Entropy of Weighted Graphs with Randi´c Weights
Abstract
:1. Introduction
2. Preliminaries
3. Extremal Properties of I(G, w)
- for α = 1, we have:
- For α = −1, we have:
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Rashevsky, N. Life, information theory, and topology. Bull. Math. Biophys. 1955, 17, 229–235. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of the graphs I: An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of graphs II: The information content of digraphs and infinite graphs. Bull. Math. Biophys. 1968, 30, 225–240. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of graphs III: Graphs with prescribed information content. Bull. Math. Biophys. 1968, 30, 387–414. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of graphs IV: Entropy measures and graphical structure. Bull. Math. Biophys. 1968, 30, 533–546. [Google Scholar]
- Dehmer, M.; Graber, A. The discrimination power of molecular identification numbers revisited. MATCH Commun. Math. Comput. Chem. 2013, 69, 785–794. [Google Scholar]
- Kraus, V.; Dehmer, M.; Schutte, M. On sphere-regular graphs and the extremality of information-theoretic network measures. MATCH Commun. Math. Comput. Chem. 2013, 70, 885–900. [Google Scholar]
- Allen, E.B. Measuring Graph Abstractions of Software: An Information-Theory Approach. Proceedings of the 8th International Symposium on Software Metrics, Ottawa, ON, Canada, 4–7 June 2002; p. 182.
- Kraus, V.; Dehmer, M.; Emmert-Streib, F. Probabilistic inequalities for evaluating structural network measures. Inf. Sci. 2014, 288, 220–245. [Google Scholar]
- Dehmer, M.; Emmert-Streib, F.; Grabner, M. A computational approach to construct a multivariate complete graph invariant. Inf. Sci. 2014, 260, 200–208. [Google Scholar]
- Chen, Y.; Wu, K.; Chen, X.; Tang, C.; Zhu, Q. An entropy-based uncertainty measurement approach in neighborhood systems. Inf. Sci. 2014, 279, 239–250. [Google Scholar]
- Lawyer, G. Understanding the influence of all nodes in a network. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Wang, C.; Qu, A. Entropy, similarity measure and distance measure of vague soft sets and their relations. Inf. Sci. 2013, 244, 92–106. [Google Scholar]
- Körner, J. Coding of an information source having ambiguous alphabet and the entropy of graphs. Proceedings of the 6th Prague Conference on Information Theory, Statistical Decision, Functions, Random Processes, Prague, Czech Republic, 19–25 September 1971; pp. 411–425.
- Dehmer, M.; Li, X.; Shi, Y. Connections between generalized graph entropies and graph energy. Complexity 2014. [Google Scholar] [CrossRef]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar]
- Dragomir, S.; Goh, C. Some bounds on entropy measures in information theory. Appl. Math. Lett. 1997, 10, 23–28. [Google Scholar]
- Dehmer, M.; Mowshowitz, A. A History of Graph Entropy Measures. Inf. Sci. 2011, 1, 57–78. [Google Scholar]
- Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Shi, Y. Entropy bounds for dendrimers. Appl. Math. Comput. 2014, 242, 462–472. [Google Scholar]
- Chen, Z.; Dehmer, M.; Shi, Y. A note on distance-based graph entropies. Entropy 2014, 16, 5416–5427. [Google Scholar]
- Soltani, A.; Iranmanesh, A.; Majid, Z.A. The multiplicative version of the edge Wiener index. MATCH Commun. Math. Comput. Chem. 2014, 71, 407–416. [Google Scholar]
- Lin, H. Extremal Wiener index of trees with given number of vertices of even degree. MATCH Commun. Math. Comput. Chem. 2014, 72, 311–320. [Google Scholar]
- Skrekovski, R.; Gutman, I. Vertex version of the Wiener theorem. MATCH Commun. Math. Comput. Chem. 2014, 72, 295–300. [Google Scholar]
- Lin, H. On the Wiener index of trees with given number of branching vertices. MATCH Commun. Math. Comput. Chem. 2014, 72, 301–310. [Google Scholar]
- Al-Fozan, T.; Manuel, P.; Rajasingh, I.; Rajan, R. Computing Szeged index of certain nanosheets using partition technique. MATCH Commun. Math. Comput. Chem. 2014, 72, 339–353. [Google Scholar]
- Da Fonseca, C.; Ghebleh, M.; Kanso, A.; Stevanovic, D. Counterexamples to a conjecture on Wiener index of common neighborhood graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 333–338. [Google Scholar]
- Knor, M.; Lužar, B.; Škrekovski, R.; Gutman, I. On Wiener index of common neighborhood graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 321–332. [Google Scholar]
- Feng, L.; Liu, W.; Yu, G.; Li, S. The hyper-Wiener index of graphs with given bipartition. Util. Math. 2014, 95, 23–32. [Google Scholar]
- Feng, L.; Yu, G. The hyper-Wiener index of cacti. Util. Math. 2014, 93, 57–64. [Google Scholar]
- Ma, J.; Shi, Y.; Yue, J. The Wiener polarity index of graph products. Ars Comb. 2014, 116, 235–244. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar]
- Cao, S.; Dehmer, M.; Shi, Y. Extremality of degree-based graph entropies. Inf. Sci. 2014, 278, 22–33. [Google Scholar]
- Cao, S.; Dehmer, M. Degree-based entropies of networks revisited. Appl. Math. Comput. 2015, 261, 141–147. [Google Scholar]
- Gutman, I. An exceptional property of first Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 733–740. [Google Scholar]
- Azari, M.; Iranmanesh, A.; Gutman, I. Zagreb indices of bridge and chain graphs. MATCH Commun. Math. Comput. Chem. 2013, 70, 921–938. [Google Scholar]
- Das, K.; Xu, K.; Gutman, I. On Zagreb and Harary indices. MATCH Commun. Math. Comput. Chem. 2013, 70, 301–314. [Google Scholar]
- Lin, H. Vertices of degree two and the first Zagreb index of trees. MATCH Commun. Math. Comput. Chem. 2014, 72, 825–834. [Google Scholar]
- Vasilyev, A.; Darda, R.; Stevanovic, D. Trees of given order and independence number with minimal first Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 775–782. [Google Scholar]
- Ji, S.; Li, X.; Huo, B. On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic Graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 723–732. [Google Scholar]
- Xu, K.; Das, K.C.; Balachandran, S. Maximizing the Zagreb Indices of (n, m)-Graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 641–654. [Google Scholar]
- Hu, Y.; Li, X.; Shi, Y.; Xu, T. Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index. Discret. Appl. Math. 2007, 155, 1044–1054. [Google Scholar]
- Hu, Y.; Li, X.; Shi, Y.; Xu, T.; Gutman, I. On molecular graphs with smallest and greatest zeroth-order general Randić index. MATCH Commun. Math. Comput. Chem. 2005, 54, 425–434. [Google Scholar]
- Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Bollobás, B.; Nikiforov, V. Degree powers in graphs: the Erdös-Stone Theorem. Comb. Probab. Comput. 2012, 21, 89–105. [Google Scholar]
- Gu, R.; Li, X.; Shi, Y. Degree powers in C5-free graphs. Bull. Malays. Math. Sci. Soc. 2014. [Google Scholar] [CrossRef]
- Eagle, N.; Macy, M.; Claxton, R. Network diversity and economic development. Science 2010, 328, 1029–1031. [Google Scholar]
- Dehmer, M.; Barbarini, N.; Varmuza, K.; Graber, A. Novel Topological Descriptors for Analyzing Biological Networks. BMC Struct. Biol. 2010, 10. [Google Scholar] [CrossRef]
- Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar]
- Bollobás, B.; Erdös, P. Graphs of extremal weights. Ars Comb. 1998, 50, 225–233. [Google Scholar]
- Li, X.; Gutman, I. Mathematical Aspects of Randić-Type Molecular Structure Descriptors; University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2006. [Google Scholar]
- Li, X.; Shi, Y.; Zhong, L. Minimum general Randić index on chemical trees with given order and number of pendent vertices. MATCH Commun. Math. Comput. Chem. 2008, 60, 539–554. [Google Scholar]
- Li, X.; Shi, Y.; Xu, T. Unicyclic graphs with maximum general Randić index for α > 0. MATCH Commun. Math. Comput. Chem. 2006, 56, 557–570. [Google Scholar]
- Arezoomand, M.; Taeri, B. Zagreb Indices of the Generalized Hierarchical Product of Graphs. MATCH Commun. Math. Comput. Chem. 2013, 69, 131–140. [Google Scholar]
- Kazemi, R. The second Zagreb index of molecular graphs with tree structure. MATCH Commun. Math. Comput. Chem. 2014, 72, 753–760. [Google Scholar]
- Abdo, H.; Dimitrov, D.; Reti, T.; Stevanovic, D. Estimating the spectral radius of a graph by the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 741–751. [Google Scholar]
- da Fonseca, C.; Stevanovic, D. Further properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2014, 72, 655–668. [Google Scholar]
- Li, X.; Yang, Y. Best lower and upper bounds for the Randić index R−1 of chemical trees. MATCH Commun. Math. Comput. Chem. 2004, 52, 147–156. [Google Scholar]
- Lu, M.; Liu, H.; Tian, F. The Connectivity Index. MATCH Commun. Math. Comput. Chem. 2004, 51, 149–154. [Google Scholar]
- Dehmer, M.; Kraus, V. On extremal properties of graph entropies. MATCH Commun. Math. Comput. Chem. 2012, 68, 889–912. [Google Scholar]
- Dehmer, M.; Barbarini, N.; Varmuza, K.; Graber, A. A Large Scale Analysis of Information-Theoretic Network Complexity Measures Using Chemical Structures. PLoS ONE 2009, 4, e8057. [Google Scholar]
- Tomescu, I.; Jamil, M. Maximum General Sum-Connectivity Index for Trees with Given Independence Number. MATCH Commun. Math. Comput. Chem. 2014, 72, 715–722. [Google Scholar]
- Du, Z.; Zhou, B.; Trinajstić, N. On the general sum-connectivity index of trees. Appl. Math. Lett. 2011, 24, 402–405. [Google Scholar]
- Ahmadi, M.; Dimitrov, D.; Gutman, I.; Hosseini, S. Disproving a Conjecture on Trees with Minimal Atom-Bond Connectivity Index. MATCH Commun. Math. Comput. Chem. 2014, 72, 685–698. [Google Scholar]
- Hosseini, S.; Ahmadi, M.; Gutman, I. Kragujevac trees with minimal atom-bond connectivity index. MATCH Commun. Math. Comput. Chem. 2014, 71, 5–20. [Google Scholar]
- Rostami, M.; Sohrabi-Haghighat, M. Further Results on New Version of Atom-Bond Connectivity Index. MATCH Commun. Math. Comput. Chem. 2014, 71, 21–32. [Google Scholar]
n | 30 | 40 | 50 | 60 | 100 | 200 | 300 | 400 | 500 | 1000 | |
---|---|---|---|---|---|---|---|---|---|---|---|
t0 | 11 | 15 | 19 | 22 | 25 | 36 | 57 | 74 | 88 | 102 | 155 |
18 | 27 | 36 | 45 | 54 | 92 | 190 | 288 | 387 | 486 | 983 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Dehmer, M.; Emmert-Streib, F.; Shi, Y. Entropy of Weighted Graphs with Randi´c Weights. Entropy 2015, 17, 3710-3723. https://doi.org/10.3390/e17063710
Chen Z, Dehmer M, Emmert-Streib F, Shi Y. Entropy of Weighted Graphs with Randi´c Weights. Entropy. 2015; 17(6):3710-3723. https://doi.org/10.3390/e17063710
Chicago/Turabian StyleChen, Zengqiang, Matthias Dehmer, Frank Emmert-Streib, and Yongtang Shi. 2015. "Entropy of Weighted Graphs with Randi´c Weights" Entropy 17, no. 6: 3710-3723. https://doi.org/10.3390/e17063710
APA StyleChen, Z., Dehmer, M., Emmert-Streib, F., & Shi, Y. (2015). Entropy of Weighted Graphs with Randi´c Weights. Entropy, 17(6), 3710-3723. https://doi.org/10.3390/e17063710