Coverage Path Planning for UAVs: An Energy-Efficient Method in Convex and Non-Convex Mixed Regions
<p>UAV sensor model.</p> "> Figure 2
<p>Flowchart of SSDP.</p> "> Figure 3
<p>An example of incomplete coverage in CASE 3.2: (<b>a</b>) Offset vertices (<b>b</b>) Uncovered area.</p> "> Figure 4
<p>Cases that may occur in the offset process. (<b>a</b>) Case 1. (<b>b</b>) Case 2. (<b>c</b>) Globally invalid loop generated by case 2. (<b>d</b>) Case 3.1. (<b>e</b>) Case 3.2. (<b>f</b>) Case 3.3.</p> "> Figure 5
<p>Visual results showing the UAV swarm’s total energy consumption (kJ) for each model with different proportions of non-convex regions.</p> "> Figure 6
<p>Paths generated by each model when the target regions are all of non-convex type.</p> "> Figure 7
<p>Visual results showing the UAV swarm’s total energy consumption (kJ) for each model as the number of regions increases.</p> "> Figure 8
<p>Visual results showing the UAV swarm’s total energy consumption (kJ) for each model as the number of UAVs increases.</p> "> Figure 9
<p>Visual results showing the UAV swarm’s total energy consumption (kJ) for each model with different proportions of non-convex regions.</p> "> Figure 10
<p>The new paths generated by B&F-Avg, B&F-DP, BINPAT, and GASC when the target regions are all of non-convex type.</p> ">
Abstract
:1. Introduction
- A shrink method is proposed which is suitable for both convex and non-convex regions. This method reduces operational complexity is directly applicable to non-convex regions, thereby avoiding the need for pre-decomposition.
- A DP-based approach is proposed to optimally segment the overall path among UAVs, allowing some UAVs to remain on standby rather than adhering to the principle of equal or maximum load distribution.
- The proposed SSDP ensures that UAVs meet their respective energy constraints while minimizing overall energy consumption.
2. Problem Definition and Method Overview
2.1. Problem Formulation
2.2. Problem Constraints
2.3. Method Overview
3. Optimal Coverage Path Generation
3.1. Shrinking Ring Generation
Algorithm 1 Generate the Shrinking Ring List for the Region |
Input: Region , the longitudinal scanning length , the overlap length in the longitudinal direction Output: The shrinking ring list = , where denotes the number of shrinking rings, varying by region.
|
3.2. Waypoint Generation
3.3. Connecting Waypoints
Algorithm 2 Generate the Optimal Coverage Path |
Input: Region set , the longitudinal and lateral scanning length , the overlap length in the longitudinal and lateral direction , warehouse , the weights for distance and turning in energy consumption and Output: A optimal coverage path
|
4. Path Segmentation
4.1. State Transition Matrix Design
4.2. Initialization and State Transition
4.3. Tracing the Optimal Solution
Algorithm 3 Path Segmentation |
Input: the optimal coverage path , warehouse , the weights for distance and turning in energy consumption and , energy constraint E Output: the flight paths for UAVs
|
5. Experiments and Discussion
5.1. Parameter Setting
- Increasing the proportion of non-convex regions in the total regions; the experimental details are provided in Section 5.2.
- Increasing the total area while maintaining the ratio of convex to non-convex regions; the experimental details are provided in Section 5.3.
- Increasing the number of UAVs; the experimental details are provided in Section 5.4.
- Adjusting the decomposition strategy; the experimental details are provided in Section 5.5.
- Benchmark model: B&F-Avg. In this model, the SOM method is used to determine the visitation order of regions, after which the B&F pattern coverage paths are generated for each region according to the visitation order. These paths are then connected end-to-end to form a optimal coverage path. Finally, the optimal coverage path is segment equally among the UAVs based on length.
- Ablation model: B&F-DP. The only difference between this method and B&F-Avg is the use of the DP-based method to segment the optimal coverage path among the UAVs.
5.2. Increasing the Proportion of Non-Convex Regions
5.3. Increasing the Total Area
5.4. Increasing the Number of UAVs
5.5. Adjusting the Decomposition Strategy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Cheng, X.; Mu, J. Concentrated coverage path planning algorithm of UAV formation for aerial photography. IEEE Sensors J. 2022, 22, 11098–11111. [Google Scholar] [CrossRef]
- Harikumar, K.; Senthilnath, J.; Sundaram, S. Multi-UAV oxyrrhis marina-inspired search and dynamic formation control for forest firefighting. IEEE Trans. Autom. Sci. Eng. 2018, 16, 863–873. [Google Scholar] [CrossRef]
- Koutras, D.I.; Kapoutsis, A.C.; Kosmatopoulos, E.B. Autonomous and cooperative design of the monitor positions for a team of uavs to maximize the quantity and quality of detected objects. IEEE Robot. Autom. Lett. 2020, 5, 4986–4993. [Google Scholar] [CrossRef]
- Adam, M.S.; Nordin, R.; Abdullah, N.F.; Abu-Samah, A.; Amodu, O.A.; Alsharif, M.H. Optimizing Disaster Response through Efficient Path Planning of Mobile Aerial Base Station with Genetic Algorithm. Drones 2024, 8, 272. [Google Scholar] [CrossRef]
- Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of autonomous path planning algorithms for mobile robots. Drones 2023, 7, 211. [Google Scholar] [CrossRef]
- Jin, Z.; Nie, L.; Li, D.; Tu, Z.; Xiang, J. An autonomous control framework of unmanned helicopter operations for low-altitude flight in mountainous terrains. Drones 2022, 6, 150. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Y.; She, J. UAV path planning for target coverage task in dynamic environment. IEEE Internet Things J. 2023, 10, 17734–17745. [Google Scholar] [CrossRef]
- Mu, X.; Gao, W.; Li, X.; Li, G. Coverage Path Planning for UAV Based on Improved Back-and-Forth Mode. IEEE Access 2023, 11, 114840–114854. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage path planning: The boustrophedon cellular decomposition. In Field and Service Robotics; Springer: London, UK, 1998; pp. 203–209. [Google Scholar]
- Palacios-Gasós, J.M.; Talebpour, Z.; Montijano, E.; Sagüés, C.; Martinoli, A. Optimal path planning and coverage control for multi-robot persistent coverage in environments with obstacles. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1321–1327. [Google Scholar]
- Nielsen, L.D.; Sung, I.; Nielsen, P. Convex decomposition for a coverage path planning for autonomous vehicles: Interior extension of edges. Sensors 2019, 19, 4165. [Google Scholar] [CrossRef]
- Keil, J.M. Polygon Decomposition. In Handbook of Computational Geometry; Elsevier: Amsterdam, The Netherlands, 2000; Volume 2, pp. 491–518. [Google Scholar]
- Cabreira, T.M.; Di Franco, C.; Ferreira, P.R.; Buttazzo, G.C. Energy-aware spiral coverage path planning for uav photogrammetric applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668. [Google Scholar] [CrossRef]
- Modares, J.; Ghanei, F.; Mastronarde, N.; Dantu, K. UB-ANC planner: Energy efficient coverage path planning with multiple drones. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6182–6189. [Google Scholar]
- Luna, M.A.; Ale Isaac, M.S.; Ragab, A.R.; Campoy, P.; Flores Peña, P.; Molina, M. Fast multi-UAV path planning for optimal area coverage in aerial sensing applications. Sensors 2022, 22, 2297. [Google Scholar] [CrossRef]
- Ramezani, M.; Amiri Atashgah, M.; Rezaee, A. A Fault-Tolerant Multi-Agent Reinforcement Learning Framework for Unmanned Aerial Vehicles–Unmanned Ground Vehicle Coverage Path Planning. Drones 2024, 8, 537. [Google Scholar] [CrossRef]
- Vasquez-Gomez, J.I.; Herrera-Lozada, J.C.; Olguin-Carbajal, M. Coverage path planning for surveying disjoint areas. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 899–904. [Google Scholar]
- Xiao, P.; Li, N.; Xie, F.; Ni, H.; Zhang, M.; Wang, B. Clustering-Based Multi-Region Coverage-Path Planning of Heterogeneous UAVs. Drones 2023, 7, 664. [Google Scholar] [CrossRef]
- Du, L.; Fan, Y.; Gui, M.; Zhao, D. A Multi-Regional Path-Planning Method for Rescue UAVs with Priority Constraints. Drones 2023, 7, 692. [Google Scholar] [CrossRef]
- Xie, J.; Chen, J. Multiregional coverage path planning for multiple energy constrained UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17366–17381. [Google Scholar] [CrossRef]
- Ahmed, G.; Sheltami, T.; Mahmoud, A. Energy-Efficient Multi-UAV Multi-Region Coverage Path Planning Approach. Arab. J. Sci. Eng. 2024, 49, 13185–13202. [Google Scholar] [CrossRef]
- Jiang, Y.; Bai, T.; Wang, D.; Wang, Y. Coverage Path Planning of UAV Based on Linear Programming—Fuzzy C-Means with Pigeon-Inspired Optimization. Drones 2024, 8, 50. [Google Scholar] [CrossRef]
- Luna, M.A.; Molina, M.; Da-Silva-Gomez, R.; Melero-Deza, J.; Arias-Perez, P.; Campoy, P. A multi-UAV system for coverage path planning applications with in-flight re-planning capabilities. J. Field Robot. 2023, 41, 1480–1497. [Google Scholar] [CrossRef]
- Jonker, R.; Volgenant, T. A shortest augmenting path algorithm for dense and sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR Zusammen mit der NSOR; Springer: Berlin/Heidelberg, Germany, 1988; p. 622. [Google Scholar]
- Fu, Z.; Yu, J.; Xie, G.; Chen, Y.; Mao, Y. A heuristic evolutionary algorithm of UAV path planning. Wirel. Commun. Mob. Comput. 2018, 2018, 2851964. [Google Scholar] [CrossRef]
- Lee, C.S.; Phan, T.T.; Kim, D.S. 2D curve offset algorithm for pockets with islands using a vertex offset. Int. J. Precis. Eng. Manuf. 2009, 10, 127–135. [Google Scholar] [CrossRef]
- Luna, M.A.; Isaac, M.S.A.; Fernandez-Cortizas, M.; Santos, C.; Ragab, A.R.; Molina, M.; Campoy, P. Spiral coverage path planning for multi-uav photovoltaic panel inspection applications. In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland, 6–9 June 2023; pp. 679–686. [Google Scholar]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Gao, M.; Wei, P.; Liu, Y. Competitive self-organizing neural network based UAV path planning. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 2376–2381. [Google Scholar]
- Zhang, J.; Huang, H. Occlusion-aware UAV path planning for reconnaissance and surveillance. Drones 2021, 5, 98. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Map coordinate (m, m) | ((0, 0), (0, 400), (400, 400), (400, 0)) |
Warehouse coordinate (m, m) | (200, 200) |
Region shape | |
Number of regions | Refer to specific experiments |
Locations of regions | Randomly distributed in the map |
Angles of regions | index |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 9453.91 | 8852.40 | 8877.79 | 9875.32 | 8662.26 |
10 | 9635.92 | 9113.07 | 8915.15 | 9768.66 | 8765.68 |
20 | 9926.45 | 9329.50 | 8977.68 | 9976.71 | 8882.51 |
30 | 10,139.30 | 9695.32 | 9010.03 | 10,097.40 | 9005.72 |
40 | 10,458.70 | 9799.72 | 9035.02 | 10,322.20 | 9253.09 |
50 | 10,728.44 | 10,104.42 | 9059.61 | 10,432.50 | 9388.63 |
60 | 10,807.22 | 10,427.86 | 9076.22 | 10,445.20 | 9572.77 |
70 | 11,145.19 | 10,583.82 | 9102.90 | 9979.21 | 9751.16 |
80 | 11,362.74 | 10,850.81 | 9149.90 | 10,100.30 | 9802.40 |
90 | 11,569.86 | 11,096.35 | 9172.03 | 10,261.30 | 9912.20 |
100 | 11,921.05 | 11,343.37 | 9208.48 | 10,339.50 | 10,150.06 |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 27,511.61 | 27,202.47 | 41,881.81 | 31,130.10 | 26,961.34 |
10 | 28,603.41 | 28,242.96 | 42,004.70 | 32,988.10 | 29,468.20 |
20 | 29,497.60 | 29,150.81 | 41,615.97 | 35,089.50 | 32,155.66 |
30 | 30,130.43 | 30,313.16 | 41,798.76 | 35,965.50 | 34,801.66 |
40 | 31,200.70 | 31,031.21 | 41,616.96 | 38,758.70 | 37,027.66 |
50 | 32,888.65 | 32,068.54 | 41,535.77 | 42,083.30 | 39,871.62 |
60 | 33,684.15 | 33,343.08 | 41,398.59 | 42,127.00 | 42,634.80 |
70 | 34,446.90 | 34,050.46 | 41,173.71 | 42,015.30 | 45,167.94 |
80 | 35,363.35 | 35,101.21 | 40,996.62 | 44,351.90 | 48,558.80 |
90 | 36,326.30 | 36,109.54 | 41,051.14 | 45,502.80 | 50,310.08 |
100 | 37,637.10 | 36,977.18 | 40,844.73 | 47,887.80 | 53,941.52 |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 1299.58 | 1231.88 | 1387.26 | 1382.38 | 1208.99 |
10 | 1330.44 | 1270.64 | 1392.55 | 1390.27 | 1246.15 |
20 | 1370.89 | 1303.29 | 1395.21 | 1434.43 | 1286.62 |
30 | 1400.28 | 1354.59 | 1400.58 | 1456.48 | 1327.35 |
40 | 1445.65 | 1373.25 | 1401.37 | 1509.63 | 1377.01 |
50 | 1492.13 | 1416.70 | 1403.16 | 1556.03 | 1421.12 |
60 | 1508.84 | 1464.63 | 1403.51 | 1557.84 | 1469.60 |
70 | 1553.01 | 1488.71 | 1404.03 | 1506.73 | 1515.07 |
80 | 1585.86 | 1528.25 | 1407.23 | 1544.01 | 1555.82 |
90 | 1618.08 | 1565.06 | 1410.17 | 1573.24 | 1585.81 |
100 | 1669.36 | 1600.57 | 1411.93 | 1606.42 | 1649.07 |
Region Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
4 | 3148.27 | 2556.98 | 2347.72 | 2968.14 | 2515.72 |
8 | 5207.67 | 4530.11 | 4132.77 | 4918.77 | 4307.10 |
12 | 7276.99 | 6542.73 | 6005.10 | 6969.96 | 6208.62 |
16 | 8881.28 | 8345.74 | 7511.54 | 7977.63 | 7754.37 |
20 | 10,619.30 | 10,131.65 | 9037.13 | 9788.74 | 9562.48 |
24 | 12,397.00 | 11,905.30 | 10,583.57 | 11,641.30 | 11,091.75 |
28 | 14,413.50 | 13,825.00 | 12,268.36 | 13,245.60 | 12,971.58 |
Region Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
4 | 6556.39 | 6330.11 | 8350.53 | 7952.71 | 8273.67 |
8 | 12,932.64 | 12,420.60 | 16,233.07 | 15,184.80 | 16,940.40 |
12 | 19,662.40 | 19,182.14 | 24,236.37 | 24,824.80 | 24,649.30 |
16 | 26,106.15 | 25,728.09 | 32,823.99 | 30,887.40 | 34,105.06 |
20 | 32,725.56 | 32,303.09 | 41,502.89 | 38,714.90 | 40,179.80 |
24 | 39,467.30 | 38,654.70 | 49,728.27 | 46,694.80 | 49,080.14 |
28 | 45,639.40 | 44,847.40 | 58,060.76 | 57,175.40 | 57,104.98 |
Region Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
4 | 405.68 | 339.94 | 338.52 | 400.89 | 355.73 |
8 | 692.76 | 614.80 | 611.86 | 685.21 | 637.90 |
12 | 984.58 | 900.87 | 895.81 | 1005.36 | 921.92 |
16 | 1223.58 | 1162.24 | 1146.61 | 1176.43 | 1185.96 |
20 | 1478.73 | 1422.07 | 1400.41 | 1451.99 | 1442.97 |
24 | 1739.42 | 1678.26 | 1651.73 | 1733.57 | 1699.47 |
28 | 2019.78 | 1948.45 | 1919.00 | 2014.55 | 1984.45 |
UAV Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
2 | 10,258.51 | 10,169.73 | 9042.86 | 9628.14 | 9355.40 |
3 | 10,619.30 | 10,131.65 | 9037.13 | 9788.74 | 9562.48 |
4 | 10,834.91 | 10,120.82 | 9044.29 | 10,227.90 | 9592.84 |
5 | 11,210.03 | 10,139.32 | 9042.22 | 10,443.00 | 9748.43 |
6 | 11,475.07 | 10,141.74 | 9077.67 | 10,756.10 | 9893.69 |
7 | 11,696.74 | 10,155.17 | 9081.18 | 11,009.70 | 10,080.61 |
8 | 12,069.84 | 10,145.89 | 9062.40 | 11,313.80 | 10,208.25 |
UAV Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
2 | 32,407.56 | 32,327.15 | 41,492.66 | 38,526.20 | 40,750.50 |
3 | 32,725.56 | 32,303.09 | 41,502.89 | 38,714.90 | 40,179.80 |
4 | 32,782.24 | 32,300.21 | 41,707.80 | 38,884.50 | 40,745.82 |
5 | 32,787.89 | 32,150.89 | 41,533.94 | 38,842.30 | 39,823.04 |
6 | 33,031.91 | 32,393.80 | 41,473.40 | 39,152.30 | 39,681.48 |
7 | 33,111.04 | 32,345.40 | 41,172.50 | 39,220.20 | 40,352.08 |
8 | 33,220.21 | 32,370.22 | 41,293.46 | 39,601.50 | 40,382.98 |
UAV Number | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
2 | 1436.75 | 1426.40 | 1400.92 | 1432.81 | 1426.70 |
3 | 1478.73 | 1422.07 | 1400.41 | 1451.99 | 1442.97 |
4 | 1502.44 | 1420.87 | 1403.31 | 1500.83 | 1452.11 |
5 | 1542.71 | 1421.30 | 1401.28 | 1523.45 | 1459.19 |
6 | 1573.66 | 1424.09 | 1404.45 | 1560.24 | 1473.29 |
7 | 1598.25 | 1425.03 | 1401.70 | 1588.13 | 1500.30 |
8 | 1639.38 | 1424.29 | 1400.94 | 1624.69 | 1514.31 |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 9453.91 | 8852.40 | 8877.79 | 9875.32 | 8662.26 |
10 | 9554.93 | 9049.76 | 8915.15 | 9468.79 | 8717.08 |
20 | 9671.34 | 9162.90 | 8977.68 | 9590.18 | 8928.98 |
30 | 9805.27 | 9378.74 | 9010.03 | 9598.00 | 9053.81 |
40 | 9936.69 | 9427.77 | 9035.02 | 9758.37 | 9195.45 |
50 | 10,090.56 | 9527.23 | 9059.61 | 9778.28 | 9272.76 |
60 | 10,404.48 | 9900.69 | 9076.22 | 9818.35 | 9407.13 |
70 | 10,529.18 | 10,054.75 | 9102.90 | 10,403.00 | 9623.58 |
80 | 10,579.82 | 10,205.74 | 9149.90 | 10,422.30 | 9814.67 |
90 | 10,765.14 | 10,338.96 | 9172.03 | 10,524.20 | 9900.18 |
100 | 11,172.68 | 10,496.22 | 9208.48 | 10,489.50 | 10,044.86 |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 27,511.61 | 27,202.47 | 41,881.81 | 31,130.10 | 26,961.34 |
10 | 29,172.86 | 28,936.58 | 42,004.70 | 35,152.10 | 32,317.70 |
20 | 30,622.54 | 30,286.64 | 41,615.97 | 35,876.80 | 32,806.12 |
30 | 32,049.60 | 31,849.18 | 41,798.76 | 36,991.20 | 33,753.66 |
40 | 33,593.80 | 33,143.72 | 41,616.96 | 37,143.30 | 37,605.42 |
50 | 35,003.90 | 34,537.62 | 41,535.77 | 37,982.90 | 39,524.84 |
60 | 36,988.22 | 36,433.38 | 41,398.59 | 37,930.00 | 41,917.56 |
70 | 38,528.92 | 38,209.40 | 41,173.71 | 45,940.20 | 42,943.28 |
80 | 39,601.14 | 39,233.78 | 40,996.62 | 44,206.30 | 43,451.20 |
90 | 40,947.40 | 40,610.08 | 41,051.14 | 46,280.20 | 45,800.46 |
100 | 42,841.46 | 41,667.24 | 40,844.73 | 47,706.80 | 47,061.18 |
Proportion | B&F-Avg | B&F-DP | SSDP | BINPAT | GASC |
---|---|---|---|---|---|
0 | 1299.58 | 1231.88 | 1387.27 | 1382.39 | 1208.99 |
10 | 1327.69 | 1271.07 | 1392.55 | 1380.64 | 1270.57 |
20 | 1355.24 | 1297.24 | 1395.21 | 1401.19 | 1298.37 |
30 | 1384.44 | 1336.63 | 1400.58 | 1413.61 | 1321.61 |
40 | 1414.59 | 1355.35 | 1401.37 | 1432.39 | 1376.85 |
50 | 1445.75 | 1380.51 | 1403.16 | 1443.25 | 1405.10 |
60 | 1500.04 | 1440.26 | 1403.52 | 1447.00 | 1444.39 |
70 | 1529.43 | 1475.25 | 1404.04 | 1592.98 | 1478.26 |
80 | 1546.01 | 1502.09 | 1407.23 | 1577.02 | 1504.02 |
90 | 1579.88 | 1530.68 | 1410.17 | 1609.51 | 1537.62 |
100 | 1643.26 | 1558.53 | 1411.93 | 1620.63 | 1566.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhuang, X.; Zhang, W.; Cheng, J.; Zhang, T. Coverage Path Planning for UAVs: An Energy-Efficient Method in Convex and Non-Convex Mixed Regions. Drones 2024, 8, 776. https://doi.org/10.3390/drones8120776
Wang L, Zhuang X, Zhang W, Cheng J, Zhang T. Coverage Path Planning for UAVs: An Energy-Efficient Method in Convex and Non-Convex Mixed Regions. Drones. 2024; 8(12):776. https://doi.org/10.3390/drones8120776
Chicago/Turabian StyleWang, Li, Xiaodong Zhuang, Wentao Zhang, Jing Cheng, and Tao Zhang. 2024. "Coverage Path Planning for UAVs: An Energy-Efficient Method in Convex and Non-Convex Mixed Regions" Drones 8, no. 12: 776. https://doi.org/10.3390/drones8120776
APA StyleWang, L., Zhuang, X., Zhang, W., Cheng, J., & Zhang, T. (2024). Coverage Path Planning for UAVs: An Energy-Efficient Method in Convex and Non-Convex Mixed Regions. Drones, 8(12), 776. https://doi.org/10.3390/drones8120776