Some New Properties for Degree-Based Graph Entropies
Abstract
:1. Introduction
2. Preliminaries to Degree-Based Graph Entropies
3. Monotonicity of with Respect to the Parameter k
4. Some New Bounds for
5. Numerical Results
5.1. Path Graph
n | 4 | 5 | 6 | 7 | 10 | 20 | 30 | 40 | 50 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
1.918 | 2.250 | 2.522 | 2.752 | 3.281 | 4.301 | 4.892 | 5.311 | 5.635 | 6.639 | |
2.585 | 3.000 | 3.322 | 3.585 | 4.170 | 5.248 | 5.858 | 6.285 | 6.615 | 7.629 | |
1.585 | 2.000 | 2.322 | 2.585 | 4.170 | 4.248 | 4.858 | 5.285 | 5.615 | 6.629 | |
1.959 | 2.289 | 2.557 | 2.782 | 3.303 | 4.312 | 4.900 | 5.317 | 5.640 | 6.642 | |
1.880 | 2.214 | 2.489 | 2.721 | 3.258 | 4.288 | 4.884 | 5.304 | 5.630 | 6.637 | |
1.970 | 2.298 | 2.564 | 2.788 | 3.307 | 4.314 | 4.901 | 5.318 | 5.640 | 6.642 | |
1.837 | 2.169 | 2.438 | 2.664 | 3.186 | 4.193 | 4.780 | 5.196 | 5.519 | 6.520 | |
1.959 | 2.291 | 2.560 | 2.787 | 3.308 | 4.315 | 4.903 | 5.319 | 5.641 | 6.643 |
5.2. Star Graph
n | 4 | 5 | 6 | 7 | 10 | 20 | 30 | 40 | 50 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
1.792 | 2.000 | 2.161 | 2.292 | 2.585 | 3.124 | 3.429 | 3.643 | 3.807 | 4.315 | |
2.585 | 3.000 | 3.322 | 3.585 | 4.170 | 5.248 | 5.858 | 6.285 | 6.615 | 7.629 | |
1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
1.792 | 2.000 | 2.161 | 2.292 | 2.585 | 3.124 | 3.429 | 3.643 | 3.807 | 4.315 | |
1.639 | 1.673 | 1.623 | 1.519 | 1.104 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
1.880 | 2.160 | 2.393 | 2.593 | 3.065 | 4.014 | 4.582 | 4.988 | 5.305 | 6.294 | |
1.585 | 1.678 | 1.737 | 1.778 | 1.848 | 1.926 | 1.951 | 1.963 | 1.971 | 1.986 | |
1.880 | 2.160 | 2.393 | 2.593 | 3.065 | 4.014 | 4.582 | 4.988 | 5.305 | 6.294 |
5.3. Monocentric Homogeneous Dendrimer Graph
r | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
2.000 | 3.750 | 5.393 | 6.997 | 8.588 | 10.175 | 11.761 | 13.346 | 14.931 | 16.516 | |
3.000 | 5.000 | 6.700 | 8.322 | 9.919 | 11.508 | 13.094 | 14.680 | 16.265 | 17.850 | |
1.000 | 3.000 | 4.700 | 6.322 | 7.919 | 9.508 | 11.094 | 12.680 | 14.265 | 15.850 | |
2.000 | 4.035 | 5.713 | 7.326 | 8.920 | 10.508 | 12.094 | 13.680 | 15.265 | 16.850 | |
1.673 | 3.371 | 5.007 | 6.610 | 8.201 | 9.787 | 11.373 | 12.958 | 14.543 | 16.128 | |
2.160 | 4.057 | 5.719 | 7.328 | 8.921 | 10.509 | 12.094 | 13.680 | 15.265 | 16.850 | |
1.678 | 3.444 | 5.084 | 6.687 | 8.278 | 9.865 | 11.451 | 13.036 | 14.621 | 16.206 | |
2.148 | 4.044 | 5.715 | 7.327 | 8.920 | 10.508 | 12.094 | 13.680 | 15.265 | 16.850 |
5.4. Complete Bipartite Graph
n | 4 | 5 | 6 | 7 | 10 | 20 | 30 | 40 | 50 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
3.500 | 3.822 | 4.085 | 4.307 | 4.822 | 5.822 | 6.407 | 6.822 | 7.144 | 8.144 | |
4.000 | 4.322 | 4.585 | 4.807 | 5.322 | 6.322 | 6.907 | 7.322 | 7.644 | 8.644 | |
3.000 | 3.322 | 3.585 | 3.807 | 4.322 | 5.322 | 5.907 | 6.322 | 6.644 | 7.644 | |
3.567 | 3.893 | 4.158 | 4.382 | 4.900 | 5.903 | 6.490 | 6.905 | 7.227 | 8.228 | |
3.465 | 3.787 | 4.050 | 4.272 | 4.787 | 5.787 | 6.372 | 6.787 | 7.109 | 8.109 | |
3.572 | 3.897 | 4.161 | 4.385 | 4.902 | 5.904 | 6.490 | 6.906 | 7.228 | 8.228 | |
3.415 | 3.737 | 4.000 | 4.222 | 4.737 | 5.737 | 6.322 | 6.737 | 7.059 | 8.059 | |
3.570 | 3.895 | 4.160 | 4.384 | 4.901 | 5.904 | 6.490 | 6.905 | 7.228 | 8.228 |
- The value of degree-based entropy corresponds to the scale of the graph. The larger the order and size are, the bigger the degree-based entropy is. This means that the corresponding graph is more complex in the structure information.
- To the graph and of the same order and size, . This means that if and have the same scale, is more complex in the structure information.
- The upper bound is the closest to or better than , and the lower bound is the closest to or better than . The upper bound is the farthest from or worse than . The closeness of and other upper bounds or lower bound is uncertain.
- In Table 2, when the size n is big enough and continues to increase, the value of is always one, and the value of approaches zero. This means that these lower bounds are not ideal. However, in other tables, all bounds correspond to the scale of the graph. Therefore, we infer that the bounds are closely related to the structure information of the graph. The more complex a graph of the same order and size is in the structure information, the better the bounds are.
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Rashevsky, N. Life, information theory, and topology. Bull. Math. Biol. 1955, 17, 229–235. [Google Scholar] [CrossRef]
- Mehler, A.; Lücking, A.; Weiß, P. A network model of interpersonal alignment. Entropy 2010, 12, 1440–1483. [Google Scholar] [CrossRef]
- Solé, R.V.; Montoya, J.M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Ulanowicz, R.E. Quantitative methods for ecological network analysis. Comput. Biol. Chem. 2004, 28, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, M.; Barbarini, N.; Varmuza, K.; Graber, A. Novel topological descriptors for analyzing biological networks. BMC Struct. Biol. 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, M.; Graber, M. The discrimination power of molecular identification numbers revisited. MATCH Commun. Math. Comput. Chem. 2013, 69, 785–794. [Google Scholar]
- Mowshowitz, A.; Dehmer, M. Entropy and the complexity of graphs revisited. Entropy 2012, 14, 559–570. [Google Scholar] [CrossRef]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. J. Chem. Inf. Model. 2009, 49, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, M.; Sivakumar, L.; Varmuza, K. Uniquely discriminating molecular structures using novel eigenvalue-based descriptors. MATCH Commun. Math. Comput. Chem. 2012, 67, 147–172. [Google Scholar]
- Cao, S.; Dehmer, M.; Shi, Y. Extremality of degree-based graph entropies. Inf. Sci. 2014, 278, 22–33. [Google Scholar] [CrossRef]
- Cao, S.; Dehmer, M. Degree-based entropies of networks revisited. Appl. Math. Comput. 2015, 261, 141–147. [Google Scholar] [CrossRef]
- Estrada, E.; Hatano, N. Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 2007, 439, 247–251. [Google Scholar] [CrossRef]
- Estrada, E. Generalized walks-based centrality measures for complex biological networks. J. Theor. Biol. 2010, 263, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; de la Peña, J.A.; Hatano, N. Walk Entropies in Graphs. Linear Algebra Appl. 2014, 443, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Estrada, E.; de la Peña, J.A. Maximum walk entropy implies walk regularity. Linear Algebra Appl. 2014, 458, 542–547. [Google Scholar] [CrossRef]
- Randić, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Li, X.; Zheng, J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 2005, 54, 195–208. [Google Scholar]
- Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Chen, Z.; Dehmer, M.; Shi, Y. Bounds for degree-based network entropies. Appl. Math. Comput. 2015, 265, 983–993. [Google Scholar] [CrossRef]
- Arezoomand, M.; Taeri, B. Zagreb indices of the generalized hierarchical product of graphs. MATCH Commun. Math. Comput. Chem. 2013, 69, 131–140. [Google Scholar]
- Gutman, I. An exceptional property of first Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 733–740. [Google Scholar]
- Das, K.C.; Xu, K.; Gutman, I. On Zagreb and Harary indices. MATCH Commun. Math. Comput. Chem. 2013, 70, 301–314. [Google Scholar]
- Abdo, H.; Dimitrov, D.; Réti, T.; Stevanović, D. Estimating the spectral radius of a graph by the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 741–751. [Google Scholar]
- Bozkurt, Ş.B.; Bozkurt, D. On incidence energy. MATCH Commun. Math. Comput. Chem. 2014, 72, 215–225. [Google Scholar]
- Das, K.C.; Gutman, I.; Çevik, A.S.; Zhou, B. On Laplacian energy. MATCH Commun. Math. Comput. Chem. 2013, 70, 689–696. [Google Scholar]
- Li, X.; Li, Y.; Shi, Y.; Gutman, I. Note on the HOMO-LUMO index of graphs. MATCH Commun. Math. Comput. Chem. 2013, 70, 85–96. [Google Scholar]
- Estrada, E. Characterization of 3D molecular structure. Chem. Phys. Lett. 2000, 319, 713–718. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph centrality in complex networks. Phys. Rev. E 2005, 71, 056103. [Google Scholar] [CrossRef] [PubMed]
- De la Peña, J.A.; Gutman, I.; Rada, J. Estimating the Estrada index. Linear Algebra Appl. 2007, 427, 70–76. [Google Scholar] [CrossRef]
- Khosravanirad, A. A lower bound for Laplacian Estrada index of a graph. MATCH Commun. Math. Comput. Chem. 2013, 70, 175–180. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dragomir, S.S. An inequality for logarithmic mapping and applications for the shannon entropy. Comput. Math. Appl. 2003, 46, 1273–1279. [Google Scholar] [CrossRef]
- Simic, S. Jensen’s inequality and new entropy bounds. Appl. Math. Lett. 2009, 22, 1262–1265. [Google Scholar] [CrossRef]
- Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Shi, Y. Entropy bounds for dendrimers. Appl. Math. Comput. 2014, 242, 462–472. [Google Scholar] [CrossRef]
- Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Shi, Y. Entropy of Weighted Graphs with Randić Weights. Entropy 2015, 17, 3710–3723. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Li, B.; Wang, L. Some New Properties for Degree-Based Graph Entropies. Entropy 2015, 17, 8217-8227. https://doi.org/10.3390/e17127871
Lu G, Li B, Wang L. Some New Properties for Degree-Based Graph Entropies. Entropy. 2015; 17(12):8217-8227. https://doi.org/10.3390/e17127871
Chicago/Turabian StyleLu, Guoxiang, Bingqing Li, and Lijia Wang. 2015. "Some New Properties for Degree-Based Graph Entropies" Entropy 17, no. 12: 8217-8227. https://doi.org/10.3390/e17127871
APA StyleLu, G., Li, B., & Wang, L. (2015). Some New Properties for Degree-Based Graph Entropies. Entropy, 17(12), 8217-8227. https://doi.org/10.3390/e17127871