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Abstract: Unmanned aerial vehicles must achieve precise flight maneuvers despite dis-
turbances, parametric uncertainties, modeling inaccuracies, and limitations in onboard
sensor information. This paper presents a robust adaptive control for trajectory tracking
under nonlinear disturbances. Firstly, parametric and modeling uncertainties are addressed
using model reference adaptive control principles to ensure that the dynamics of the aerial
vehicle closely follow a reference model. To address the effects of disturbances, a modi-
fied nonlinear disturbance observer is designed based on estimated state variables. This
observer effectively attenuates constant, nonlinear disturbances with variable frequency
and magnitude, and noises. In the next step, a two-stage sliding mode control strategy is
introduced, incorporating adaptive laws and a commanded-filter to compute numerical
derivatives of the state variables required for control design. An error compensator is
integrated into the framework to reduce numerical and computational delays. To address
sensor inaccuracies and potential failures, a high-gain observer-based state estimation
technique is employed, utilizing the separation principle to incorporate estimated state
variables into the control design. Finally, Lyapunov-based stability analysis demonstrates
that the system is uniformly ultimately bounded. Numerical simulations on a DJI F450
quadrotor validate the approach’s effectiveness in achieving robust trajectory tracking
under disturbances.

Keywords: aggressive trajectory tracking; adaptive control; disturbance observer; state
observer; commanded filter; UAVs

1. Introduction
Unmanned aerial vehicles (UAVs) are flying robots that can be controlled au-

tonomously or semi-autonomously from a ground station. Recent technological advance-
ments have driven a significant rise in the use of UAVs across a wide range of applica-
tions, including military, remote sensing, wind turbine crack detection, commercial, and
industrial domains. Due to their versatility, high maneuverability, lightweight design,
cost-effectiveness, and vertical takeoff and landing (VTOL) capabilities, quadrotor UAVs
have emerged as a prominent platform for various applications [1–5].

The propulsion system of a quadrotor UAV consists of four rotors mounted equidis-
tantly from the center of gravity in the body frame, as illustrated in Figure 1. Quadrotors
are inherently underactuated systems, with four control inputs and six outputs, including

Drones 2025, 9, 181 https://doi.org/10.3390/drones9030181

https://doi.org/10.3390/drones9030181
https://doi.org/10.3390/drones9030181
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4455-880X
https://doi.org/10.3390/drones9030181
https://www.mdpi.com/article/10.3390/drones9030181?type=check_update&version=2


Drones 2025, 9, 181 2 of 30

attitude angles and Cartesian positions. Significant research efforts have been dedicated
to the control design of quadrotor UAVs. However, the growing demand for innovative
and dynamic applications has introduced new challenges in control system development.
Moreover, the highly nonlinear and complex dynamics of quadrotors, coupled with distur-
bances, modeling and parametric uncertainties, actuator inefficiencies, sensor noise, and
the need for aggressive maneuvers, make achieving effective trajectory tracking control a
formidable task [6,7].

Body frame

Earth axis

Figure 1. Quadrotor schematic.

Standard controllers based on linear and nonlinear control algorithms have been ex-
tensively utilized for quadrotor control. Linear control schemes typically require the model
to be linearized, after which feedback control methods are employed to design controllers
and achieve desired control objectives. Examples of such controllers include proportional–
integral–derivative (PID) controllers [8], linear quadratic regulators (LQR) [9–11], and
linearized model predictive control (MPC) [12–14]. However, linear control systems often
neglect highly nonlinear dynamics, such as Coriolis terms, to meet the requirements of a
linearized model. For instance, small attitude angles and slow linear or angular velocities
are commonly assumed to be negligible.

To address the limitations and challenges associated with linear controllers, nonlinear
control strategies such as sliding mode control (SMC), backstepping control, nonlinear
dynamic inversion, nonlinear PID, model reference adaptive control (MRAC), and fuzzy
controllers have been developed for quadrotor UAVs. These techniques are designed
to achieve superior performance compared to linear controllers. Moreover, the afore-
mentioned approaches effectively handle the complex dynamics and nonlinear coupling
inherent in quadrotor UAVs, thereby achieving robustness and improved trajectory tracking
performance [15].

SMC is widely regarded for its inherent robustness against matched uncertainties and
disturbances. However, it introduces chattering in the control input due to its switching
control strategy [16–18]. Furthermore, its robustness is only guaranteed when the upper
bound of unknown uncertainties and disturbances is known [19]. In [20], a two-step SMC
technique combined with adaptive laws was designed using Lyapunov stability criteria for
quadrotor control. By incorporating a noise filter and a saturation function, the approach
addressed sensor noise and modeling uncertainties. In [21], an adaptive SMC technique
was employed to tackle the input saturation problem. Additionally, the use of adaptive
laws facilitated disturbance rejection and eliminated the need for the empirical tuning
of control gains. However, the inherent chattering issue, which causes wear and tear in
actuators, remains unresolved in these methods.
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In [22], a high-order sliding manifold was constructed to design a robust SMC tech-
nique that achieves a chattering-free controller and ensures asymptotic stability. The ap-
proach was combined with a high-order sliding mode observer (HOSMO) and a deadzone-
based method for adaptive laws to tackle unknown disturbances during low-altitude
grasping applications. A similar control technique with finite-time stability was proposed
in [23], where all states were estimated using HOSMO based on the quadrotor’s transla-
tional and rotational outputs. In this method, HOSMO provided disturbance estimates,
which were utilized in the controller to achieve simultaneous disturbance rejection and
chattering attenuation. In [24], saturation was introduced in the control input to solve
the chattering issue. However, due to saturation function, the robustness of the control
system was compromised. Other notable control techniques employing high-order sliding
mode methods for solving chattering are presented in [25–28]. However, the high-order
observer techniques in these controllers were sensitive to noise, and state convergence was
not explicitly considered. Moreover, the chattering issue was not completely resolved.

Backstepping control is well-known for its Lyapunov-based design, which enables the
development of chattering-free control algorithms to address wear and tear in quadrotor
actuators. Its recursive design methodology, along with the cancellation of indefinite
cross-coupling and nonlinear terms, ensures stability at each step and facilitates global
stability [29–31]. Using the backstepping control technique, lateral position and altitude
tracking performance were achieved in [32]. In this work, position and attitude tracking
errors were first defined, and the Lyapunov method was applied to ensure negative semi-
definiteness by canceling unwanted terms. In [33], backstepping control was combined
with a correction term derived from the super-twisting algorithm to ensure disturbance
attenuation and finite-time global stability of the origin. However, the recursive nature of
backstepping control requires higher control effort due to cross-cancellation. Additionally,
backstepping algorithms are susceptible to the ‘explosion of complexity’ phenomenon caused
by the repeated differentiation of virtual inputs and state variables [34].

Based on the first-order differentiator, the dynamic surface control (DSC) technique
has been incorporated into the backstepping design procedure to address the issue of the
repeated differentiation of virtual inputs, as presented in [35,36]. Additionally, adaptive
control laws have been introduced to avoid the conservative tuning of control gains while
ensuring the desired quadrotor performance. In [37], a commanded filter using Levant’s
differentiator was employed to compute numerical derivatives of the state variables and
virtual control inputs. In this approach, tracking errors were first defined between the
quadrotor outputs and the desired trajectory, and a commanded filter with error compen-
sation was integrated into the controller to replace the derivatives. The concept of the
commanded filter was extended in [6], where it facilitated numerical differentiation and
disturbance attenuation through adaptive laws, enabling trajectory tracking in uncertain
environments. However, implementing adaptive laws requires an accurate quadrotor
model. Furthermore, adaptive laws are sensitive to noise and disturbances, which can lead
to inaccuracies or instability in quadrotor performance [38].

Using an ideal quadrotor model, the model reference adaptive control (MRAC) tech-
nique has been employed for quadrotor attitude control, as demonstrated in [39]. In this
method, an ideal reference attitude model was first designed, and an error was defined
between the reference model and the actual quadrotor model. Adaptive laws were then
formulated to satisfy matching conditions, followed by the design of a robust SMC-based
control law. In similar research, quadrotor attitude stabilization was achieved in [40], but
these techniques were limited to fully-actuated quadrotor attitude systems.

In [41], an MRAC-based trajectory tracking control strategy was proposed, achieving
uniformly ultimately bounded (UUB) stability, and successfully validated through flight
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tests on quadrotor systems. The self-regulation criteria in this technique ensured robust-
ness against sensor noise and external disturbances. Although actuator dynamics were
not explicitly considered, accurate quadrotor position and attitude measurements were
essential for controller implementation. In [42], neural networks were incorporated into the
MRAC framework to achieve disturbance attenuation and trajectory tracking for quadro-
tors with parametric uncertainties. However, the closed-loop system only demonstrated
asymptotic convergence. Additionally, inevitable external disturbances, such as wind gusts,
were neglected. Furthermore, selecting a suitable reference model remains a significant
challenge, as the real quadrotor must accurately track the output of the reference model.

To address unknown disturbances, disturbance observers (DOs) have been extensively
studied for quadrotor UAVs. Combined with controllers, disturbance observer-based con-
trol (DOBC) aims to simultaneously attenuate disturbances and achieve desired control
objectives [43,44]. For disturbances with slow-varying behavior, they are often approxi-
mated as constant, enabling the lumping of all disturbances and uncertainties into a single
term with an upper bound. A DO can then be designed for estimation, as illustrated in [45].
However, real-time quadrotor flights are subjected to nonlinear disturbances without
known bounds, posing a challenge for DO design.

Nonlinear DOs, combined with observer-based SMC, have been utilized to estimate
and reject faults and external disturbances in [46]. In this approach, a sliding mode
observer was used for state estimation, while control objectives were achieved via SMC.
Furthermore, actuator faults were addressed through sliding mode estimation. However,
the chattering issue remained unresolved. Using the reinforcement learning approach,
the fault tolerance was enhanced in [47]. In [48], a chattering-free DOBC was developed
using robust control combined with nonlinear DO to handle exogenous wind disturbances
and parametric uncertainties. However, the DO required prior knowledge of the constant
peak-to-peak magnitude and frequency of disturbances, making it unsuitable for real-time
implementation. Moreover, significant steady-state errors were observed in numerical
simulations. In [49], state estimation for the time-delayed measurements was designed.
This technique addressed uncertainties while utilizing the state-estimations for control
performance. Other notable research on DOBC for quadrotors is presented in [50–56].

Implementing DOBC requires an accurate mathematical model of the quadrotor system
and precise state information. However, inefficient sensors and actuators make achieving an
effective DOBC algorithm challenging. In [57], fuzzy logic was combined with robust SMC
for helical trajectory tracking. Although SMC is robust to bounded matched disturbances,
the emphasis was on utilizing state estimation for quadrotor outputs and disturbance
rejection. In [58], the controller and DO were designed separately, but this decomposition
required a fully actuated control input and the assumption of no parametric uncertainties
in the quadrotor system. In [59], disturbances were treated as an extended state, and state
estimation criteria were employed for disturbance rejection using quadrotor outputs only.
However, treating disturbances as an extended state necessitated an accurate quadrotor
model. And ensuring that disturbance estimation dynamics were significantly faster than
the control algorithm was difficult due to the coupled dynamics of state extension.

In recent years, Kalman filters (KFs) and their extended versions have gained popular-
ity for quadrotor state estimation. For example, in [60], a Kalman filter was designed using
control composition, quadrotor outputs, and model linearization to estimate position and
attitude. However, disturbances were lumped into a constant bounded term prior to estima-
tion, which is inadequate for real-time quadrotor flights. Additionally, the filtering problem
for uncertain nonlinear quadrotor systems was not addressed. In [61], the load variation
problem was solved using KFs. This method used KFs to predict outputs, followed by
extended state estimation for disturbances. Other key works on KF and EKF applications
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include [62–64]. Although KFs are optimal in minimizing mean square error and deliver
remarkable results, they require the system to be linear, the state-space model to be known,
and the noise to follow a Gaussian distribution with zero mean [65]. Additionally, the
covariance matrices of noise must be known beforehand [66].

The high-gain observer (HGO) technique utilizes quadrotor outputs and nonlinear
models to estimate states and their rates. HGO offers fast convergence, nonlinearity, and
robustness to measurement noise [67,68]. However, it has not been extensively applied
to quadrotor trajectory tracking. In limited literature, such as [69], HGO-based DOBC
was used for state and fault estimation in the position control of quadrotors. Feedback
linearization and adaptive laws were also introduced for online gain tuning. In [70], the
HGO technique was modified by incorporating a dynamical filter on quadrotor outputs
instead of measured outputs, addressing delayed measurements. An adaptive HGO-based
backstepping control law combined with DO was proposed in [71]. This method eliminated
reliance on measurable outputs, using estimated states and rates throughout the control
algorithm, and simultaneously achieved state and disturbance estimation. Although the
HGO technique has demonstrated significant potential in state estimation and control for
quadrotors, its application to trajectory tracking remains relatively unexplored.

In summary, despite significant advancements in control algorithms using HGO for
quadrotor trajectory tracking, notable research gaps persist. Based on the extensive literature
review, studies such as MRAC combined with SMC [41,72] and MRAC integrated with
DO [73] represent promising developments. However, to the best of the authors’ knowledge,
the integration of MRAC with SMC in conjunction with HGO-based state estimation has not
been explored. Furthermore, the use of commanded filters within the MRAC framework to
achieve the numerical differentiation of state variables and virtual control inputs remains
uninvestigated. To bridge these gaps and address the challenges associated with trajectory
tracking control design, this work makes the following key contributions:

1. Different from [39–42,72], the MRAC technique is combined with adaptive SMC based
on commanded-filter and nonlinear DO to handle the high dynamics and aggressive
maneuvers of the quadrotor.

2. Unlike prior works [19,38,44,52], a novel algorithm for nonlinear DO is developed,
capable of estimating exogenous disturbances, constant disturbances, nonlinear dis-
turbances with unknown variable frequency and magnitude, Gaussian-distributed
random disturbances, uniformly-distributed random disturbances, and band-limited
white noise.

3. A commanded-filter with error compensation is designed to perform numerical dif-
ferentiation without relying on direct differentiators, thus avoiding computational
delays in the control systems.

4. Two types of adaptive laws are proposed for online control gain tuning. First, an
adaptive law is developed for the MRAC technique based on the tracking error
between the reference model and the real model. Second, adaptive laws are introduced
for the SMC control law based on the tracking error between the desired trajectory
and quadrotor outputs. This approach also addresses the inherent chattering issue in
SMC by reducing it through adaptive laws.

5. By employing the separation principle, the quadrotor outputs and their rates are
replaced with the estimated states obtained using a HGO.

2. Mathematical Model and Preliminaries
Table 1 represents the nomenclature of mathematical model and the physical parame-

ters of the DJI-F450 quadrotor UAV. It is assumed that the airframe inertia for roll, pitch,
and yaw may vary depending on the drone and its propulsion system.
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Table 1. DJI-F450 quadrotor parameters [74].

Nomenclature Representation Unit

Position x(t), y(t), z(t) m
Attitude angles ϕ(t), θ(t), ψ(t) rad
Attitude control Ui(t) i ∈ (ϕ, θ, ψ) Nm
Position control Up(t) N
Position virtual control Uj(t) j ∈ (x, y, z) N
Angular velocities ωk k ∈ (1, 2, 3, 4) rad/s

Parameter Symbol Value Unit

Gravity g 9.81 m/s2

Mass m 2 kg
Length l 0.225 m
Thrust coefficient b 9.86× 10−6 Ns2

Drag coefficient d 1.6× 10−7 Nms2

Rotor inertia Jr 2.8× 10−6 kgm2

Airframe inertia of roll Ix 0.0035 kgm2

Airframe inertia of pitch Iy 0.0035 kgm2

Airframe inertia of yaw Iz 0.0035 kgm2

2.1. Mathematical Model

Define p = [x, y, z]T and Θ = [ϕ, θ, ψ]T to represent position and attitude quadrotor, re-
spectively. The rotational and translational velocities by Ω = [p, q, r]T and v = [vx, vy, vz]T ,
respectively. Thus, the quadrotor motion can be given by the following [2]:

ṗ = v;

v̇ = −gze +
T
m

Rze

Ṙ = RS(Ω)

I f Ω̇ = −Ω× I f Ω− Ga + τa

(1)

where ze is the unit vector along the z-axis in the earth-fixed inertial frame, S(Ω) is a
skew-symmetric matrix, and R is the rotational matrix given as follows [2,47]:

R =

cos θ cos ψ sin θ sin ψ sin ϕ− sin ψ cos ϕ sin θ cos ψ cos ϕ + sin ψ sin ϕ

cos θ sin ψ sin θ sin ψ sin ϕ + cos ψ cos ϕ sin θ sin ψ cos ϕ− cos ψ sin ϕ

− sin θ cos θ sin ϕ cos θ cos ϕ

 (2)

τa = [τ1, τ2, τ3]
T is the vector of torques generated by the rotors, where:

τ1 = bl
(

ω2
4 −ω2

2

)
, τ2 = bl

(
ω2

3 −ω2
1

)
, τ3 = d

(
ω2

2 + ω2
4 −ω2

1 −ω2
3

)
(3)

The four control inputs of the quadrotor, combined with the total thrust, are given
as follows: 

T
τ1

τ2

τ3

 =


Up

Uϕ

Uθ

Uψ

 =


b b b b
0 −bl 0 bl
−bl 0 bl 0
−d d −d d




ω2
1

ω2
2

ω2
3

ω2
4

 (4)

After mathematical derivation and simplification, the dynamical model of the quadrotor
can be expressed as follows:
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
ẍ = (cos ϕ sin θ cos ψ + sin ϕ sin ψ)

Up
m

ÿ = (cos ϕ sin θ sin ψ− sin ϕ cos ψ)
Up
m

z̈ = (cos ϕ cos θ)
Up
m − g

ϕ̈ = θ̇ψ̇
(Iy−Iz)

Ix
+ θ̇Ωr

Ir
Ix
+ Uϕ

l
Ix

θ̈ = ϕ̇ψ̇
(Iz−Ix)

Iy
− ϕ̇Ωr

Ir
Iy
+ Uθ

l
Iy

ψ̈ = ϕ̇θ̇
(Ix−Iy)

Iz
+

Uψ

Iz

(5)

where Ωr = ω1 − ω2 + ω3 − ω4. Next, for the state-space model of the quadrotor UAV,
define ϕ = x1(t), ϕ̇ = x2(t), θ = x3(t), θ̇ = x4(t), ψ = x5(t), ψ̇ = x6(t), x = x7(t),
ẋ = x8(t), y = x9(t), ẏ = x10(t), z = x11(t) and ż = x12(t). Simplification yields

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)
ẋ6(t)
ẋ7(t)
ẋ8(t)
ẋ9(t)
ẋ10(t)
ẋ11(t)
ẋ12(t)



=



x2(t)
aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t)

x4(t)
aθ x2(t)x6(t)− bθ x2(t)Ωr + cθUθ(t)

x6(t)
aψx2(t)x4(t) + cψUψ(t)

x8(t)
1
m (cos ϕ(t) sin θ(t) cos ψ(t) + sin ϕ(t) sin ψ(t))Up(t)

x10(t)
1
m (cos ϕ(t) sin θ(t) sin ψ(t)− sin ϕ(t) cos ψ(t))Up(t)

x12(t)
1
m cos x1(t) cos x3(t)Up(t)− g



(6)

where aϕ =
(

Iy − Iz
)
/Ix, bϕ = Ir/Ix, cϕ = l/Ix, aθ = (Iz − Ix)/Iy, bθ = Ir/Iy, cθ = l/Iy,

aψ =
(

Ix − Iy
)
/Iz, cψ = 1/Iz.

2.2. Lemmas and Assumptions

This section presents the key lemmas and underlying assumptions that serve as the
foundation for the proposed control design methodology.

Lemma 1. According to [2,58], quadrotor dynamical model can be decoupled into attitude and
position subsystems using small-angle approximation which states that θ ≈ 0 implies cos θ ≈ 1
and sin θ ≈ 0.

Lemma 2. According to [75], for a continuous function with a bounded initial condition, define
∀t ∈ R+ and satisfy V(t) ≥ 0; then, for positive constants a1 and b1, the function V(t) is
uniformly ultimately bounded, if it can be deduced that V̇(t) ≤ −a1V + b1.

Lemma 3. First order Levant differentiator for an input signal; υr defined for the time interval
[0, ∞] is given by ς̇1 = ν; ς̇2 = −κ2sign(ς1 − υr), where κ1 and κ2 are positive design constants.
ν = −κ1|ς1 − υr|

1
2 sign(ς1 − υr) + ς2ϕ [76].

Lemma 4. The error between differentiated signals using the Levant differentiator and real signal
is bounded by a small constant, i.e., |ς1 − νr| ≤ ε, where ε > 0 is a small constant [37].

Assumption 1. Roll and pitch angles stay within
(
−π

2 , π
2
)

[2].

Assumption 2. The desired reference trajectory is continuous and bounded.
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Assumption 3. Quadrotor attitude and position are measurable.

3. Control Design and Stability Analysis
3.1. Attitude Control

Without loss of generality, consider the decoupled roll model in the attitude state-space
representation, subject to nonlinear disturbances. The controller is designed to achieve
tracking control performance, and the state-space model is given as follows:

ẋ1(t) = x2(t)

ẋ2(t) = aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t) + dϕ(t)
(7)

where dϕ(t) represents the bounded nonlinear disturbance estimated using the technique
given by d̂ϕ(t) = zϕ(t) + wϕ(t), where

żϕ(t) = − µϕ

(
aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t) + wϕ(t) + zϕ(t)

)
wϕ(t) = µϕx2(t)

(8)

where µϕ denotes a positive DO control gain. Next, the error dynamics can be analyses by
defining d̃ϕ(t) = dϕ(t)− d̂ϕ(t). Thus, it can be derived that

˙̃dϕ = ḋϕ(t)− ˙̂dϕ(t)

= ḋϕ(t)−
(
−µϕ

(
aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t) + wϕ(t) + zϕ(t)

)
+ µϕ ẋ2(t)

)
= ḋϕ(t)−

(
−µϕ

(
aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t) + wϕ(t) + zϕ(t)

)
+ µϕ

(
aϕx4(t)x6(t) + bϕx4(t)Ωr + cϕUϕ(t) + dϕ(t)

))
= ḋϕ(t)− µϕ

(
dϕ(t)− d̂ϕ(t)

)
(9)

Introducing Young’s inequality and simplify

˙̃dϕ(t) ≤ − µϕd̃ϕ(t) +
1
2

(
1 + ḋ2

ϕ

)
≤ − µϕd̃ϕ(t) +

1
2

d̄ϕ

(10)

where d̄ϕ ≥ max{1 + ḋ2
ϕ} is a maximum bound. Since, d̄ϕ > 0 ∀ t ≥ 0, therefore, with

µϕ > 0 sufficiently large, the nonlinear DO will converge and estimate the disturbance.
Next, define

Xϕ =

[
x1(t)
x2(t)

]
; Fϕ(t) =

[
x2(t)
fϕ(t)

]
; Bϕ =

[
0
cϕ

]
; Dϕ =

[
0
1

]
(11)

where fϕ(t) = aϕx4(t)x6(t) + bϕx4(t)Ωr. Hence, it can be written that

Ẋϕ = Fϕ(t) + BϕUϕ + Dϕdϕ(t) (12)

The MRAC control technique developed in this research requires the matching conditions
to be satisfied between the real and reference models. Therefore, the roll model must be
transformed into the desired model in matrix form. Based on this, the roll control input,
Uϕ(t), for feedback linearization is chosen as follows:

Uϕ(t) =

(
1

BT
ϕ Bϕ

)
BT

ϕ{A1Xϕ − Fϕ(t) + B1vϕ(t)} (13)

where vϕ is a virtual control input to be designed using the MRAC-SMC technique combined

with nonlinear DO. A1 =
[
0 0; k1 k2

]
and B1 =

[
0 k3

]T
, with k1 > 0, k2 > 0 and k3 > 0.
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Remark 1. A1 and B1 are selected to ensure that the state variables are explicitly represented in
the linearized system following the introduction of feedback linearization, which is employed to
eliminate nonlinear coupled terms.

Next, substitute (13) into (12)

Ẋϕ = AϕXϕ + Bϕvϕ + Dϕdϕ (14)

where

Aϕ =

[
0 1
k1 k2

]
; Bϕ =

 0

Bϕ

(
1

BT
ϕ Bϕ

)
BT

ϕ B1

 (15)

where Bϕ

(
1

BT
ϕ Bϕ

)
BT

ϕ B1 = k3. Now, the virtual control input for the design of adaptive

laws using MRAC criteria is chosen as follows:

vϕ(t) = K̂ϕ(t)Xϕ + K̂rϕ(t)rϕ(t)− K̂vϕ(t)ūϕ(t) (16)

where rϕ(t) is the reference input, and K̂ϕ(t), K̂rϕ(t), and K̂vϕ(t) are adaptive gains to be
designed. ūϕ(t) is a chattering-free robust SMC for trajectory tracking. In next step, the
reference model is chosen according to the second-order dynamical system, given as follows:

ẍm + 2ζmωm ẋm + ω2
1xm = bmrϕ(t) (17)

where xm is the state variable of the reference model. ζm and ωm are the damping ratio
and natural frequency, respectively. They should be chosen such that the reference model
satisfies the Hurwitz criteria. Furthermore, bm is a constant and rϕ(t) is the known reference
input. Simplification is given as follows:

Ẋm = AmXm + Bmrϕ(t); Am =

[
0 1
−ω2

m −2ζmωm

]
; Bm =

[
0

bm

]
(18)

Error between real and reference model is defined as follows:

eϕ = Xϕ − Xm (19)

Time derivative is given by

ėϕ = AϕXϕ + Bϕvϕ + Dϕdϕ − AmXm − Bmrϕ(t) (20)

Substituting (16) into (19)

ėϕ =
(

Aϕ + BϕK̂ϕ

)
Xϕ − AmXm +

(
BϕK̂rϕ(t)− Bm

)
rϕ(t)− BϕK̂vϕ(t)ūϕ(t)

+ Dϕdϕ(t)
(21)

Matching conditions for designing adaptive gains for MRAC technique should satisfy

Aϕ + BϕK̂ϕ = Am

BϕK̂rϕ = Bm
(22)

Next, (21) can be simplified as follows:

ėϕ =
(

Aϕ + BϕKϕ

)
Xϕ − AmXm − BϕK̃ϕXϕ − BϕK̃rr(t)−

(
BϕKr − Bm

)
rϕ(t)

+ BϕK̃v(t)ūϕ(t)− BϕKvūϕ(t) + Dϕdϕ(t)
(23)
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where
K̃ϕ = Kϕ − K̂ϕ(t); K̃rϕ(t) = Krϕ − K̂rϕ(t); K̃vϕ(t) = Kvϕ − K̂vϕ(t) (24)

where Kϕ, Krϕ , and Kvϕ are unknown positive ideal gains. Hence, it can be derived that

ėϕ = Aϕeϕ − BϕK̃ϕXϕ − BϕK̃rϕ rϕ(t) + BϕK̃vϕ ūϕ(t)− BϕKvϕ ūϕ(t) + Dϕdϕ(t) (25)

Next, the Lyapunov function is chosen as follows:

Vϕ = eT
ϕ Peϕ + cϕ

(
K̃ϕΓ−1

ϕ K̃T
ϕ +

1
αϕ

K̃2
rϕ
+

1
βϕ

K̃2
vϕ

)
(26)

where Pϕ Aϕ + AT
ϕ Pϕ = −Qϕ, Pϕ = PT

ϕ > 0 and Qϕ = QT
ϕ . Furthermore, Γϕ = ΓT

ϕ ∈ R2×2,
αϕ and βϕ are adaptive control tuning gains. Next, time derivative is derived as follows:

V̇ϕ = ėT
ϕ Pϕeϕ + eT

ϕ Pϕ ėϕ + cϕ

(
2K̃ϕΓ−1

ϕ
˙̃Kϕ +

2
αϕ

K̃rϕ
˙̃Krϕ +

2
βϕ

K̃vϕ
˙̃Kvϕ

)
(27)

Substituting (25) into (27)

V̇ϕ =
(

eT
ϕ AT

ϕ − XT
ϕ K̃T

ϕ BT
ϕ − rϕ(t)K̃T

rϕ
BT

ϕ + ūϕ(t)K̃T
vϕ

BT
ϕ + dϕ(t)DT

ϕ

)
Peϕ

+ eT
ϕ Pϕ

(
Aϕeϕ − BϕK̃ϕXϕ − BϕK̃rϕ rϕ(t) + BϕK̃vϕ ūϕ(t) + Dϕdϕ(t)

)
+ cϕ

(
2K̃ϕΓ−1

ϕ
˙̃Kϕ +

2
αϕ

K̃rϕ
˙̃Krϕ +

2
βϕ

K̃vϕ
˙̃Kvϕ

) (28)

Simplifying

V̇ϕ = eT
ϕ (Pϕ Aϕ + AT

ϕ Pϕ)eϕ + 2eT
ϕ PϕBϕ(−K̃ϕXϕ − K̃rϕ rϕ(t) + K̃vϕ ūϕ(t)

− Kvϕ ūϕ(t)) + 2eT
ϕ PϕDϕdϕ(t) + cϕ(2K̃ϕΓ−1

ϕ
˙̃Kϕ +

2
αϕ

K̃rϕ
˙̃Krϕ +

2
βϕ

× K̃vϕ
˙̃Kvϕ)

(29)

Hence, it can be obtained

V̇ϕ =− eT
ϕ Qϕeϕ + 2cϕK̃ϕ

(
Γ−1

ϕ
˙̃KT

ϕ − k3XϕeT
ϕ P̄2

)
+ 2cϕK̃rϕ

(
1

αϕ

˙̃Kr − krϕ rϕ(t)eT
ϕ

× P̄2

)
+ 2cϕK̃vϕ

(
1

βϕ

˙̃Kvϕ + k3ūϕ(t)eT
ϕ P̄2

)
− 2k3eT

ϕ P̄2Kvϕ ūϕ(t)

+ 2eT
ϕ P̄2dϕ(t)

(30)

where P̄2 is the second column of Pϕ. Furthermore, 2eT
ϕ PϕBϕ = 2k3eT

ϕ P̄2 ∈ R and 2eT
ϕ PϕDϕ =

2eT
ϕ P̄2 ∈ R. Choose adaptive laws as follows:

˙̂KT
ϕ (t) = −ΓϕXϕeT

ϕ P̄2; ˙̂Krϕ(t) = −αϕk3rϕ(t)eT
ϕ P̄2; ˙̂Kvϕ(t) = −βϕk3ūϕ(t)eT

ϕ P̄2 (31)

Substituting (31) into (30) yields

V̇ϕ = −eT
ϕ Qϕeϕ − 2k3eT

ϕ P̄2Kvūϕ(t) + 2eT
ϕ P̄2dϕ(t)

≤ −eT
ϕ Qϕeϕ + γϕ + b̄ϕ

(32)

where γϕ = 2eT
ϕ P̄2
(
k2

3 + 1
)

is a known constant, and b̄ϕ ≥ 1
2 max{ū2

ϕ(t) + d2
ϕ(t)} represents

an upper bound on the SMC input and disturbance. Therefore, the uniformly ultimately
bounded condition can be achieved, provided that Pϕ is appropriately designed.
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It is important to note that since dϕ(t) is bounded, its square is also bounded. Further-
more, ūϕ(t) is a control input designed using SMC principles, which inherently ensures
boundedness if the control gains are chosen to be positive. Consequently, its squared value
is also bounded. The design of ūϕ(t) will be presented next after the model is redesigned
as follows:

Ẋϕ = AϕXϕ + Bϕūϕ + Dϕdϕ (33)

Next, for the design of ūϕ(t), firstly the commanded-filter is introduced as Żϕ = PϕZϕ,
written as follows: [

ż1

ż2

]
=

[
−p1|z1 − ϕr|1/2 1

−p2 0

][
sign(z1 − ϕr)

z2

]
(34)

where ϕr is the desired roll angle to be differentiated. p1 > 0 and p2 > 0 are design con-
stants. Furthermore, z1 = xc and z2 = ẋc = ϕ̇r represent the output of the commanded filter
and the derivative of the input signal, respectively. To handle the numerical differentiation
errors, a compensation system is designed as Ėϕ = RϕEϕ +Xϕ, written as follows:[

ξ̇1(t)
ξ̇2(t)

]
=

[
−r1 1
−1 −r2

][
ξ1

ξ2

]
+

[
(xc(t)− ϕr)

0

]
(35)

where r1 > 0 and r2 > 0 are design constants. Next, the sliding manifold is chosen as follows:

Sϕ = CT
ϕ

(
Xϕ −Zϕ −Eϕ

)
(36)

where Cϕ = [c1; 1], with c1 > 0. Next, the sliding mode surface dynamics are obtained
as follows:

Ṡϕ = CT
ϕ

(
AϕXϕ + Bϕūϕ + Dϕdϕ − PϕZϕ −RϕEϕ −Xϕ

)
(37)

Hence, the control input is chosen as follows:

ūϕ = −
(

CT
ϕ Bϕ

)−1
(

CT
ϕ

(
AϕXϕ + Dϕd̂ϕ(t)− PϕZϕ −RϕEϕ −Xϕ

)
+ L̂ϕsgn(Sϕ) + K̂ϕSϕ

) (38)

Since ūϕ ∈ R, it can be written as follows:

ūϕ = − 1
k3

(
c1
(
x2 + p1|z1 − ϕr|1/2sign(z1 − ϕr)− xc(t) + ϕr

)
+ k1x1 + k2x2

+ bϕx4(t)Ωr + d̂ϕ + (p2 − c1)z2 + (r1 + 1)ξ1 + (r2 − 1)ξ2 + L̂ϕsgnSϕ

+ K̂ϕSϕ

) (39)

where adaptive laws are governed as follows:

˙̂Lϕ = γϕ|Sϕ|; ˙̂Kϕ = ηϕS2
ϕ where L̂ϕ(0) = 0, K̂ϕ(0) = 0 (40)

where γϕ > 0 and ηϕ > 0 are control gains for adaptive laws.

Remark 2. L̂ϕ(t) and K̂ϕ(t) will be non-negative if the adaptive control gains satisfy γϕ > 0 and
ηϕ > 0.
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Next, define Lyapunov function as follows:

VS =
1
2

S2
ϕ +

1
2γϕ

L̃2
ϕ +

1
2ηϕ

K̃2
ϕ (41)

where L̃ϕ = L− L̂ϕ and K̃ϕ = Kϕ − K̂ϕ. Now, time derivative is obtained as

V̇S = SϕṠϕ −
1

γϕ
L̃ϕ

˙̂Lϕ −
1

ηϕ
K̃ϕ

˙̂Kϕ (42)

Next, by using (36) and (39), the time derivative can be obtained as follows:

V̇S ≤ −Lϕ|Sϕ| − KϕS2
ϕ + L̃ϕ

(
|Sϕ| −

1
γϕ

˙̂Lϕ

)
+ K̃ϕ

(
S2

ϕ −
1

ηϕ

˙̂Kϕ

)
(43)

Introducing (40) yields
V̇S ≤ −Lϕ|Sϕ| − KϕS2

ϕ (44)

Hence, the controller is stable if the adaptive control gains, i.e., γϕ and ηϕ, are designed
positive and sufficiently large. Since L̂ϕ(t) and K̂ϕ(t) remain non-negative if the adaptive
control gains satisfy γϕ > 0 and ηϕ > 0, the positivity of these terms is evident from the
adaptive law design. This is because the right-hand side of both adaptive laws is always
non-negative. However, it should be noted that these terms will not increase indefinitely
over time, as the sliding mode surface eventually converges to zero, leading to a steady-state
condition for the adaptive laws.

Consequently, L̂ϕ(t)→ Lϕ and K̂ϕ(t)→ Kϕ, where Lϕ and Kϕ are unknown positive
constants, and the adaptive law ensures a dynamic convergence to these values.

Next, for obtaining the estimated roll and its rate, following the HGO technique is
designed Ẋϕ = Fϕ(t) + BϕUϕ +Kϕ(yϕ − x̂1)(t), where yϕ = x1 is the real output of the roll
model and

X̂ϕ =
[

x̂1 x̂2

]T
; Fx(t) =

[
x8 f̂1(t)

]T
; Bϕ =

[
0 1

]T
;Kϕ =

1
ε2

[
εh̄ϕ1 0

0 h̄ϕ2

]
(45)

where ε = (0, 1], h̄ϕ1 > 0 and h̄ϕ2 > 0 are observer gains. f̂1(t) = aϕ x̂4(t)x̂6(t) + bϕ x̂4(t)Ωr.

Corollary 1 ([67]). Design of sufficiently large state-observer gains results in the estimated-state
trajectories recovering the performance of the real-state trajectories, such that f̃ϕ = ( fϕ − f̂ϕ)→ 0
when t→ ∞.

In order to analyses error dynamics, define estimation errors as follows:

χ1 =
1
ε

x̃1; χ2 = x̃2 (46)

Let χϕ = [χ1, χ2]
T ; then, taking the derivative and simplifying yields εχ̇ϕ = Aχϕ + εδ,

where matrices δ and A are written as follows:

A =

[
−h̄ϕ1 1
−h̄ϕ2 0

]
; δ =

[
0
f̃ϕ

]
(47)

where A is Hurwitz due to the characteristic polynomial gains h̄ϕ1 and h̄ϕ2 . Now, choose a
Lyapunov candidate function as follows:

VH = χT
ϕPχϕ (48)
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where P = [p11, p12; p21, p22] with positive constants such that P = PT > 0 and p12 = p21. In
addition, P is obtained by solving PA+ATP = −I. With simple mathematical derivations,
the elements of the matrix P can be determined as p11 = 1

2h̄ϕ1

(
1 + h̄ϕ2

)
, p12 = p21 = − 1

2 ,

and p22 = 1
2h̄ϕ2

(
1

h̄ϕ1

(
1 + h̄ϕ2

)
+ h̄ϕ1

)
. Next, taking the derivative of VH and simplifying it

along with using Young’s inequality yields:

V̇H = − χT
ϕ χϕ + 2εχT

ϕPδ

≤ −
(

1− ε2

2

)
χ2

1 −
(

1− ε2

2h̄2
ϕ2

(
1

h̄ϕ1

(
1 + h̄ϕ2

)
+ h̄ϕ1

))
χ2

2 + f̃ 2 (49)

Hence, stable dynamics can be achieved by an appropriate choice of h̄ϕ1 > 0, h̄ϕ2 > 0 and
by designing ε ∈ (0, 1] to be sufficiently small.

Corollary 2 ([77]). The state variables in the controller, adaptive laws, and nonlinear DO are
replaced with estimated state variables derived using a HGO to finalize the control methodology.

Theorem 1. The roll submodel subject to nonlinear disturbance presented in (7) ultimately achieves
boundedness uniformly, provided that the nonlinear disturbance observer is designed using (8) and
the controller as follows:

Uϕ =

(
1

BT
ϕ Bϕ

)
BT

ϕ (A1XΦ − Fϕ(t) + B1(K̂ϕ(t)Xϕ + K̂rϕ(t)r(t)

− K̂vϕ(t)ūϕ(t)))

(50)

where adaptive control gains are chosen according to (31), and ūϕ(t) is designed according to (38)
with tuning gains according to (40) and state-estimation according to (48).

Proof. Define a Lyapunov function as follows:

VR = VS + Vϕ + VH + VD

=
1
2

S2
ϕ +

1
2γϕ

L̃2
ϕ +

1
2ηϕ

K̃2
ϕ + eT

ϕ Peϕ + cϕ

(
K̃ϕΓ−1

ϕ K̃T
ϕ +

1
αϕ

K̃2
r +

1
βϕ

K̃2
v

)
+ χT

ϕPχϕ +
1
2

d̃2
ϕ

(51)

Time derivative is obtained as follows:

V̇R = SϕṠϕ −
1

γϕ
L̃ϕ

˙̂Lϕ −
1

ηϕ
K̃ϕ

˙̂Kϕ +
(

ėT
ϕ Peϕ + eT

ϕ Pėϕ

)
+ cϕ

(
2K̃ϕΓ−1

ϕ
˙̃Kϕ

+
2

αϕ
K̃r

˙̃Kr +
2

βϕ
K̃v

˙̃Kv

)
− χT

ϕ χϕ + 2εχT
ϕPδ− µϕd̃2

ϕ(t)
(52)

Introducing the designed adaptive laws and controller followed by simplification yields

V̇R ≤ − Lϕ|Sϕ| − KϕS2
ϕ − eT

ϕ Qϕeϕ − κ1χ2
1 − κ2χ2

2 − µϕd̃2
ϕ(t) + ς (53)

where ς is a maximum bound, such that ς = max{γϕ + b̄ + f̃ 2} and

κ1 =
(
1− ε2/2

)
κ2 =

(
1− ε2/

(
2h̄2

ϕ2

)((
1/h̄ϕ1

)(
1 + h̄ϕ2

)
+ h̄ϕ1

)) (54)
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Hence, with the appropriate selection and design of controller gains, the time deriva-
tive of the Lyapunov candidate function, V̇R, is shown to be negative semi-definite. This
ensures that the Lyapunov function VR(t) is non-increasing along the system trajectories,
implying that the system state remains bounded. Furthermore, by invoking the properties
of Lyapunov stability theory, this result guarantees that the trajectories of the closed-loop
system converge to and remain within an invariant neighborhood of the origin.

As t → ∞, the system state converges to a bounded region around the origin, de-
termined by the level sets of the Lyapunov function. This demonstrates the uniformly
ultimately bounded (UUB) stability of the system under the designed control law. Hence,
the stability analysis is complete, and the proof is concluded.

With the similar control design, the controllers for pitch and yaw can be constructed.
The complete algorithm of attitude control is given in Algorithm 1.

Algorithm 1 Attitude Control

Require: Quadrotor parameters and desired attitude: ϕdes(t), θdes(t), ψdes(t)
Ensure: Tracking error→ 0 : ϕdes(t)← ϕ(t), θdes(t)← θ(t), ψdes(t)← ψ(t)

1: while Attitude error ̸= 0 do
2: for i ∈ (ϕ, θ, ψ), j ∈ (1, 3, 5) and m ∈ (1, 2, 3) do
3: d̂i = zi + wi; żi = µi

(
fi + ciUi + wi + zi

)
; wi = µixj+1(t)

4: Xi = [xj xj+1]
T , Fi = [xj+1 fi]

T , Bj = [0 ci]
T , Di = [0 1]T

5: Am = [0 1; km km+1], Bm = [0 km+2]
T

6: ˙̂KT
i (t) = −ΓiXieT

i P̄j+1; ˙̂Kri (t) = −αikm+2ri(t)eT
i P̄j+1,

˙̂Kvi (t) = −βikm+2ūi(t)eT
i P̄j+2

7: Żi = PiZi, Ėi = RiEi +Xi
8: ˙̂Xϕ = F̂ϕ(t) + BϕUϕ +K(yϕ − x̂1)(t)

9: ūi = −
(
CT

i Bi
)−1
(

CT
i

(
AiXi + Di d̂i(t)− PiZi −RiEi −Xi

)
+L̂isgn(Si) + K̂iSi

)
, ˙̂Ki = βiS2

i , ˙̂Li(t) = αi|Si|

10: vi(t) = K̂i(t)Xi + K̂ri (t)ri(t)− K̂vi (t)ūi(t)
11: Ui(t) =

(
1

BT
i Bi

)
BT

i {AmXi − Fi(t) + Bmvi}

12: if Attitude error→ 0 then
13: Stop
14: else
15: Redesign control gains and reference model
16: Repeat

3.2. Position Control

Unlike the attitude submodel, the position model of the quadrotor system represents
an underactuated system with one input and three outputs. To facilitate the control
design, position virtual control inputs are defined as U(t) = [Ux(t), Uy(t), Uz(t)]T =

−gz + Up
m Rz [2]. Each virtual control input corresponds to the position along the X-axis,

Y-axis, and Z-axis, respectively.
Without loss of generality, the state-space representation of the position dynamics

along the X-axis is expressed as follows:

ẋ7(t) = x8(t)

ẋ8(t) = Ux(t) + dx(t)
(55)
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where dx(t) is the disturbance acting on the position along the X-axis. The disturbance
estimation is given by d̂x(t) = zx(t) + wx(t), where

żx(t) = −µx(Ux(t) + ux(t) + zx(t))

wx(t) = µxx8(t)
(56)

Defining the estimation error as d̃x = dx(t)− d̂x(t). Its error dynamics can be obtained as
˙̃dx = −µx d̃x +

1
2 d̄x, where d̄x ≥ max{1 + ḋ2

x}. Next, (55) can be written as follows:

Ẋx = Fx(t) + BxUx + Dxdx(t) (57)

where

Xx =
[

x7(t) x8(t)
]T

; Fx(t) =
[

x8(t) 0
]T

; Bx =
[
0 1

]T
; Dx =

[
0 1

]T
(58)

For this system, the auxiliary control input for position along X-axis is designed as follows:

Ux(t) =
(

1
BT

x Bx

)
BT

x {A4Xx − Fx(t) + B4vx(t)} (59)

where A4 = [0 0; k10 k11] and B4 = [0 k12]
T , where k10, k11, and k12 are positive constants.

Now, for (59), vx is designed as follows:

vx(t) = K̂x(t)Xx + K̂rx rx(t)− K̂vx (t)ūx(t) (60)

Defining a reference model as follows:

Ẋmx = Amx Xmx + Bmx rx(t) (61)

Error between the real and reference model is given by

ex = Xx − Xmx (62)

Next, define the Lyapunov function as follows:

Vx = eT
x Pxex +

(
K̃x(t)Γ−1

x K̃T
x (t) +

1
αx

K̃2
rx (t) +

1
βx

K̃2
vx (t)

)
(63)

where Px Ax + AT
x Px = −Qx, Px = PT

x , and Qx = QT
x . Furthermore, K̃x = Kx − K̂x(t),

K̃rx = Krx − K̂rx (t), and K̃vx = Kvx − K̂vx (t). Now, taking the derivative of (63) and using
(61), the adaptive laws are designed as follows:

˙̂KT
x (t) = −ΓxXxeT

x P̄8; ˙̂Krx (t) = −αxk12rx(t)eT
x P̄8; ˙̂Kvx (t) = −βϕk12ūx(t)eT

x P̄8 (64)

where P̄8 is the second column of Px that satisfies Px Ax + AT
x P = −Qx, Px = PT

x , and
2eT

x PxBx = 2k12eT
x P̄8 ∈ R. Furthermore, αx, βx, k12 and Γx = ΓT

x ∈ R2×2 are positive design
constants. Now, using (64), V̇x can be obtained as follows:

V̇x ≤ −eT
x Qxex + 2eT

x P̄8

(
k2

12 + 1
)
+ b̄x (65)

where b̄x ≥ 1
2 max{ū2

x(t) + d2
x(t)} is an upper bound on SMC and disturbance. Hence,

uniformly ultimately boundedness can be guaranteed provided that Px and the control
gains are designed appropriately.
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In the next step, prior to the design of ūx(t), a commanded-filter and its error compen-
sation are designed for obtaining the numerical differentiation of desired trajectory, written
as follows:

Żx = PxZx; Ėx = RxEx +Xx (66)

where in matrix form, it is given as follows:[
ż7

ż8

]
=

[
−p7|z7 − xr|1/2 1

−p8 0

][
sign(z7 − xr)

z8

]
; (67)

where xr is the desired position along the X-axis. p1 > 0 and p2 > 0 are constants. In
addition, z7 = xc and z8 = ẋc = ẋr, and[

ξ̇7(t)
ξ̇8(t)

]
=

[
−r7 1
−1 −r8

][
ξ7

ξ8

]
+

[
(xc(t)− xr)

0

]
(68)

where r7 > 0 and r8 > 0 are the design constants. Next, the sliding manifold is chosen
as follows:

Sx = CT
x (Xx −Zx −Ex) (69)

where Cx = [c1; 1]. Next, the sliding mode surface dynamics are obtained as follows:

Ṡx = CT
x (AxXx + Bxūx + Dxdx − PxZx −RxEx −Xx) (70)

Hence, the control input is chosen as follows:

ūx = −
(

CT
x Bx

)−1
(

CT
x

(
AxXx + Dx d̂x(t)− PxZx −RxEx −Xx

)
+ L̂xsgn(Sx) + K̂xSx

) (71)

State estimation of the position submodel using HGO is given by ˙̂Xx = Fx(t) + BxUx +

K(yx − x̂7), where yx = x7 is the position along the X-axis and

X̂x =
[

x̂7 x̂8

]T
; Fx(t) =

[
x8 0

]T
; Bx =

[
0 1

]T
;Kx =

1
ε2

[
εh̄x1 0

0 h̄x2

]
(72)

where ε = (0, 1], h̄ϕ1 > 0 and h̄ϕ2 are estimation gains. This finalises the control design of
Ux. Using a similar procedure, the controller for the position along the Y-axis and Z-axis,
i.e., Uy and Uz, respectively, can be designed.

Using these virtual control inputs, the position control input is formulated as follows:

Up(t) =
m(Uz(t) + g)

cos ϕdes(t) cos θdes(t)
(73)

where the desired attitude angles are obtained as follows:

θdes(t) = tan−1
(

Ux(t) cos ψdes(t) + Uy sin ψdes(t)
Uz(t) + g

)
ϕdes(t) = tan−1

(
cos θdes(t)

(
Ux(t) sin ψdes(t)−Uy(t) cos ψdes(t)

)
Uz(t) + g

) (74)

where ψdes is a known desired yaw angle. Figure 2 shows the block diagram of simultane-
ous operation of the position and attitude control inputs.
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Remark 3. The virtual position control inputs are used to obtain the desired attitude angles.

Remark 4. There is no singularity in (73) because ϕdes(t) and θdes(t) satisfy (−π
2 , π

2 ).

Position Control

Attitude Control

Control Inputs

Motor Dynamics

F450 Quadrotor UAV

Desired yaw Desired trajectory

Desired

 Moments

Desired 

Roll angle,

pitch angle

Desired propeller 

angular speed

Motor command

Figure 2. Architecture of cascaded position and attitude control.

Theorem 2. For the underactuated quadrotor model (5) subject to bounded unknown disturbances,
the tracking error, disturbance estimation error, and state-estimation error converge and stay in the
neighborhood of origin, provided that the attitude controller is designed according to Algorithm 1
and the position controller according to (73).

Proof. The proof follows similar steps to Theorem 1. Hence, it is omitted here.

4. Simulation Study
In this section, a simulation study is conducted to evaluate the performance of the

proposed controller. A real DJI F450 quadrotor UAV is modeled and simulated in MATLAB
using the control strategy developed in this work. The numerical values of the quadrotor’s
physical parameters are provided in Table 1. Furthermore, the performance of the proposed
controller is compared with the controller presented in [38] to validate its effectiveness and
demonstrate its advantages. The closed-loop block diagram of numerical simulations is
shown in Figure 3.
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Figure 3. Block diagram of the closed-loop system—i ∈ (ϕ, θ, ψ), j ∈ (x, y, z).
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4.1. Setup of Desired Trajectories and Nonlinear Disturbances
4.1.1. Desired Trajectories

The desired trajectories can be expressed using r(t) = [xdes(t) ydes(t) zdes(t)]T . For
simulations, two types of trajectories are assumed, i.e., aggressive maneuvers and non-
aggressive maneuvers. For aggressive maneuvers, Lissajious trajectory is assumed with
xdes(t) = 5 sin(at), ydes(t) = 5 sin(bt), and zdes(t) = 5 sin(ct) + 5, where a = 6π/t f ,
b = 4π/t f , and c = 2π/t f with t f = 180. For non-aggressive maneuvers, xdes(t) =

0.1 + 0.05t sin
( t

π

)
, ydes(t) = 0.1 + 0.05t cos

( t
π

)
, and zdes(t) = 0.2 + 0.05t.

4.1.2. Nonlinear Disturbances

The quadrotor UAV is an underactuated system with four inputs and six outputs. In
this research work, it is assumed that each quadrotor output is opposed by a different type of
disturbance, i.e., during flight mode, the quadrotor experiences six different disturbances.
It is assumed that the disturbances in the position model are exogenous disturbance,
constant disturbance, and nonlinear disturbance, with variable frequencies and magnitudes,
mathematically expressed as dx(t) = ΠxΞx; Ξ̇x = 1

κϕ
ΦxΞx, dy(t) = κy ∀ t > ty, and

dz(t) = v + kztz; kz = ( f1 − f0)/T, respectively, where Πx = [0 1], Φx = [0 ωx;−ωx 0]
where ωx = 0.1. Furthermore, [κx, κy, κz]T = [1, 1, 0.1]T and v = 1. Moreover, the initial
and final frequencies of nonlinear disturbance are f0 = 10−1 and f1 = 10−3, respectively.

To model the disturbances appearing in the attitude model, Simulink built-in blocks
were employed. It was assumed that the attitude model faces disturbances in the form
of Gaussian-distributed random disturbance in the roll model with zero mean, and vari-
ance = 1. Furthermore, uniformly distributed random disturbance in the pitch model exists
with a peak-to-peak magnitude of 0.5 and a seed value of 0.5. Moreover, band-limited
white noise in yaw model with noise power of 0.05. Since these disturbance are discrete,
the sampling time is 1 s.

4.2. Trajectory Tracking Simulations

Table 2 presents the control parameters employed in the design of the controller
developed in this research. The feedback gains for the attitude submodel are set as
ki = ki+1 = ki+2 = 50, where i ∈ {1, 4, 7}, corresponding to roll, pitch, and yaw dy-
namics, respectively. For the position control along the x, y, and z axes, the feedback gains
are chosen as k j = k j+1 = k j+2 = 1, where j ∈ {10, 14, 17}. Additionally, the reference
model is uniformly designed across all submodels with a damping ratio ζ = 1

4 and a
natural frequency ω = 4. These parameter selections ensure robust control performance
and consistent trajectory tracking under varying dynamic conditions.

Table 2. Design control parameters for aggressive maneuvers.

Model
MRAC Commanded-Filter SMC HGO

Γ11 Γ22 α β [p1, p2] [r1, r2] γ η c h̄1 h̄2

Attitude
10−3 0.1 0.1 0.01 [1, 1] [5, 1] 1 30 120 1 2
10−3 0.1 0.1 0.01 [1, 1] [5, 1] 1 20 100 1 2
10−3 0.1 0.1 0.01 [1, 1] [5, 1] 1 20 100 1 2

Position
10−4 0.01 0.01 0.02 [1, 1] [5, 1] 20 1 5 1 2
10−3 0.01 0.01 0.08 [1, 1] [5, 1] 15 30 0 1 2
10−4 0.01 0.001 0.02 [1, 1] [5, 1] 5 50 1 1 2
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4.2.1. Aggressive Trajectory Tracking

For the simulation, it was assumed that the DJI F450 quadrotor was initially placed on
the ground and started from the origin for both trajectory scenarios. During the simulations
of aggressive maneuvers, specifically the Lissajous trajectory, the quadrotor accurately
followed the desired path, as illustrated in the 3D trajectory tracking plot shown in Figure 4.

Figure 4. Trajectory tracking—aggressive maneuvers [38].

The phase portraits of the quadrotor’s velocity with respect to its position are presented
in Figure 5. In the phase portraits for x(t) and y(t), the elliptical trajectories indicate periodic
motion, which reflects the oscillatory movement of the quadrotor in the x-y plane. The
vectors in these plots highlight the cyclic nature of the quadrotor’s motion, where the
velocity increases as it moves away from the origin and decreases as it returns. Moreover,
the abrupt transitions observed in the phase portrait of z(t) reflect the quadrotor’s rapid
ascents and descents, effectively following the aggressive nature of the trajectory.

These results validate the performance of the proposed controller, showcasing its
capability to achieve coordinated motion and precise positioning while navigating through
aggressive maneuvers. The trajectory tracking accuracy and stability evident in the plots
further emphasize the effectiveness of the control strategy developed in this research.
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Figure 5. Phase portraits—aggressive maneuvers.

4.2.2. Helical Trajectory Tracking

In the second case of trajectory tracking, the quadrotor demonstrates effective tracking
of the desired helical trajectory, as illustrated in Figure 6. In this scenario, the quadrotor
successfully follows the dynamically varying positions along the x(t) and y(t) axes, while
simultaneously ascending and accurately tracking the desired z(t). The trajectory progres-
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sively increases along all three axes, and despite this, the quadrotor effectively adheres to
the desired path, showcasing the robustness of the control system.

Figure 6. Trajectory tracking—helical [38].

The phase portraits for the helical trajectory tracking are presented in Figure 7. The
symmetrical patterns observed in the phase portraits of x(t) and y(t) indicate consistent
and stable oscillations, gradually expanding outward as the trajectory evolves. In contrast,
the phase portrait for z(t) demonstrates a steady-state response, with unidirectional vectors
signifying smooth vertical ascent. The initial oscillations in the phase portraits reflect the
transient response phase before the quadrotor effectively stabilizes and tracks the desired
helical trajectory.

These results confirm that the quadrotor responds well to the proposed controller
and achieves the desired trajectory tracking objectives, showcasing its capability to handle
varying positional and altitude demands.

-5 0 5
-2

-1

0

1

2

-5 0 5
-2

-1

0

1

2

0 2 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 7. Phase portraits—helical trajectory.

To avoid a repetition of similar simulation results, only the tracking control results for
aggressive maneuvers, specifically the Lissajous trajectory, are presented. Figures 8 and 9
illustrate the point-to-point tracking of the quadrotor’s position and attitude, respectively.
The plots compare the real and estimated quadrotor outputs against the outputs obtained
using the controller designed in [38]. For the attitude tracking, the effects of internal
disturbances are noticeable. However, due to the robust and adaptive nature of the pro-
posed controller, the position output effectively attenuates these disturbances and achieves
accurate tracking of the desired trajectory.
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Figure 8. Quadrotor position tracking—aggressive maneuvers [38].
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Figure 9. Quadrotor attitude tracking—aggressive maneuvers [38].

When tracking the aggressive maneuvers starting from the origin, the proposed con-
troller demonstrates a slight overshoot before settling into effective tracking performance.
This transient behavior is influenced by the design of the reference model, which is depen-
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dent on the damping ratio and natural frequency. Despite this, the controller achieves a
significant reduction in the root mean square error (RMSE) of tracking errors, as shown in
Figure 10.
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Figure 10. RMSE during aggressive maneuvers [38].

4.3. 3D Visualisation of RMSE

Figure 11 presents the slice-plots of the tracking errors, focusing on regions where the
RMSE exceeds the threshold of 1. A symmetric behavior is observed in the tracking errors of
the position controller, which can be attributed to the aggressive maneuvers defined by the
Lissajous trajectory. Initially, as the quadrotor ascends from the origin to the starting point
of the trajectory, significant tracking errors are evident. However, these errors diminish
over time as the system stabilizes, demonstrating the quadrotor’s performance and the
convergence of errors to a steady state.

Similarly, the RMSE of the quadrotor’s attitude is effectively regulated. While transient
deviations are observed during initial phases, these systematically reduce over time, under-
scoring the robustness of the proposed controller in managing and attenuating disturbances.

Figure 11. Error visualization for quadrotor attitude and position during trajectory tracking.

In Figure 12, a 3D visualization of the quadrotor outputs is presented for regions
where the RMSE exceeds the threshold of 2. The gradual flattening of the RMSE for
the quadrotor’s position demonstrates that the position errors converge as the controller
successfully achieves trajectory tracking. In contrast, while the RMSE of the quadrotor’s
attitude appears more scattered, it also converges and remains within a small vicinity of
the threshold over time. The isosurfaces highlight that the errors consistently stay below
the specified threshold throughout the tracking task, thereby validating the proposed
controller’s capability to maintain bounded and reliable tracking performance.

Figure 12. Error distribution in quadrotor attitude and position tracking visualized through isosurfaces.
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4.4. Disturbance Estimation

In this research work, the flight of the quadrotor UAV is assumed to be influenced
by both external and internal disturbances affecting its position and attitude, respectively.
As a 6-degree-of-freedom system, each submodel of the quadrotor is subject to distinct
disturbances. For the position model, exogenous disturbances, constant disturbances, and
nonlinear disturbances with unknown frequency and magnitude are considered. In contrast,
the attitude model experiences Gaussian-distributed random disturbances, uniformly
distributed random disturbances, and band-limited white noise.

To estimate these disturbances, unlike traditional DOs that are typically tailored for
a single type of disturbance, this research introduces a unified DO algorithm capable
of estimating all types of disturbances considered in this study. Figure 13 illustrates
the disturbance estimation for disturbances appearing in the position model. The initial
overshoot observed in the DO for the position model arises from the quadrotor starting at
the origin and needing to ascend to the starting point of the aggressive maneuvers trajectory.
This ascent induces a transient overshoot in the controller, which is reflected in the DO’s
response as shown in the zoomed plots.

Figure 14 demonstrates the accurate disturbance estimation for the quadrotor’s at-
titude, where disturbances are modeled using discrete Simulink blocks with predefined
sampling times. The simulations reveal that the sampling time can be reduced to even
smaller values without compromising the effectiveness of the DO in estimating distur-
bances. The zoomed-in plot reveals a slight delay in disturbance estimation, which can be
minimized by increasing the control gain.
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Figure 13. Disturbance estimation in the position model during aggressive maneuvers.



Drones 2025, 9, 181 24 of 30

0 50 100 150

-2

0

2

4

0 2 4 6 8 10

-2

0

2

4

0 50 100 150

-0.5

0

0.5

1

0 2 4 6 8 10

-0.5

0

0.5

1

0 50 100 150
-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

Figure 14. Disturbance estimation in the attitude model during aggressive maneuvers.

4.5. Control Inputs, Forces, and Torques of Rotors

The control inputs for quadrotor position and attitude are illustrated in Figure 15.
It is observed that the position control inputs exhibit an initial overshoot, which occurs
as the quadrotor ascends from the origin to reach the starting point of the aggressive
maneuvers trajectory. Once the quadrotor aligns with the desired trajectory, the control
inputs stabilize and achieve a steady state. However, due to the disturbances acting on the
position submodel, the control input exhibits fluctuations as it dynamically compensates to
ensure that the quadrotor effectively tracks the desired aggressive maneuver trajectory.

In addition to achieving precise position tracking, the position controller also deter-
mines the desired attitude, which is subsequently tracked using the attitude control inputs.
This hierarchical structure ensures that the position control functions as an outer-loop con-
troller, providing reference signals to the attitude control, which operates as the inner-loop
controller. The forces and torques generated by each of the four rotors to implement the
control actions are shown in Figure 16.

By utilizing the measured torques and angular velocities of each rotor during simula-
tions of aggressive maneuvers, the total power consumed by the quadrotor is presented in
Figure 17. Initially, as the quadrotor ascends rapidly from the origin to reach the desired
trajectory, it requires higher power consumption. Once it stabilizes along the trajectory,
power consumption becomes more uniform. The effects of disturbance attenuation through
position control can also be observed in the power consumption plots, where power con-
sumption dynamically adjusts to ensure successful trajectory tracking while executing
aggressive maneuvers.
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Figure 15. Quadrotor control inputs during aggressive maneuvers.
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Figure 17. Total power consumed by DJI-F450.

4.6. Discussion on Comparison, Real Experiments, and Limitations

The controller presented in this research addresses critical challenges associated with
quadrotor UAV trajectory tracking, including external and internal disturbances, sensor
inaccuracies, and the need for robust and adaptive control techniques. To address compu-
tational delays in the numerical differentiation of state variables, a commanded-filter with
error compensation is utilized. Furthermore, parametric and modeling uncertainties are
managed through the introduction of a reference model in the control design. This devel-
oped controller is compared with the method proposed in [38] to assess its effectiveness.

Both the proposed controller and the comparison method demonstrate excellent
trajectory tracking performance for aggressive and non-aggressive maneuvers. However,
the controller in this work exhibits superior performance, achieving reduced RMSE for
quadrotor position and attitude, as shown in the bar chart in Figure 10. Furthermore,
the comparison method is limited to estimating sinusoidal disturbances, whereas the
proposed controller estimates and rejects six distinct types of disturbances encountered
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during quadrotor flight, all using a single DO algorithm. Additionally, while the DO in
the comparison method requires accurate measurements of state variables and their rates,
posing challenges in the presence of sensor faults, the proposed DO utilizes estimated
states, thus bypassing issues arising from sensor malfunctions.

The adaptive laws in the proposed controller simplify implementation by au-
tonomously tuning the control gains, eliminating the need for empirical tuning. Conversely,
the comparison method relies on manual gain tuning, which must be repeated for every
change in trajectory. The reference model employed in this work further enhances ro-
bustness by accommodating parametric uncertainties and unmodeled dynamics, ensuring
consistent trajectory tracking. In contrast, the comparison method relies on Lyapunov
criteria to cancel nonlinear coupled terms, necessitating higher control effort and the re-
peated differentiation of virtual control inputs and states, which can lead to an ‘explosion of
complexity’ and potential instability.

Despite its superior performance, the proposed controller shows certain areas for
improvement. One challenge is the initial overshoot observed during aggressive maneuvers,
influenced by the selection of the reference model’s damping ratio and natural frequency.
While this overshoot can be reduced through appropriate tuning of these parameters,
determining optimal values remains a complex task. Additionally, as the tracking error
between the reference model and the real system approaches zero, the adaptive laws within
the MRAC framework may yield less precise control gains, which could affect trajectory
tracking accuracy under such conditions.

The proposed control technique also relies on a HGO state-estimator, which is limited
to integral-chain systems. Designing the HGO gain parameter, ε ∈ (0, 1], is another
challenge. Noted in simulations, extremely small values of ε can result in high control
activity, violating motor dynamics in real-world experiments, and may cause a peaking
phenomenon, as highlighted in [68]. A potential future work direction includes improving
the accuracy of adaptive laws under near-zero tracking errors, implementing the controller
in real-world scenarios, refining the design of the time constant ε, optimizing DO gain,
establishing systematic reference model design criteria, and addressing input delays, all of
which could further enhance the proposed control framework.

5. Conclusions
This paper presents a robust and adaptive control framework for achieving both ag-

gressive and non-aggressive trajectory tracking of quadrotors in the presence of unknown
nonlinear external and internal disturbances. By employing a nonlinear disturbance ob-
server, six distinct types of disturbances were attenuated across various flight modes. The
proposed framework integrates a model-reference adaptive control scheme to ensure the
accurate replication of a predefined reference model, while a sliding mode control strat-
egy was used to design the tracking error dynamics, enabling precise trajectory tracking
under the matching conditions of the adaptive control framework. The controller design
incorporates a commanded-filter structure with error compensation to address numerical
differentiation challenges and employs a high-gain observer to estimate the quadrotor’s
states and rates. The stability and convergence of the control laws were rigorously ana-
lyzed using Lyapunov methods, ensuring ultimately uniformly bounded stability. The
effectiveness of the proposed methodology was validated through simulations on a DJI-
F450 quadrotor platform, demonstrating its robustness and applicability to real-world
unmanned aerial vehicle systems for reliable trajectory tracking in the presence of complex
and uncertain disturbances.
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