Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
<p>(<b>a</b>) The portion of the Marmousi2 acoustic impedance model in the depth-time domain. (<b>b</b>) Reflectivity model (true model), which is extracted from the impedance model in <a href="#entropy-22-00464-f001" class="html-fig">Figure 1</a>a using Equation (<a href="#FD30-entropy-22-00464" class="html-disp-formula">30</a>).</p> "> Figure 2
<p>(<b>a</b>) Initial acoustic impedance model in the depth-time domain, and its (<b>b</b>) reflectivity model (Initial model).</p> "> Figure 3
<p>Observed post-stack data: (<b>a</b>) noiseless data (first scenario); and (<b>b</b>) spiky-noise data (second scenario).</p> "> Figure 4
<p>Inversion results for the first scenario: reflectivity models for the <span class="html-italic">q</span>-PSI with (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, (<b>e</b>) conventional PSI, and <span class="html-italic">q</span>-PSI with (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.3</mn> </mrow> </semantics></math>, (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.7</mn> </mrow> </semantics></math>, (<b>j</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>, (<b>k</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math>, (<b>l</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.3</mn> </mrow> </semantics></math>, (<b>m</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, (<b>n</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math>, (<b>o</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.9</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Inversion results for the second scenario: reflectivity models for the <span class="html-italic">q</span>-PSI with (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, (<b>e</b>), conventional PSI, and <span class="html-italic">q</span>-PSI with (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.3</mn> </mrow> </semantics></math>, (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.7</mn> </mrow> </semantics></math>, (<b>j</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>, (<b>k</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math>, (<b>l</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.3</mn> </mrow> </semantics></math>, (<b>m</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, (<b>n</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math>, (<b>o</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2.9</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Convergence: (<b>a</b>) first scenario; and (<b>b</b>) second scenario for <math display="inline"><semantics> <mrow> <mn>1</mn> <mo><</mo> <mi>q</mi> <mo><</mo> <mn>3</mn> </mrow> </semantics></math> case.</p> "> Figure 7
<p>Convergence: (<b>a</b>) first scenario; and (<b>b</b>) second scenario for <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>q</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics></math> case.</p> ">
Abstract
:1. Introduction
2. Conventional PSI Formulation
3. Tsallis Framework and Seismic Inversion
3.1. Maximum Tsallis Entropy and the q-Gaussian Distribution
3.2. The q-misfit Function
3.3. PSI as a Local Optimisation Problem
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BGS | Boltzmann-Gibbs-Shannon |
MEP | Maximum entropy principle |
NRMS | Normalized root mean square |
PSI | Post-stack inversion |
SSIM | Structural similarity |
References
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Some comments on Boltzmann-Gibbs statistical mechanics. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Tsallis, C. Some comments on Boltzmann-Gibbs statistical mechanics. Chaos Soliton. Fract. 1995, 6, 539–559. [Google Scholar] [CrossRef]
- Tsallis, C. Non-extensive thermostatistics: Brief review and comments. Phys. A Stat. Mech. Appl. 1995, 221, 277–290. [Google Scholar] [CrossRef]
- Picoli Jr., S.; Mendes, R.S.; Malacarne, L.C.; Santos, R.P.B. q-distributions in complex systems: A brief review. Braz. J. Phys. 2009, 39, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.; Plastino, A. The role of constraints within generalized nonextensive statistics. Phys. A Stat. Mech. Appl. 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Du, J. Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 2004, 329, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Suzuki, N. Scale-free statistics of time interval between successive earthquakes. Phys. A Stat. Mech. Appl. 2005, 350, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; França, G.S.; Vilar, C.S.; Alcaniz, J.S. Nonextensive models for earthquakes. Phys. Rev. E 2006, 73, 026102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonextensive Statistical Mechanics and Thermodynamics: Bibliography. Available online: http://tsallis.cat.cbpf.br/TEMUCO.pdf (accessed on 19 March 2020).
- Ayón-Beato, E.; García, A.; Mansilla, R.; Terrero-Escalante, C.A. Stewart-Lyth inverse problem. Phys. Rev. D 2000, 62, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Supaongprapa, T.; Terakura, I.; Wang, F.; Ohnishi, N.; Sugie, N. A model-based sound localization system and its application to robot navigation. Rob. Aut. Syst. 1999, 27, 199–209. [Google Scholar] [CrossRef]
- da Silva, S.L.E.F.; Julià, J.; Bezerra, F.H.R. Deviatoric Moment Tensor Solutions from Spectral Amplitudes in Surface Network Recordings: Case Study in São Caetano, Pernambuco, Brazil. Bull. Seism. Soc. Am. 2017, 107, 1495–1511. [Google Scholar] [CrossRef]
- Bertero, M.; Piana, M. Inverse Problems in Biomedical Iimaging: Modeling and Methods of Solution; Springer-Verlag Italia: Milano, Italy, 2006. [Google Scholar]
- Prato, M.; Zanni, L. Inverse problems in machine learning: An application to brain activity interpretation. J. Phys. Conf. Ser. 2008, 135, 012085. [Google Scholar] [CrossRef]
- Menke, W. Geophysical Data Analysis: Discrete Inverse Theory, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005. [Google Scholar]
- Hadamard, J. Sur les problèmes aux dérivés partielles et leur signification physique. Princ. Univ. Bull. 1902, 13, 49–52. [Google Scholar]
- Wang, Y. Seismic Inversion: Theory and Applications; Wiley Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yilmaz, O. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data; Society of Exploration (SEG): Tulsa, OK, USA, 2000. [Google Scholar]
- Karslı, H.; Güney, R.; Senkaya, M. Post-stack high-resolution deconvolution using Cauchy norm regularization with FX filter weighting. Arab. J. Geosci. 2017, 10, 551. [Google Scholar] [CrossRef]
- Ferrari, D.; Yang, Y. Maximum lq -likelihood estimation. Ann. Stat. 2010, 38, 753–783. [Google Scholar] [CrossRef] [Green Version]
- Prato, D.; Tsallis, C. Nonextensive foundation of levy distributions. Phys. Rev. E 1999, 60, 2398. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.-H. q-gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series. J. Phys. Conf. Ser. 2010, 201, 012008. [Google Scholar] [CrossRef]
- Suyari, H.; Tsukada, M. Law of error in Tsallis statistics. IEEE Trans. Inf. Theory 2005, 51, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, L. Comparison of the least-squares criterion and the Cauchy criterion in frequency-wavenumber inversion. Geophysics 1991, 56, 2027–2035. [Google Scholar] [CrossRef]
- Russell, B. Introduction to Seismic Inversion Methods; Society of Exploration (SEG): Tulsa, OK, USA, 1988. [Google Scholar]
- Tirnakli, U.; Borges, E. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics. Sci. Rep. 2016, 6, 23644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocedal, J.; Wright, S.J. Numerical Optimisation, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. J. Sci. Comp. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Versteeg, R. The Marmousi experience: Velocity model determination on a synthetic complex data set. Lead. Edge 1994, 13, 927–936. [Google Scholar] [CrossRef]
- Martin, G.S.; Wiley, R.; Marfurt, K.J. Marmousi2: An elastic upgrade for Marmousi. The Lead. Edge 2006, 25, 156–166. [Google Scholar] [CrossRef]
- Stolt, R.H.; Weglein, A.B. Migration and inversion of seismic data. Geophysics 1985, 12, 2458–2472. [Google Scholar] [CrossRef] [Green Version]
- Ricker, N. Further developments in the wavelet theory of seismogram structure. Bull. Seism. Soc. Am. 1943, 3, 197–228. [Google Scholar]
- Pearson, K.; Henrici, O.M.F.E. VII. Mathematical contributions to the theory of evolution.; III. Regression, heredity, and panmixia. Phil. Trans. R. Soc. Lond. 1896, 187, 253–318. [Google Scholar]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Qualifty Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Im. Proc. 2004, 13, 600–612. [Google Scholar]
Strategy | First Scenario | Second Scenario | |||||
---|---|---|---|---|---|---|---|
NRMS | R | SSIM | NRMS | R | SSIM | ||
Our proposal () | 0.8369 | 0.8282 | 0.8277 | 2.4821 | 0.4302 | 0.2756 | |
Our proposal () | 0.8366 | 0.8293 | 0.8288 | 2.7015 | 0.4128 | 0.2523 | |
Our proposal () | 0.8365 | 0.8287 | 0.8282 | 1.3092 | 0.6187 | 0.6215 | |
Our proposal () | 0.8367 | 0.8292 | 0.8286 | 1.3186 | 0.6129 | 0.6152 | |
Our proposal () | 0.8369 | 0.8295 | 0.8289 | 4.5209 | 0.3395 | 0.1495 | |
Conventional PSI () | 0.8373 | 0.8292 | 0.8286 | 6.5366 | 0.3118 | 0.1222 | |
Our proposal () | 0.8370 | 0.8296 | 0.8290 | 2.0517 | 0.5514 | 0.4328 | |
Our proposal () | 0.8371 | 0.8293 | 0.8288 | 2.1844 | 0.5362 | 0.4085 | |
Our proposal () | 0.8366 | 0.8294 | 0.8288 | 1.0115 | 0.7015 | 0.6934 | |
Our proposal () | 0.8374 | 0.8293 | 0.8287 | 1.0057 | 0.7040 | 0.6971 | |
Our proposal () | 0.8366 | 0.8289 | 0.8284 | 0.9896 | 0.7083 | 0.7037 | |
Our proposal () | 0.8376 | 0.8293 | 0.8287 | 0.9884 | 0.7085 | 0.7041 | |
Our proposal () | 0.8371 | 0.8296 | 0.8290 | 0.9966 | 0.7074 | 0.7018 | |
Our proposal () | 0.8373 | 0.8290 | 0.8284 | 1.0370 | 0.6951 | 0.6833 | |
Our proposal () | 0.8373 | 0.8293 | 0.8287 | 1.0051 | 0.7040 | 0.6971 | |
Our proposal () | 0.8376 | 0.8280 | 0.8274 | 1.0178 | 0.7035 | 0.6946 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, I.P.; da Silva, S.L.E.F.; Corso, G.; de Araújo, J.M. Tsallis Entropy, Likelihood, and the Robust Seismic Inversion. Entropy 2020, 22, 464. https://doi.org/10.3390/e22040464
de Lima IP, da Silva SLEF, Corso G, de Araújo JM. Tsallis Entropy, Likelihood, and the Robust Seismic Inversion. Entropy. 2020; 22(4):464. https://doi.org/10.3390/e22040464
Chicago/Turabian Stylede Lima, Igo Pedro, Sérgio Luiz E. F. da Silva, Gilberto Corso, and João M. de Araújo. 2020. "Tsallis Entropy, Likelihood, and the Robust Seismic Inversion" Entropy 22, no. 4: 464. https://doi.org/10.3390/e22040464
APA Stylede Lima, I. P., da Silva, S. L. E. F., Corso, G., & de Araújo, J. M. (2020). Tsallis Entropy, Likelihood, and the Robust Seismic Inversion. Entropy, 22(4), 464. https://doi.org/10.3390/e22040464