Three-Dimensional Printed Auxetic Insole Orthotics for Flat Foot Patients with Quality Function Development/Theory of Inventive Problem Solving/Analytical Hierarchy Process Methods
<p>Research flowchart.</p> "> Figure 2
<p>Testing the distribution of load using the RPPS 2500 array sensor distribution system.</p> "> Figure 3
<p>AHP Hierarchy I: comparison between criteria.</p> "> Figure 4
<p>House of Quality structure.</p> "> Figure 5
<p>Alternative improvements based on the TRIZ contradiction matrix.</p> "> Figure 6
<p>Insole production process: (<b>a</b>) 3D scanning of the consumer’s foot; (<b>b</b>) insole design using the Gensole website; (<b>c</b>) slicing process using Bambuu Lab.</p> "> Figure 7
<p>Auxetic insole design process: (<b>a</b>) auxetic structure design; (<b>b</b>) design structure for insoles; (<b>c</b>) combined structure and insole.</p> "> Figure 8
<p>The results of the printing for each alternative.</p> "> Figure 9
<p>Results of the center-of-mass measurements and load distribution: (<b>a</b>) without footwear; (<b>b</b>) using ABS material; (<b>c</b>) using PETG material; (<b>d</b>) using TPU material; (<b>e</b>) using TPU material with auxetic structure; (<b>f</b>) using traditional insole from marketplace.</p> "> Figure 10
<p>Interval plot of load distribution at each measurement point.</p> "> Figure 11
<p>AHP Hierarchy II: comparisons between alternatives.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Methods
2.2.1. AHP I
- Create pairwise comparisons using a scale of 1–9;
- Establish the comparison matrix;
- Determine the weight of each element and calculate the eigenvector;
- Calculate the consistency ratio; if CR > 0.1, the weight values for each pairwise comparison will be recalculated;
- Rank the consumer needs to be included in the QFD relationship matrix.
- Instant pain relief;
- Odorless;
- Lightweight;
- Easy to clean;
- Durable;
- Made from various materials.
2.2.2. QFD
- Weight
- Dimension;
- Material used;
- Mean lifetime;
- Shape.
- Enter customer desires into the user needs table;
- Enter the available technical designs into the design requirement table;
- Determine the correlation matrix among each technical design;
- Establish the relationship matrix between customer needs and design requirements. For the customer needs values, use the results from AHP I;
- Calculate the ranking of the design requirements.
2.2.3. TRIZ
- Identify the contradictory technical designs from the QFD results;
- Select the system parameters for each technical contradiction;
- Use the TRIZ contradiction matrix to determine the inventive principles that will be applied to resolve the technical contradictions;
- Create alternative specifications/decisions based on the inventive principles obtained from the contradiction matrix.
2.2.4. Design and Testing
- The subject’s foot was scanned in three dimensions using a 3D scanner (EinScan Scanner). To prevent the subsidence of the elevated navicular bone during contact with the ground, the scanning was conducted in a non-weight-bearing state, with the subject seated on a chair and the foot suspended in the air. In this non-weight-bearing condition, the inner arch of the foot did not collapse, allowing the height of the arch to be maintained, which further enhanced its shock-absorbing capability [20];
- A 3D model of the insole was created using the Gensole website and the product was finalized using Blender software (version 4.2);
- The product was sliced using the Bambu Lab slicer (version 1.9.7.52);
- The product was 3D printed using the Bambu Lab X1C 3D printer.
- Product testing was conducted with consumers to gather feedback on the insole’s performance and comfort;
- The pressure distribution on the consumer’s foot was checked using the RPPS-2500 array sensor pressure distribution system. RPPS-2500 has a 370 × 385 sensor size, with 350 mm × 350 mm sensor sensing area size, actuation force 0.1~5 kg, single sensing point 10 mm rubber. The process of checking the distribution of the foot arch using the RPPS-2500 can be seen in Figure 2. The results from the testing phase were used as the basis for the next steps.
2.2.5. AHP II
3. Results
3.1. STEP 1. AHP I
- Instant pain relief;
- Odor-free;
- Lightweight;
- Easy to clean;
- Durable;
- Made from various types of materials.
- Good durability;
- Lightweight;
- Short production time;
- Reasonable price;
- Comfortable to use;
- Easy to clean;
- Performs well.
3.2. STEP 2. QFD
- Stable structure;
- Foot-shape compatibility;
- Comfort in use;
- Effective heat absorption;
- Lightweight;
- Low production cost;
- Ease of production;
- Aesthetic shape.
- High relationship between needs and technical aspects: 9;
- Medium relationship between needs and technical aspects: 3;
- Low relationship between needs and technical aspects: 1.
3.3. STEP 3. TRIZ
- Using ABS material;
- Using PETG material;
- Using TPU material;
- Using TPU material with an auxetic structure.
3.4. STEP 4. Design and Testing
3.5. STEP 5. AHP II
4. Discussion
- Utilize 3D printing as a production tool to ensure that the resulting product conforms to patient specifications while allowing for rapid production times;
- Employ three types of alternative materials, ABS, PETG, and TPU, as the base materials due to their high durability and lightweight properties;
- Implement an auxetic infill type as an alternative infill for TPU material to achieve a more stable structure that is easier to produce.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 3.000 | 7.000 | 7.000 | 2.000 | 8.000 |
Lightweight | 0.333 | 1.000 | 5.000 | 3.000 | 0.333 | 5.000 |
Production time | 0.143 | 0.200 | 1.000 | 0.333 | 0.200 | 3.000 |
Price | 0.143 | 0.333 | 3.000 | 1.000 | 0.250 | 3.000 |
Comfort | 0.500 | 3.000 | 5.000 | 4.000 | 1.000 | 7.000 |
Easy to clean | 0.125 | 0.200 | 0.333 | 0.333 | 0.143 | 1.000 |
Performs well | 3.000 | 5.000 | 9.000 | 9.000 | 3.000 | 8.000 |
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 3.000 | 8.000 | 5.000 | 2.000 | 9.000 |
Lightweight | 0.333 | 1.000 | 3.000 | 3.000 | 0.500 | 7.000 |
Production time | 0.125 | 0.333 | 1.000 | 0.333 | 0.200 | 1.000 |
Price | 0.200 | 0.333 | 3.000 | 1.000 | 0.333 | 5.000 |
Comfort | 0.500 | 2.000 | 5.000 | 3.000 | 1.000 | 0.143 |
Easy to clean | 0.111 | 0.143 | 1.000 | 0.200 | 7.000 | 1.000 |
Performs well | 3.000 | 5.000 | 8.000 | 8.000 | 4.000 | 9.000 |
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 4.000 | 7.000 | 5.000 | 3.000 | 9.000 |
Lightweight | 0.250 | 1.000 | 3.000 | 3.000 | 0.333 | 7.000 |
Production time | 0.143 | 0.333 | 1.000 | 0.333 | 0.200 | 4.000 |
Price | 0.200 | 0.333 | 3.000 | 1.000 | 0.333 | 5.000 |
Comfort | 0.333 | 3.000 | 5.000 | 3.000 | 1.000 | 0.143 |
Easy to clean | 0.111 | 0.143 | 0.250 | 0.200 | 7.000 | 1.000 |
Performs well | 3.000 | 5.000 | 8.000 | 8.000 | 4.000 | 9.000 |
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 3.000 | 9.000 | 4.000 | 0.500 | 5.000 |
Lightweight | 0.333 | 1.000 | 7.000 | 3.000 | 0.500 | 4.000 |
Production time | 0.111 | 0.143 | 1.000 | 0.333 | 0.200 | 0.500 |
Price | 0.250 | 0.333 | 3.000 | 1.000 | 0.200 | 3.000 |
Comfort | 2.000 | 2.000 | 5.000 | 5.000 | 1.000 | 5.000 |
Easy to clean | 0.200 | 0.250 | 2.000 | 0.333 | 0.200 | 1.000 |
Performs well | 3.000 | 4.000 | 9.000 | 5.000 | 2.000 | 7.000 |
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 3.000 | 7.000 | 8.000 | 2.000 | 5.000 |
Lightweight | 0.333 | 1.000 | 6.000 | 7.000 | 0.333 | 3.000 |
Production time | 0.143 | 0.167 | 1.000 | 1.000 | 0.250 | 0.500 |
Price | 0.125 | 0.143 | 1.000 | 1.000 | 0.200 | 0.333 |
Comfort | 0.500 | 3.000 | 4.000 | 5.000 | 1.000 | 3.000 |
Easy to clean | 0.200 | 0.333 | 2.000 | 3.000 | 0.333 | 1.000 |
Performs well | 2.000 | 4.000 | 9.000 | 9.000 | 2.000 | 5.000 |
References
- Jiang, Y.; Wang, D.; Ying, J.; Chu, P.; Qian, Y.; Chen, W. Design and preliminary validation of individual customized insole for adults with flexible flatfeet based on the plantar pressure redistribution. Sensors 2021, 21, 1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-T.; Chen, J.-C.; Lin, Y.-S. Effects of artificial texture insoles and foot arches on improving arch collapse in flat feet. Sensors 2020, 20, 3667. [Google Scholar] [CrossRef] [PubMed]
- Azhagiri, R.; Malar, A.; Hemapriya, J.; Sumathi, G. The cause and frequency of PES Planus (Flat Foot) problems among young adults. Asian J. Med. Sci. 2021, 12, 107–111. [Google Scholar] [CrossRef]
- Trojian, T.; Tucker, A.K. Plantar fasciitis. Am. Fam. Physician 2003, 99, 744–750. [Google Scholar] [CrossRef]
- Bishop, C.; Thewlis, D.; Hillier, S. Custom foot orthoses improve first-step pain in individuals with unilateral plantar fasciopathy: A pragmatic randomised controlled trial. BMC Musculoskelet. Disord. 2018, 19, 222. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Ma, T.; Ren, Z.; Jin, H. Effect of 3D printing individualized ankle-foot orthosis on plantar biomechanics and pain in patients with plantar fasciitis: A randomized controlled trial. Med. Sci. Monit. 2019, 25, 1392–1400. [Google Scholar] [CrossRef]
- Kodithuwakku Arachchige, S.N.K.; Chander, H.; Knight, A. Flatfeet: Biomechanical implications, assessment and management. Foot 2019, 38, 81–85. [Google Scholar] [CrossRef]
- Pathak, K.; Saikia, R.; Das, A.; Das, D.; Islam, A.; Pramanik, P.; Parasar, A.; Borthakur, P.P.; Sarmah, P.; Saikia, M.; et al. 3D printing in biomedicine: Advancing personalized care through additive manufacturing. Explor. Med. 2023, 4, 1135–1167. [Google Scholar] [CrossRef]
- Kumar, P.; Rajak, D.K.; Abubakar, M.; Ali, S.G.M.; Hussain, M. 3D Printing Technology for Biomedical Practice: A Review. J. Mater. Eng. Perform. 2021, 30, 5342–5355. [Google Scholar] [CrossRef]
- Ho, M.; Nguyen, J.; Heales, L.; Stanton, R.; Kong, P.W.; Kean, C. The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet. Gait Posture 2022, 96, 257–264. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Hong, I.; Kim, T.; Lee, E.; Kim, E.-A.; Ryu, J.-K.; Jo, Y.; Koo, J.; Han, S.; et al. Foot plantar pressure measurement system using highly sensitive crack-based sensor. Sensors 2019, 19, 5504. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-W.; Hu, C.-J.; Yang, W.-W.; Chou, L.-W.; Wei, S.-H.; Chen, C.-S.; Sun, P.-C. Biomechanical evaluation and strength test of 3d-printed foot orthoses. Appl. Bionics Biomech. 2019, 2019, 4989534. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rios, L.Y.; Camargo-Wilson, C.; Olguín-Tiznado, J.E.; López-Barreras, J.A.; Inzunza-González, E.; García-Alcaraz, J.L. Design of a modular plantar orthosis system through the application of triz methodology tools. Appl. Sci. 2021, 11, 2051. [Google Scholar] [CrossRef]
- Al-Dwairi, A.; Al-Araidah, O.; Hamasha, S. An Integrated QFD and TRIZ Methodology for Innovative Product Design. Designs 2023, 7, 132. [Google Scholar] [CrossRef]
- Malhotra, A.; Rajak, S.; Jha, S.K. An eco-innovative green design method by qfd and triz tools-a case study of brass-ware manufacturing. Pertanika J. Sci. Technol. 2019, 27, 2109–2121. [Google Scholar]
- Spreafico, C.; Russo, D. TRIZ Industrial Case Studies: A Critical Survey. Procedia CIRP 2016, 39, 51–56. [Google Scholar] [CrossRef]
- Putri, N.T.; Sutanto, A.; Bifadhlih, N. The improvement of thresher design by using the integration of TRIZ and QFD approach. Int. J. Prod. Qual. Manag. 2018, 25, 459. [Google Scholar] [CrossRef]
- Yuan, G.; Lyu, J.; Wang, Z.; Zhao, H.; Liu, Z. A quality evaluation method for sorting equipment based on AHP and QFD. Acad. J. Manuf. Eng. 2019, 17, 7–16. [Google Scholar]
- Rianmora, S.; Werawatganon, S. Applying quality function deployment in open innovation engineering. J. Open Innov. Technol. Mark. Complex. 2021, 7, 26. [Google Scholar] [CrossRef]
- Joo, J.-Y.; Kim, Y.-K. Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running. Korean J. Sport Biomech. 2018, 28, 237–244. [Google Scholar] [CrossRef]
- Altshuller, G. 40 Principles: TRIZ Keys to Technical Innovation; Technical Innovation Center, Inc.: Worcester, MA, USA, 2002; Volume 1. [Google Scholar]
- Davia-Aracil, M.; Hinojo-Pérez, J.J.; Jimeno-Morenilla, A.; Mora-Mora, H. 3D printing of functional anatomical insoles. Comput. Ind. 2018, 95, 38–53. [Google Scholar] [CrossRef]
- Anggoro, P.; Bawono, B.; Jamari, J.; Tauviqirrahman, M.; Bayuseno, A. Advanced design and manufacturing of custom orthotics insoles based on hybrid Taguchi-response surface method. Heliyon 2021, 7, e06481. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sarangi, S.K. 3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process. In Advances in Materials Processing and Manufacturing Applications; Springer: Singapore, 2021; pp. 531–538. [Google Scholar] [CrossRef]
- Chen, T.; Tian, M.; Wang, X. A Novel Porous Structural Design of the Orthotic Insole for Diabetic Foot. In Proceedings of the 2021 International Conference on Computer, Control and Robotics (ICCCR), Shanghai, China, 8–10 January 2021; pp. 188–192. [Google Scholar]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Soltanmohammadi, K.; Rahmatabadi, D.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D-printed ABS-TPU blends by FDM. J. Vinyl Addit. Technol. 2024, 30, 958–968. [Google Scholar] [CrossRef]
- Frenkel, D.; Ginsbury, E.; Sharabi, M. The Mechanics of Bioinspired Stiff-to-Compliant Multi-Material 3D-Printed Interfaces. Biomimetics 2022, 7, 170. [Google Scholar] [CrossRef]
- dos Reis, M.Q.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. Effect of the Infill Density on 3D-Printed Geometrically Graded Impact Attenuators. Polymers 2024, 16, 3193. [Google Scholar] [CrossRef]
- Ingrole, A.; Hao, A.; Liang, R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 2017, 117, 72–83. [Google Scholar] [CrossRef]
- Żur, P.; Borek, W. Influence of 3D-printing Parameters on Mechanical Properties of PLA defined in the Static Bending Test. Eur. J. Eng. Sci. Technol. 2019, 2, 65–70. [Google Scholar] [CrossRef]
- Cracknell, D.; Battley, M.; Fernandez, J.; Amirpour, M. The mechanical response of polymeric gyroid structures in an optimised orthotic insole. Biomech. Model. Mechanobiol. 2024, 1–19. [Google Scholar] [CrossRef]
- Haris, F.; Liau, B.-Y.; Jan, Y.-K.; Akbari, V.B.H.; Primanda, Y.; Lin, K.-H.; Lung, C.-W. A Review of the Plantar Pressure Distribution Effects from Insole Materials and at Different Walking Speeds. Appl. Sci. 2021, 11, 11851. [Google Scholar] [CrossRef]
Subject | Gender | Age | Weight (Kg) | Shoe Size (UK) |
---|---|---|---|---|
Patient 1 | Male | 26 | 70 | 43 |
Patient 2 | Female | 31 | 60 | 41 |
Patient 3 | Male | 31 | 85 | 43 |
Patient 4 | Male | 16 | 60 | 44 |
Patient 5 | Female | 21 | 45 | 39 |
Consumer | Consistency Ratio |
---|---|
1 | 0.091 |
2 | 0.076 |
3 | 0.095 |
4 | 0.070 |
5 | 0.053 |
Criteria | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean |
---|---|---|---|---|---|---|
Durability | 1.000 | 3.178 | 7.560 | 5.619 | 1.644 | 6.949 |
Lightweight | 0.315 | 1.000 | 4.522 | 3.554 | 0.392 | 4.939 |
Production time | 0.132 | 0.221 | 1.000 | 0.415 | 0.209 | 1.246 |
Price | 0.178 | 0.281 | 2.408 | 1.000 | 0.257 | 2.371 |
Comfort | 0.608 | 2.551 | 4.782 | 3.898 | 1.000 | 1.165 |
Easy to clean | 0.144 | 0.202 | 0.803 | 0.422 | 0.859 | 1.000 |
Performs well | 2.766 | 4.573 | 8.586 | 7.634 | 2.862 | 7.432 |
Criteria | Priority | Eigen Value | Rank |
---|---|---|---|
Durability | 0.232 | 1.19333 | 2 |
Lightweight | 0.114 | 1.37258 | 4 |
Production time | 0.032 | 0.95439 | 7 |
Price | 0.053 | 1.1923 | 5 |
Comfort | 0.143 | 1.03264 | 3 |
Easy to clean | 0.044 | 1.10287 | 6 |
Performs well | 0.382 | 0.8823 | 1 |
Relationship Matrix | Stable Structure | Foot-Shape Compatibility | Comfort in Use | Effective Heat Absorption | Lightweight | Low Production Cost | Ease of Production | Aesthetic Shape |
---|---|---|---|---|---|---|---|---|
Durability | 9 | 1 | 9 | 9 | 1 | 3 | 1 | 1 |
Lightweight | 9 | 1 | 9 | 9 | 9 | 9 | 3 | 1 |
Production time | 3 | 9 | 3 | 3 | 3 | 9 | 9 | 1 |
Price | 9 | 1 | 1 | 3 | 1 | 9 | 9 | 3 |
Comfort | 9 | 9 | 1 | 1 | 9 | 1 | 1 | 9 |
Easy to clean | 9 | 1 | 1 | 1 | 9 | 1 | 1 | 1 |
Performs well | 9 | 1 | 9 | 9 | 3 | 1 | 1 | 1 |
Technical Contradiction | Technical Variable | System Parameter |
---|---|---|
1 | Stable structure | Stress or pressure |
Lightweight | Weight of moving object | |
2 | Ease of production | Ease of manufacture |
Aesthetic shape | Device complexity | |
3 | Stable structure | Stress or pressure |
Ease of production | Ease of manufacture |
Categories | Traditional | 3D Printing (FDM) | Podograph Insole Machine |
---|---|---|---|
Geometric Complexity | Low | High | High |
Insole Material Type | Low | High | Low |
Additive Material | Low | High | Low |
Material Cost per Insole | High | Low | Low |
Equipment Cost | Low | Low | High |
Customization Ease | Low | High | Low |
Comfort | ABS | PETG | TPU | TPU Auxetic |
---|---|---|---|---|
ABS | 1.000 | 1.246 | 0.237 | 0.117 |
PETG | 0.803 | 1.000 | 0.232 | 0.114 |
TPU | 4.227 | 4.317 | 1.000 | 0.308 |
TPU auxetic | 8.559 | 8.790 | 3.245 | 1.000 |
Total | 14.589 | 15.354 | 4.714 | 1.539 |
Alternative | Durability | Lightweight | Production Time | Price | Comfort | Easy to Clean | Performs Well |
---|---|---|---|---|---|---|---|
ABS | 0.34 | 0.09 | 0.33 | 0.08 | 0.068 | 0.12 | 0.14 |
PETG | 0.42 | 0.10 | 0.45 | 0.11 | 0.06 | 0.17 | 0.15 |
TPU | 0.13 | 0.03 | 0.14 | 0.04 | 0.24 | 0.36 | 0.19 |
TPU auxetic | 0.11 | 0.03 | 0.08 | 0.02 | 0.62 | 0.36 | 0.53 |
Alternative | Total Priority | Rank |
---|---|---|
ABS | 0.165747 | 3 |
PETG | 0.196854 | 2 |
TPU | 0.127457 | 4 |
TPU auxetic | 0.250629 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simarmata, T.P.; Martawidjaja, M.; Harito, C.; Tobing, C.C.L. Three-Dimensional Printed Auxetic Insole Orthotics for Flat Foot Patients with Quality Function Development/Theory of Inventive Problem Solving/Analytical Hierarchy Process Methods. Designs 2025, 9, 15. https://doi.org/10.3390/designs9010015
Simarmata TP, Martawidjaja M, Harito C, Tobing CCL. Three-Dimensional Printed Auxetic Insole Orthotics for Flat Foot Patients with Quality Function Development/Theory of Inventive Problem Solving/Analytical Hierarchy Process Methods. Designs. 2025; 9(1):15. https://doi.org/10.3390/designs9010015
Chicago/Turabian StyleSimarmata, Tadeus Pantryan, Marcel Martawidjaja, Christian Harito, and Cokisela C. L. Tobing. 2025. "Three-Dimensional Printed Auxetic Insole Orthotics for Flat Foot Patients with Quality Function Development/Theory of Inventive Problem Solving/Analytical Hierarchy Process Methods" Designs 9, no. 1: 15. https://doi.org/10.3390/designs9010015
APA StyleSimarmata, T. P., Martawidjaja, M., Harito, C., & Tobing, C. C. L. (2025). Three-Dimensional Printed Auxetic Insole Orthotics for Flat Foot Patients with Quality Function Development/Theory of Inventive Problem Solving/Analytical Hierarchy Process Methods. Designs, 9(1), 15. https://doi.org/10.3390/designs9010015