Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances
<p>Quadrotor schematic.</p> "> Figure 2
<p>Architecture of cascaded position and attitude control.</p> "> Figure 3
<p>Block diagram of the closed-loop system—<math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>(</mo> <mi>ϕ</mi> <mo>,</mo> <mi>θ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>,</mo> <mspace width="4pt"/> <mi>j</mi> <mo>∈</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Trajectory tracking—aggressive maneuvers [<a href="#B38-drones-09-00181" class="html-bibr">38</a>].</p> "> Figure 5
<p>Phase portraits—aggressive maneuvers.</p> "> Figure 6
<p>Trajectory tracking—helical [<a href="#B38-drones-09-00181" class="html-bibr">38</a>].</p> "> Figure 7
<p>Phase portraits—helical trajectory.</p> "> Figure 8
<p>Quadrotor position tracking—aggressive maneuvers [<a href="#B38-drones-09-00181" class="html-bibr">38</a>].</p> "> Figure 9
<p>Quadrotor attitude tracking—aggressive maneuvers [<a href="#B38-drones-09-00181" class="html-bibr">38</a>].</p> "> Figure 10
<p>RMSE during aggressive maneuvers [<a href="#B38-drones-09-00181" class="html-bibr">38</a>].</p> "> Figure 11
<p>Error visualization for quadrotor attitude and position during trajectory tracking.</p> "> Figure 12
<p>Error distribution in quadrotor attitude and position tracking visualized through isosurfaces.</p> "> Figure 13
<p>Disturbance estimation in the position model during aggressive maneuvers.</p> "> Figure 14
<p>Disturbance estimation in the attitude model during aggressive maneuvers.</p> "> Figure 15
<p>Quadrotor control inputs during aggressive maneuvers.</p> "> Figure 16
<p>Force and torque of each rotor during aggressive maneuvers.</p> "> Figure 17
<p>Total power consumed by DJI-F450.</p> ">
Abstract
:1. Introduction
- Unlike prior works [19,38,44,52], a novel algorithm for nonlinear DO is developed, capable of estimating exogenous disturbances, constant disturbances, nonlinear disturbances with unknown variable frequency and magnitude, Gaussian-distributed random disturbances, uniformly-distributed random disturbances, and band-limited white noise.
- A commanded-filter with error compensation is designed to perform numerical differentiation without relying on direct differentiators, thus avoiding computational delays in the control systems.
- Two types of adaptive laws are proposed for online control gain tuning. First, an adaptive law is developed for the MRAC technique based on the tracking error between the reference model and the real model. Second, adaptive laws are introduced for the SMC control law based on the tracking error between the desired trajectory and quadrotor outputs. This approach also addresses the inherent chattering issue in SMC by reducing it through adaptive laws.
- By employing the separation principle, the quadrotor outputs and their rates are replaced with the estimated states obtained using a HGO.
2. Mathematical Model and Preliminaries
2.1. Mathematical Model
2.2. Lemmas and Assumptions
3. Control Design and Stability Analysis
3.1. Attitude Control
Algorithm 1 Attitude Control |
|
3.2. Position Control
4. Simulation Study
4.1. Setup of Desired Trajectories and Nonlinear Disturbances
4.1.1. Desired Trajectories
4.1.2. Nonlinear Disturbances
4.2. Trajectory Tracking Simulations
4.2.1. Aggressive Trajectory Tracking
4.2.2. Helical Trajectory Tracking
4.3. 3D Visualisation of RMSE
4.4. Disturbance Estimation
4.5. Control Inputs, Forces, and Torques of Rotors
4.6. Discussion on Comparison, Real Experiments, and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Sun, B.; Meng, Z.; Sun, J. Adaptive Formation Tracking Control of Multiple Vertical Takeoff and Landing UAVs with Bearing-Only Measurements. IEEE Trans. Cybern. 2024, 54, 3491–3501. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 2010, 4, 2343–2355. [Google Scholar] [CrossRef]
- Li, J.; Ye, D.H.; Kolsch, M.; Wachs, J.P.; Bouman, C.A. Fast and Robust UAV to UAV Detection and Tracking from Video. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1519–1531. [Google Scholar] [CrossRef]
- Mobayen, S.; El-Sousy, F.F.; Alattas, K.A.; Mofid, O.; Fekih, A.; Rojsiraphisal, T. Adaptive fast-reaching nonsingular terminal sliding mode tracking control for quadrotor UAVs subject to model uncertainties and external disturbances. Ain Shams Eng. J. 2023, 14, 102059. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Q.; Ren, B. Wind turbine crack inspection using a quadrotor with image motion blur avoided. IEEE Robot. Autom. Lett. 2023, 8, 1069–1076. [Google Scholar] [CrossRef]
- Wang, J.; Alattas, K.A.; Bouteraa, Y.; Mofid, O.; Mobayen, S. Adaptive finite-time backstepping control tracker for quadrotor UAV with model uncertainty and external disturbance. Aerosp. Sci. Technol. 2023, 133, 108088. [Google Scholar] [CrossRef]
- Yu, D.; Ma, S.; Liu, Y.J.; Wang, Z.; Chen, C.P. Finite-time adaptive fuzzy backstepping control for quadrotor UAV with stochastic disturbance. IEEE Trans. Autom. Sci. Eng. 2023, 21, 1335–1345. [Google Scholar] [CrossRef]
- Lopez-Sanchez, I.; Moreno-Valenzuela, J. PID control of quadrotor UAVs: A survey. Annu. Rev. Control 2023, 56, 100900. [Google Scholar] [CrossRef]
- Ata, B.; Gencal, M.C. Comparison of optimization approaches on linear quadratic regulator design for trajectory tracking of a quadrotor. Evol. Intell. 2024, 17, 3225–3240. [Google Scholar] [CrossRef]
- BaniAsad, A.; Pordal, R.; Sharifi, A.; Nobahari, H. Attitude control of a 3-DoF quadrotor platform using a linear quadratic integral differential game approach. ISA Trans. 2024, 148, 515–527. [Google Scholar] [CrossRef]
- Madeiras, J.; Cardeira, C.; Oliveira, P. Trajectory tracking of a quadrotor via full-state feedback control. Aerosp. Sci. Technol. 2024, 147, 109013. [Google Scholar] [CrossRef]
- Surma, C.C.; Barczyk, M. Linear model predictive control for vision-based UAV pursuit. J. Unmanned Veh. Syst. 2020, 8, 334–363. [Google Scholar] [CrossRef]
- Kanai, M.; Yamakita, M. Lifted Bilinear Model-based Linear Model Predictive Control with Scalability. IFAC-PapersOnLine 2023, 56, 9405–9410. [Google Scholar] [CrossRef]
- Petrlík, M.; Báča, T.; Heřt, D.; Vrba, M.; Krajník, T.; Saska, M. A Robust UAV System for Operations in a Constrained Environment. IEEE Robot. Autom. Lett. 2020, 5, 2169–2176. [Google Scholar] [CrossRef]
- Idrissi, M.; Salami, M.; Annaz, F. A review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithms. J. Intell. Robot. Syst. 2022, 104, 22. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of quadrotor UAV with Gaussian random disturbances and uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2265–2277. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Oh, H.; Moon, J. Continuous nonsingular terminal sliding-mode control with integral-type sliding surface for disturbed systems: Application to attitude control for quadrotor UAVs under external disturbances. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5635–5660. [Google Scholar] [CrossRef]
- Raza, A.; Malik, F.M.; Khan, R.; Mazhar, N.; Ullah, H.; Ahmed, N. Sliding mode control-based autonomous control of a tri-rotor unmanned aerial vehicle. Guid. Navig. Control 2021, 1, 2150013. [Google Scholar] [CrossRef]
- Chen, M.; Xiong, S.; Wu, Q. Tracking flight control of quadrotor based on disturbance observer. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 1414–1423. [Google Scholar] [CrossRef]
- Lee, D.; Jin Kim, H.; Sastry, S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 2009, 7, 419–428. [Google Scholar] [CrossRef]
- Shao, X.; Sun, G.; Yao, W.; Liu, J.; Wu, L. Adaptive Sliding Mode Control for Quadrotor UAVs with Input Saturation. IEEE/ASME Trans. Mechatron. 2022, 27, 1498–1509. [Google Scholar] [CrossRef]
- Smith, S.; Pan, Y.J. Adaptive Observer-Based Super-Twisting Sliding Mode Control for Low Altitude Quadcopter Grasping. IEEE/ASME Trans. Mechatron. 2024, 30, 587–598. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Kamath, A.K.; Behera, L.; Verma, N.K.; Nahavandi, S. Finite-time super twisting sliding mode controller based on higher-order sliding mode observer for real-time trajectory tracking of a quadrotor. IET Control Theory Appl. 2020, 14, 2359–2371. [Google Scholar] [CrossRef]
- Naser, H.N.; Hashim, H.A.; Ahmadi, M. Aerial assistive payload transportation using quadrotor UAVs with nonsingular fast terminal SMC for human physical interaction. Results Eng. 2025, 25, 103701. [Google Scholar] [CrossRef]
- Chandra, A.; Lal, P.P. Higher order sliding mode controller for a quadrotor UAV with a suspended load. IFAC-PapersOnLine 2022, 55, 610–615. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Han, Z.; Wang, J. Super-Twisting Algorithm Backstepping Adaptive Terminal Sliding-Mode Tracking Control of Quadrotor Drones Subjected to Faults and Disturbances. Drones 2025, 9, 82. [Google Scholar] [CrossRef]
- Zhao, Z.; Cao, D.; Yang, J.; Wang, H. High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics. Nonlinear Dyn. 2020, 102, 2583–2596. [Google Scholar] [CrossRef]
- Danesh, M.; Jalalaei, A.; Derakhshan, R.E. Auto-landing algorithm for quadrotor UAV using super-twisting second-order sliding mode control in the presence of external disturbances. Int. J. Dyn. Control 2023, 11, 2940–2957. [Google Scholar] [CrossRef]
- Shevidi, A.; Hashim, H.A. Quaternion-based adaptive backstepping fast terminal sliding mode control for quadrotor UAVs with finite time convergence. Results Eng. 2024, 23, 102497. [Google Scholar] [CrossRef]
- Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances. IEEE Trans. Ind. Electron. 2021, 69, 549–559. [Google Scholar] [CrossRef]
- Bhatia, A.K.; Jiang, J.; Zhen, Z.; Ahmed, N.; Rohra, A. Projection Modification Based Robust Adaptive Backstepping Control for Multipurpose Quadcopter UAV. IEEE Access 2019, 7, 154121–154130. [Google Scholar] [CrossRef]
- Koksal, N.; An, H.; Fidan, B. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance. ISA Trans. 2020, 105, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Belmouhoub, A.; Medjmadj, S.; Bouzid, Y.; Derrouaoui, S.; Guiatni, M. Enhanced backstepping control for an unconventional quadrotor under external disturbances. Aeronaut. J. 2023, 127, 627–650. [Google Scholar] [CrossRef]
- Chen, M.; Yan, K.; Wu, Q. Multiapproximator-Based Fault-Tolerant Tracking Control for Unmanned Autonomous Helicopter With Input Saturation. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5710–5722. [Google Scholar] [CrossRef]
- Niu, Y.; Ban, H.; Zhang, H.; Gong, W.; Yu, F. Nonsingular Terminal Sliding Mode Based Finite-Time Dynamic Surface Control for a Quadrotor UAV. Algorithms 2021, 14, 315. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Sun, L.; Ge, W.; Zhang, X. Output feedback adaptive dynamic surface sliding-mode control for quadrotor UAVs with tracking error constraints. Complexity 2020, 2020, 8537198. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, W. Finite-time adaptive control for nonlinear systems with uncertain parameters based on the command filters. Int. J. Adapt. Control Signal Process. 2021, 35, 1754–1767. [Google Scholar] [CrossRef]
- Li, S.; Duan, N.; Min, H. Trajectory tracking control for quadrotor unmanned aerial vehicle with input delay and disturbances. Asian J. Control 2024, 26, 150–161. [Google Scholar] [CrossRef]
- Ahmed, N.; Chen, M. Robust model reference adaptive backstepping sliding-mode control for quadrotor attitude with disturbance observer. Aircr. Eng. Aerosp. Technol. 2021, 93, 1156–1170. [Google Scholar] [CrossRef]
- Yuksek, B.; Inalhan, G. Reinforcement learning based closed-loop reference model adaptive flight control system design. Int. J. Adapt. Control Signal Process. 2021, 35, 420–440. [Google Scholar] [CrossRef]
- Ma, C.; Lam, J.; Lewis, F.L. Trajectory Regulating Model Reference Adaptive Controller for Robotic Systems. IEEE Trans. Control Syst. Technol. 2019, 27, 2749–2756. [Google Scholar] [CrossRef]
- Glushchenko, A.; Lastochkin, K. Quadrotor Trajectory Tracking Using Model Reference Adaptive Control, Neural Network-Based Parameter Uncertainty Compensator, and Different Plant Parameterizations. Computation 2023, 11, 163. [Google Scholar] [CrossRef]
- Chen, W.H.; Ballance, D.J.; Gawthrop, P.J.; O’Reilly, J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef]
- Wang, F.; Gao, H.; Wang, K.; Zhou, C.; Zong, Q.; Hua, C. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 834–847. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M. Trajectory tracking control for an indoor quadrotor UAV based on the disturbance observer. Trans. Inst. Meas. Control 2016, 38, 675–692. [Google Scholar] [CrossRef]
- Wang, X.; Sun, S.; van Kampen, E.J.; Chu, Q. Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerosp. Sci. Technol. 2019, 87, 417–430. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Z.; Gao, Z.; Zhang, W. Reinforcement Learning-Based Fault-Tolerant Control for Quadrotor UAVs Under Actuator Fault. IEEE Trans. Ind. Inform. 2024, 20, 13926–13935. [Google Scholar] [CrossRef]
- Chen, F.; Lei, W.; Zhang, K.; Tao, G.; Jiang, B. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 2016, 85, 1281–1295. [Google Scholar] [CrossRef]
- Pritzl, V.; Vrba, M.; Tortorici, C.; Ashour, R.; Saska, M. Adaptive estimation of UAV altitude in complex indoor environments using degraded and time-delayed measurements with time-varying uncertainties. Robot. Auton. Syst. 2023, 160, 104315. [Google Scholar] [CrossRef]
- Jeong, H.; Suk, J.; Kim, S. Control of quadrotor UAV using variable disturbance observer-based strategy. Control Eng. Pract. 2024, 150, 105990. [Google Scholar] [CrossRef]
- Jung, S. Precision Landing of Unmanned Aerial Vehicle under Wind Disturbance Using Derivative Sliding Mode Nonlinear Disturbance Observer-Based Control Method. Aerospace 2024, 11, 265. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, D.; Yang, S. Adaptive Robust Trajectory Tracking Controller for a Quadrotor UAV with Uncertain Environment Parameters Based on Backstepping Sliding Mode Method. IEEE Trans. Autom. Sci. Eng. 2023, 22, 4446–4456. [Google Scholar] [CrossRef]
- Izadi, M.; Faieghi, R. High-gain disturbance observer for robust trajectory tracking of quadrotors. Control Eng. Pract. 2024, 145, 105854. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Zhu, X.; Rasool, H.; Afzal, M.B.; Ahmed, N. Model-free low-power observer based robust trajectory tracking control of UAV quadrotor with unknown disturbances. Aircr. Eng. Aerosp. Technol. 2024, 96, 316–328. [Google Scholar] [CrossRef]
- Gao, Y.; Su, S.; Zong, Y.; Zhang, L. Finite Time Observer-Based Anti-Disturbance Control for Quadrotors Without Velocity Measurements. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–17. [Google Scholar] [CrossRef]
- Kuang, J.; Chen, M. Adaptive Sliding Mode Control for Trajectory Tracking of Quadrotor Unmanned Aerial Vehicles Under Input Saturation and Disturbances. Drones 2024, 8, 614. [Google Scholar] [CrossRef]
- Mustafa Abro, G.E.; Ali, Z.A.; Zulkifli, S.A.; Asirvadam, V.S. Performance evaluation of different control methods for an underactuated quadrotor unmanned aerial vehicle (QUAV) with position estimator and disturbance observer. Math. Probl. Eng. 2021, 2021, 8791620. [Google Scholar] [CrossRef]
- Ahmed, N.; Raza, A.; Shah, S.A.A.; Khan, R. Robust composite-disturbance observer based flight control of quadrotor attitude. J. Intell. Robot. Syst. 2021, 103, 11. [Google Scholar] [CrossRef]
- Thanh, H.L.N.N.; Huynh, T.T.; Vu, M.T.; Mung, N.X.; Phi, N.N.; Hong, S.K.; Vu, T.N.L. Quadcopter UAVs extended states/disturbance observer-based nonlinear robust backstepping control. Sensors 2022, 22, 5082. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Ding, S.; Su, J. Composite Controller Design for Quadrotor UAVs with Uncertainties and Noises Based on Combined Kalman Filter and GPIO. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 882–892. [Google Scholar] [CrossRef]
- Ju, Y.; Zhang, Y.; Zhu, G. Fuzzy Adaptive Linear Active Disturbance Rejection Control for Quadrotor Load UAV Based on Kalman Filter. IEEE Access 2023, 11, 104253–104269. [Google Scholar] [CrossRef]
- Mazare, M.; Taghizadeh, M.; Ghaf-Ghanbari, P.; Davoodi, E. Robust fault detection and adaptive fixed-time fault-tolerant control for quadrotor UAVs. Robot. Auton. Syst. 2024, 179, 104747. [Google Scholar] [CrossRef]
- Kaba, A. Unscented Kalman filter based attitude estimation of a quadrotor. J. Aeronaut. Space Technol. 2021, 14, 79–88. [Google Scholar]
- Patan, M.G.; Caliskan, F. Sensor fault–tolerant control of a quadrotor unmanned aerial vehicle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 417–433. [Google Scholar] [CrossRef]
- Kaba, A.; Kıyak, E. Optimizing a Kalman filter with an evolutionary algorithm for nonlinear quadrotor attitude dynamics. J. Comput. Sci. 2020, 39, 101051. [Google Scholar] [CrossRef]
- Matisko, P.; Havlena, V. Noise covariances estimation for Kalman filter tuning. IFAC Proc. Vol. 2010, 43, 31–36. [Google Scholar] [CrossRef]
- Atassi, A.N.; Khalil, H.K. A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 1999, 44, 1672–1687. [Google Scholar] [CrossRef]
- Khalil, H.K.; Praly, L. High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 2014, 24, 993–1015. [Google Scholar] [CrossRef]
- Ma, H.J.; Liu, Y.; Li, T.; Yang, G.H. Nonlinear high-gain observer-based diagnosis and compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle. IEEE Trans. Ind. Inform. 2018, 15, 550–562. [Google Scholar] [CrossRef]
- Dam, Q.T.; Thabet, R.E.H.; Ali, S.A.; Guerin, F. Observer design for a class of uncertain nonlinear systems with sampled-delayed output using High-Gain Observer and low-pass filter: Application for a quadrotor UAV. IEEE Trans. Ind. Electron. 2023, 71, 933–942. [Google Scholar] [CrossRef]
- Flores, G.; González-Huitron, V.; Rodríguez-Mata, A. Output feedback control for a quadrotor aircraft using an adaptive high gain observer. Int. J. Control Autom. Syst. 2020, 18, 1474–1486. [Google Scholar] [CrossRef]
- Jo, A.; Lee, H.; Seo, D.; Yi, K. Model-reference adaptive sliding mode control of longitudinal speed tracking for autonomous vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 493–515. [Google Scholar] [CrossRef]
- Pham, T.V.; Nguyen, Q.T.T. Model adaptive reference tracking control for uncertain robotic manipulators with input disturbance. Asian J. Control 2024, 26, 3291–3301. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Hong, S.K. Sliding mode thau observer for actuator fault diagnosis of quadcopter UAVs. Appl. Sci. 2018, 8, 1893. [Google Scholar] [CrossRef]
- KrstiC, M.; Kanellakopoulos, I.; KokotoviC, P.V. Nonlinear design of adaptive controllers for linear systems. IEEE Trans. Autom. Control 1994, 39, 738–752. [Google Scholar] [CrossRef]
- Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924–941. [Google Scholar] [CrossRef]
- Khalil, H.K. High-Gain Observers in Nonlinear Feedback Control; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar] [CrossRef]
Nomenclature | Representation | Unit | |
---|---|---|---|
Position | , , | m | |
Attitude angles | , , | rad | |
Attitude control | Nm | ||
Position control | N | ||
Position virtual control | N | ||
Angular velocities | rad/s | ||
Parameter | Symbol | Value | Unit |
Gravity | g | ||
Mass | m | 2 | |
Length | l | ||
Thrust coefficient | b | ||
Drag coefficient | d | ||
Rotor inertia | |||
Airframe inertia of roll | |||
Airframe inertia of pitch | |||
Airframe inertia of yaw |
Model | MRAC | Commanded-Filter | SMC | HGO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[p1, p2] | [r1, r2] | ||||||||||
Attitude | 1 | 30 | 120 | 1 | 2 | ||||||
1 | 20 | 100 | 1 | 2 | |||||||
1 | 20 | 100 | 1 | 2 | |||||||
Position | 20 | 1 | 5 | 1 | 2 | ||||||
15 | 30 | 0 | 1 | 2 | |||||||
5 | 50 | 1 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Alrasheedi, N. Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances. Drones 2025, 9, 181. https://doi.org/10.3390/drones9030181
Ahmed N, Alrasheedi N. Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances. Drones. 2025; 9(3):181. https://doi.org/10.3390/drones9030181
Chicago/Turabian StyleAhmed, Nigar, and Nashmi Alrasheedi. 2025. "Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances" Drones 9, no. 3: 181. https://doi.org/10.3390/drones9030181
APA StyleAhmed, N., & Alrasheedi, N. (2025). Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances. Drones, 9(3), 181. https://doi.org/10.3390/drones9030181