scholar |

Wooster MJ , Zhang YH (2004) Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters  31, L20505.
Crossref | GoogleScholarGoogle Scholar |

Wooster MJ, Shukiv B , Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment  86, 83–107.
Crossref | GoogleScholarGoogle Scholar |

Wooster MJ, Roberts G, Perry GLW , Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research  110, D24311.
Crossref | GoogleScholarGoogle Scholar |

Wyant JG, Omi PN , Laven RD (1986) Fire-induced tree mortality in a Colorado ponderosa pine/Douglas-fir stand. Forest Science  32, 49–59.


Yokelson RJ, Griffith DWT , Ward DE (1996) Open-path FTIR studies of large-scale laboratory biomass fires. Journal of Geophysical Research  101, 21 067–21 080.
Crossref | GoogleScholarGoogle Scholar |

Yokelson RJ, Bertschi IT, Christian TJ, Hobbs PV, Ward DE , Hao WM (2003) Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research  108, 8478.
Crossref | GoogleScholarGoogle Scholar |

Zhang Y-H, Wooster MJ, Tutabalina O , Perry GLW (2003) Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment  87, 1–15.
Crossref | GoogleScholarGoogle Scholar |

Zhang Y-C, Rossow WB, Lacis AA, Oinas V , Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top-of-atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. Journal of Geophysical Research  109, D19105.
Crossref | GoogleScholarGoogle Scholar |

Zhukov B, Lorenz E, Oertal D, Wooster MJ , Roberts G (2006) Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sensing of Environment  100, 29–51.
Crossref | GoogleScholarGoogle Scholar |




* Leigh B. Lentile, Zachary A. Holden and Alistair M. S. Smith contributed equally to this paper.