Flight Altitude and Sensor Angle Affect Unmanned Aerial System Cotton Plant Height Assessments
<p>Study site on a research farm in Lubbock County, Texas, in 2022 and 2023.</p> "> Figure 2
<p>DJI Phantom 4 RTKs and GNSS mobile station for acquiring RGB images in a research field in Lubbock, Texas, 2022. (<b>a</b>) DJI Phantom 4 RTKs UAS platform (<b>Left</b>), (<b>b</b>) Phantom 4 UAS controller (<b>middle</b>), and (<b>c</b>) D-RTKs 2 High-Precision GNSS Mobile Station (<b>right</b>) (source: <a href="https://www.dji.com" target="_blank">https://www.dji.com</a>, accessed on 5 January 2024.).</p> "> Figure 3
<p>Image acquisitions at two flight altitudes (40 m and 80 m) and three camera angles (45°, 60°, and 90°) using a UAS in a cotton field in Lubbock, Texas.</p> "> Figure 4
<p>Workflow for processing unmanned aerial system (UAS) images to estimate plant height.</p> "> Figure 5
<p>Boxplot of plant height measurements in a research field in Lubbock, Texas, on 4 July and 2 August 2023 and 28 August and 24 October 2022.</p> "> Figure 6
<p>Errors in UAS-derived cotton plant height at two UAS flight altitudes and three camera angles on (<b>a</b>) 4 July 2023, (<b>b</b>) 2 August 2023, (<b>c</b>) 28 August 2022, and (<b>d</b>) 24 October 2022.</p> "> Figure 7
<p>Interactions between flight altitude and camera angle for errors in plant heights derived from UAS image on (<b>a</b>) 4 July 2023, (<b>b</b>) 2 August 2023, (<b>c</b>) 28 August 2022, and (<b>d</b>) 24 October 2022.</p> "> Figure 8
<p>Tukey’s post hoc test for different camera angles (45°, 60°, 90°) at different flight altitudes for errors in plant heights derived from UAS images on (<b>a</b>) 4 July 2023, (<b>b</b>) 2 August 2023, (<b>c</b>) 28 August 2022, and (<b>d</b>) 24 October 2022. Significance levels: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001, and n.s. represents non-significant results.</p> "> Figure 9
<p>Relationship between measured plant height and UAS-derived plant height from different UAS altitudes and angles in a research field in Lubbock, Texas. (<b>a</b>) 4 July 2023, (<b>b</b>) 2 August 2023, (<b>c</b>) 28 August 2022, and (<b>d</b>) 24 October 2022.</p> "> Figure 10
<p>Relationship between measured and UAS-derived plant heights using 30% test data for a flight altitude of 40 m and a camera angle of 45° for 4 July and 2 August 2023 and 28 August and 24 October 2022.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Data Acquisition
2.3. UAS Image Processing
2.4. Plant Height Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, W.; Li, J.; Bhatta, M.; Shi, Y.; Baenziger, P.S.; Ge, Y. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors 2018, 18, 3731. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Chen, R.; Landivar, J.A.; Maeda, M.M.; Yang, C.; Starek, M.J. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery. J. Appl. Remote Sens. 2016, 10, 036018. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Paterson, A.H. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 2019, 14, e0205083. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.L.; Thorp, K.R.; Conley, M.M.; Elshikha, D.M.; French, A.N.; Andrade-Sanchez, P.; Pauli, D. Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton. Remote Sens. 2019, 11, 700. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Li, S.; Ding, X.; Kuang, Q.; Ata-UI-Karim, S.T.; Cheng, T.; Liu, X.; Cao, Q. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Front. Plant Sci. 2018, 9, 1834. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Okayama, T.; Komatsuzaki, M. Rice Height Monitoring between Different Estimation Models Using UAV Photogrammetry and Multispectral Technology. Remote Sens. 2021, 14, 78. [Google Scholar] [CrossRef]
- Belton, D.; Helmholz, P.; Long, J.; Zerihun, A. Crop height monitoring using a consumer-grade camera and UAV technology. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2019, 87, 249–262. [Google Scholar] [CrossRef]
- Calou, V.B.; Teixeira, A.D.S.; Moreira, L.C.; Rocha, O.C.D.; Silva, J.A.D. Estimation of maize biomass using unmanned aerial vehicles. Eng. Agrícola 2019, 39, 744–752. [Google Scholar] [CrossRef]
- Zhou, L.; Gu, X.; Cheng, S.; Yang, G.; Shu, M.; Sun, Q. Analysis of plant height changes of lodged maize using UAV-LiDAR data. Agriculture 2020, 10, 146. [Google Scholar] [CrossRef]
- Che, Y.; Wang, Q.; Xie, Z.; Zhou, L.; Li, S.; Hui, F.; Ma, Y. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography. Ann. Bot. 2020, 126, 765–773. [Google Scholar] [CrossRef]
- Sui, R.; Thomasson, J.A.; Ge, Y. Development of sensor systems for precision agriculture in cotton. Int. J. Agric. Biol. Eng. 2012, 5, 1–14. [Google Scholar]
- Sharma, B.; Ritchie, G.L. High-throughput phenotyping of cotton in multiple irrigation environments. Crop Sci. 2015, 55, 958–969. [Google Scholar] [CrossRef]
- Feng, A.; Sudduth, K.; Vories, E.; Zhang, M.; Zhou, J. Cotton yield estimation based on plant height from UAV-based imagery data. In 2018 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; p. 1. [Google Scholar]
- Leitão, D.A.H.d.S.; Sharma, A.K.; Singh, A.; Sharma, L.K. Yield and plant height predictions of irrigated maize through unmanned aerial vehicle in North Florida. Comput. Electron. Agric. 2023, 215, 108374. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Slaughter, D.C.; Townsley, B.T.; Carriedo, L.; Maloof, J.N.; Sinha, N. In-field plant phenotyping using multiview reconstruction: An investigation in eggplant. In Proceedings of the 13th International Conference on Precision Agriculture, Monticello, IL, USA, 31 July–3 August 2016; International Society of Precision Agriculture: Monticello, IL, USA, 2016. [Google Scholar]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Li, M.; Shamshiri, R.R.; Schirrmann, M.; Weltzien, C. Impact of Camera Viewing Angle for Estimating Leaf Parameters of Wheat Plants from 3D Point Clouds. Agriculture 2021, 11, 563. [Google Scholar] [CrossRef]
- Fujiwara, R.; Kikawada, T.; Sato, H.; Akiyama, Y. Comparison of Remote Sensing Methods for Plant Heights in Agricultural Fields Using Unmanned Aerial Vehicle-Based Structure from Motion. Front. Plant Sci. 2022, 13, 886804. [Google Scholar] [CrossRef]
- Swayze, N.C.; Tinkham, W.T.; Creasy, M.B.; Vogeler, J.C.; Hoffman, C.M.; Hudak, A.T. Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sens. 2022, 14, 1989. [Google Scholar] [CrossRef]
- Bareth, G.; Bendig, J.; Tilly, N.; Hoffmeister, D.; Aasen, H.; Bolten, A. A comparison of UAV-and TLS-derived plant height for crop monitoring: Using polygon grids for the analysis of crop surface models (CSMs). Photogramm. Fernerkund. Geoinf 2016, 2016, 85–94. [Google Scholar] [CrossRef]
- Sadeghi, S.; Sohrabi, H. The effect of UAV flight altitude on the accuracy of individual tree height extraction in a broad-leaved forest. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, W18. [Google Scholar]
- Dhami, H.; Yu, K.; Xu, T.; Zhu, Q.; Dhakal, K.; Friel, J.; Tokekar, P. Crop height and plot estimation for phenotyping from unmanned aerial vehicles using 3D LiDAR. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; IEEE: New York, NY, USA, 2020; pp. 2643–2649. [Google Scholar]
- Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. Crop height estimation based on UAV images: Methods, errors, and strategies. Comput. Electron. Agric. 2021, 185, 106155. [Google Scholar] [CrossRef]
- Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precis. Agric. 2018, 19, 93–114. [Google Scholar] [CrossRef]
- Ziliani, M.G.; Parkes, S.D.; Hoteit, I.; McCabe, M.F. Intra-season crop height variability at commercial farm scales using a fixed-wing UAV. Remote Sens. 2018, 10, 2007. [Google Scholar] [CrossRef]
- Jiang, Q.; Fang, S.H.; Peng, Y.; Gong, Y.; Zhu, R.S.; Wu, X.T.; Ma, Y.; Duan, B.; Liu, J. UAV-based biomass estimation for rice-combining spectral, TIN-based structural, and meteorological features. Remote Sens. 2019, 11, 890. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Khanthavong, P.; Soisouvanh, P.; Phongchanmixay, S. Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Prod. Sci. 2020, 23, 452–465. [Google Scholar] [CrossRef]
- Tirado, S.B.; Hirsch, C.N.; Springer, N.M. UAV-based imaging platform for monitoring maize growth throughout development. Plant Direct 2020, 4, e00230. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Fu, L.; Rasheed, A.; Zheng, B.; Xia, X.; Xiao, Y.; He, Z. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 2019, 15, 37. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Jay, S.; Rabatel, G.; Hadoux, X.; Moura, D.; Gorretta, N. In-field crop row phenotyping from 3D modeling performed using structure from motion. Comput. Electron. Agric. 2015, 110, 70–77. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Næsset, E. Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser. Remote Sens. Environ. 2004, 91, 243–255. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sens. 2017, 9, 111. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Huf, H.; Ostrowski, W. Orientation of oblique airborne image sets—Experiences from the ISPRS/Eurosdr benchmark on multi-platform photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 2016, 185–191. [Google Scholar]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Willkomm, M.; Bolten, A.; Bareth, G. Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: A case study of field-grown rice in North Rhine-Westphalia, Germany. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1071–1077. [Google Scholar] [CrossRef]
Dataset | Flight Altitude (m) | Sensor Angle (Degree) | Scenario (Altitude–Angle) | Image Resolution (cm) |
---|---|---|---|---|
1 | 40 | 45 | 40 m-45° | 1.48 |
2 | 40 | 60 | 40 m-60° | 1.25 |
3 | 40 | 90 | 40 m-90° | 1.21 |
4 | 80 | 45 | 80 m-45° | 2.85 |
5 | 80 | 60 | 80 m-60° | 2.52 |
6 | 80 | 90 | 80 m-90° | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adedeji, O.; Abdalla, A.; Ghimire, B.; Ritchie, G.; Guo, W. Flight Altitude and Sensor Angle Affect Unmanned Aerial System Cotton Plant Height Assessments. Drones 2024, 8, 746. https://doi.org/10.3390/drones8120746
Adedeji O, Abdalla A, Ghimire B, Ritchie G, Guo W. Flight Altitude and Sensor Angle Affect Unmanned Aerial System Cotton Plant Height Assessments. Drones. 2024; 8(12):746. https://doi.org/10.3390/drones8120746
Chicago/Turabian StyleAdedeji, Oluwatola, Alwaseela Abdalla, Bishnu Ghimire, Glen Ritchie, and Wenxuan Guo. 2024. "Flight Altitude and Sensor Angle Affect Unmanned Aerial System Cotton Plant Height Assessments" Drones 8, no. 12: 746. https://doi.org/10.3390/drones8120746
APA StyleAdedeji, O., Abdalla, A., Ghimire, B., Ritchie, G., & Guo, W. (2024). Flight Altitude and Sensor Angle Affect Unmanned Aerial System Cotton Plant Height Assessments. Drones, 8(12), 746. https://doi.org/10.3390/drones8120746