Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection
<p>The quadrotor model with a damaged propeller.</p> "> Figure 2
<p>Principles of SDP.</p> "> Figure 3
<p>Flowchart of UAV propeller fault detection.</p> "> Figure 4
<p>Simulation signals of different propeller states.</p> "> Figure 5
<p>Acceleration signal in <span class="html-italic">z</span>-axis.</p> "> Figure 6
<p>Results calculated using SDP. (<b>a</b>) Normal snowflake diagram; (<b>b</b>) faulty snowflake diagram.</p> "> Figure 7
<p>Multi-rotor drone test platform.</p> "> Figure 8
<p>The damaged propellers used in the experiments.</p> "> Figure 9
<p>Acceleration signal of UAV.</p> "> Figure 9 Cont.
<p>Acceleration signal of UAV.</p> "> Figure 10
<p>The snowflake diagrams of the experimental signals calculated using the SDP.</p> ">
Abstract
:1. Introduction
- (1)
- A dynamics model of UAV propellers in normal and fault states is constructed, providing a theoretical basis for propeller fault diagnosis.
- (2)
- A UAV propeller fault detection method without additional sensors and with fast response characteristics is proposed, which has important real-time fault detection application value.
- (3)
- The effectiveness of the proposed method is verified through simulation and experiments, and the experimental results are quantitatively evaluated using a similarity index.
2. Modeling Multi-Rotor UAV Propeller Fault
2.1. Multi-Rotor UAV Acceleration Analysis
2.2. Unbalanced Acceleration
3. Algorithms
3.1. SDP Algorithm
3.2. Similarity Indicator
3.3. Propeller Fault Detection Methods
- (1)
- When the multi-rotor drone performs a flight mission in an open environment, the data transmission module is utilized to transmit the flight data back to the ground station in real time. The real-time multi-coupled acceleration data received by the ground station is processed and optimized to effectively separate acceleration signals in all directions or those extracted from the multi-rotor drone simulation platform to provide accurate data support for subsequent dynamic analysis and fault diagnosis.
- (2)
- The desired acceleration values are extracted based on the decoupled data. This experiment mainly focuses on the acceleration values recorded inside the IMU signal, so the acceleration values are mainly analyzed in this step.
- (3)
- Visually distinguishable SDP patterns are formed. The one-dimensional time-domain signal is transformed into a snowflake image. In the SDP method, because the hysteresis coefficient and the angular magnification factor affect the image’s presentation, the parameters l = 2 and δ = 35 are chosen based on the principle of maximizing the image difference [20].
- (4)
- Finally, based on the shape and convergence of the snowflake map generated by the SDP algorithm, it is determined whether the UAV propeller blade is damaged or not.
4. Simulation Analysis
4.1. Dynamics Simulation Model
4.2. Analysis of Simulation Results
5. Experimental Analysis
5.1. Description of Experiment
5.2. Experimental Results
5.3. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucic, M.C.; Bouhamed, O.; Ghazzai, H.; Khanfor, A.; Massoud, Y. Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview. Drones 2023, 7, 79. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, S.; Huang, Y.; Zheng, X.; Cheng, J.; Wu, S. Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions. ISA Trans. 2022, 126, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Wild, G.; Murray, J.; Baxter, G. Exploring civil drone accidents and incidents to help prevent potential air disasters. Aerospace 2016, 3, 22. [Google Scholar] [CrossRef]
- Suti, A.; Di Rito, G.; Galatolo, R. Fault-Tolerant Control of a Three-Phase Permanent Magnet Synchronous Motor for Lightweight UAV Propellers via Central Point Drive. Actuators 2021, 10, 253. [Google Scholar] [CrossRef]
- Freddi, A.; Longhi, S.; Monteriu, A. A model-based fault diagnosis system for a mini-quadrotor. In Proceedings of the 7th Workshop on Advanced Control and Diagnosis, Zielona Góra, Poland, 19–20 November 2009; pp. 19–20. [Google Scholar]
- Bazin, J.; Fields, T.; Smith, A.J. Feasibility of in-flight quadrotor individual motor thrust measurements. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 4–8 January 2016; p. 1760. [Google Scholar]
- Freddi, A.; Longhi, S.; Monteriu, A. A diagnostic thau observer for a class of unmanned vehicles. J. Intelligengt Robot. Syst. 2021, 61, 61–73. [Google Scholar] [CrossRef]
- Ortiz-Torres, G.; Castillo, P.; Sorcia-Vázquez, F.D.; Rumbo-Morales, J.Y.; Brizuela-Mendoza, J.A.; De La Cruz-Soto, J.; Martínez-García, M. Fault estimation and fault tolerant control strategies applied to VTOL aerial vehicles with soft and aggressive actuator faults. IEEE Access 2020, 8, 10649–10661. [Google Scholar] [CrossRef]
- Baldini, A.; Felicetti, R.; Ferracuti, F.; Freddi, A.; Iarlori, S.; Monteriù, A. Real-time propeller fault detection for multirotor drones based on vibration data analysis. Eng. Appl. Artif. Intell. 2023, 123, 106343. [Google Scholar] [CrossRef]
- Ghalamchi, B.; Jia, Z.; Mueller, M.W. Real-time vibration-based propeller fault diagnosis for multicopters. IEEE/ASME Trans. Mechatron. 2019, 25, 395–405. [Google Scholar] [CrossRef]
- Park, J.; Jung, Y.; Kim, J.H. Multiclass classification fault diagnosis of multirotor UAVs utilizing a deep neural network. International Journal of Control. Autom. Syst. 2020, 20, 1316–1326. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mech. Syst. Signal Process. 2020, 144, 106908. [Google Scholar] [CrossRef]
- Wang, B.; Shen, Y.; Zhang, Y. Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerosp. Sci. Technol. 2020, 99, 105745. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. A survey on deep learning based bearing fault diagnosis. Neurocomputing 2019, 335, 327–335. [Google Scholar] [CrossRef]
- Chakrapani, G.; Sugumaran, V. Transfer learning based fault diagnosis of automobile dry clutch system. Eng. Appl. Artif. Intell. 2023, 117, 105522. [Google Scholar] [CrossRef]
- Fourlas, G.K.; Karras, G.C. A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles. Machines 2021, 9, 197. [Google Scholar] [CrossRef]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- González, J.; Oro, J.M.F.; Delgado, L.; Mendez, D.; Argüelles, K.M.; Velarde-Suarez, S.; Rodriguez, D. Symmetrized dot pattern analysis for the unsteady vibration state in a Sirocco fan unit. Appl. Acoust. 2019, 152, 1–12. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Qin, G.; Long, Z.; Huang, S.; Song, D.; Shao, H. Graph cardinality preserved attention network for fault diagnosis of induction motor under varying speed and load condition. IEEE Trans. Ind. Inform. 2021, 18, 3702–3712. [Google Scholar] [CrossRef]
- Long, Z.; Xiaofei, Z.; Min, H.; Shoudao, H.; Guojun, Q.; Song, D. Motor Fault Diagnosis Based on Scale Invariant Image Features. IEEE Trans. Ind. Inform. 2021, 18, 1605–1617. [Google Scholar] [CrossRef]
- Phadke, A.; Medrano, F.A.; Sekharan, C.N.; Chu, T. Designing UAV Swarm Experiments: A Simulator Selection and Experiment Design Process. Sensors 2023, 23, 7359. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.A.; Yoneyama, T. A Bayesian solution to the multiple composite hypothesis testing for fault diagnosis in dynamic systems. Automatica 2011, 47, 158–163. [Google Scholar] [CrossRef]
Parameter Name | Parameter Size | Parameter Name | Parameter Size |
---|---|---|---|
mi/kg | 1.5 | α1 | 0.02 |
/N | 15 | α2 | 0.08 |
g | 9.81 | β | 0.0039 |
Kf/N/(rad·s−1)2 | 10−6 | / | / |
Parameter Name | Parameter Size |
---|---|
Flight Controller | PixHawk2.4.8 |
Rackmount | F450 |
Batteries | 5200 mah |
Rotary | 1038 Paddle |
Electrical Machinery | Langyu A2212 Brushless Motor |
ESC | Lotte 20 A |
GPS | M8n |
Remote Controls | Lodi PRO |
Firmware | Ardupilot (4.1.0) |
Direction | x | y | z |
---|---|---|---|
Degree of Similarity | 84.37% | 83.17% | 76.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Xia, H.; Yang, X.; Li, P.; Yi, Y. Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection. Drones 2025, 9, 176. https://doi.org/10.3390/drones9030176
Zou Y, Xia H, Yang X, Li P, Yi Y. Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection. Drones. 2025; 9(3):176. https://doi.org/10.3390/drones9030176
Chicago/Turabian StyleZou, Yongtian, Haiting Xia, Xinmin Yang, Peigen Li, and Yu Yi. 2025. "Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection" Drones 9, no. 3: 176. https://doi.org/10.3390/drones9030176
APA StyleZou, Y., Xia, H., Yang, X., Li, P., & Yi, Y. (2025). Dynamics Model of a Multi-Rotor UAV Propeller and Its Fault Detection. Drones, 9(3), 176. https://doi.org/10.3390/drones9030176