Real-Time Electroencephalogram Data Visualization Using Generative AI Art
<p>Muse headset used in this study; photograph taken at the exhibition opening.</p> "> Figure 2
<p>Touchdesigner99 interface with the signal from the Muse headband.</p> "> Figure 3
<p>Touchdesigner99 interface with EEG data on the left, a circle used as a base image in the middle, and Stream Diffusion Tox on the right with the resulting AI-generated image.</p> "> Figure 4
<p>Touchdesigner99 interface with EEG data and StreamDiffusion Tox.</p> "> Figure 5
<p>Touchdesigner99 interface with StreamDiffusion Tox parameters.</p> "> Figure 6
<p>Rendering of the setup that was used to display the system.</p> "> Figure 7
<p>Touchdesigner99 interface with the AI-generated flowers and the data.</p> "> Figure 8
<p>Touchdesigner99 interface with the EEG data.</p> "> Figure 9
<p>The pipeline for EEG image generation described in 2022 [<a href="#B41-designs-09-00016" class="html-bibr">41</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. EEG Headsets
2.2. Generative AI Art Systems
2.3. EEG Signals in Generative AI Art
3. Results
4. Discussion
Background and Historical Aspects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jobst, B.C. EEG Manual for Residents and Fellows; Dartmouth-Hitchcock Medical Center: Hanover, NH, USA, 2005; Available online: https://www.crossroadsacademy.org/crossroads/wp-content/uploads/2016/05/EEG-Manual.pdf (accessed on 13 June 2024).
- Kodaira, A.; Xu, C.; Hazama, T.; Yoshimoto, T.; Ohno, K.; Mitsuhori, S.; Sugano, S.; Cho, H.; Liu, Z.; Keutzer, K. Streamdiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation. arXiv 2023, arXiv:2312.12491. [Google Scholar]
- Krigolson, O.E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. Front. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Prpa, M.; Pasquier, P. Brain-Computer Interfaces in Contemporary Art: A State of the Art and Taxonomy. In Brain Art: Brain-Computer Interfaces for Artistic Expression; Nijholt, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 65–115. [Google Scholar] [CrossRef]
- Few, S.; Edge, P. Data Visualization: Past, Present, and Future; IBM Cognos Innovation Center: Washington, DC, USA, 2007; pp. 1–12. [Google Scholar]
- Hammond, D.C. What is Neurofeedback? J. Neurother. 2007, 10, 25–36. [Google Scholar] [CrossRef]
- Nichols, T. The Death of Expertise: The Campaign Against Established Knowledge and Why It Matters; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Hrinchenko, H.; Trishch, R.; Mykolaiko, V.; Kovtun, O. Qualimetric Approaches to Assessing Sustainable Development Indicators. E3S Web Conf. 2023, 408, 01013. [Google Scholar] [CrossRef]
- Hrinchenko, H.; Didenko, N.; Burbyga, V.; Lesina, T.; Medvedovska, Y. Ensuring Sustainable Education through the Management of Higher Education Quality Indicators. E3S Web Conf. 2024, 558, 01029. [Google Scholar] [CrossRef]
- AAAS. Creating Art with Thought Alone: First BCI-Generated Art Exhibit Opens in Washington, D.C. AAAS Art of Science and Technology Program, 5 April 2023. Available online: https://www.aaas.org/news/creating-art-thought-alone-first-bci-generated-art-exhibit-opens-washington-dc (accessed on 13 June 2024).
- Descartes, R. Meditations on First Philosophy; Broadview Press: Peterborough, ON, Canada, 2013. [Google Scholar]
- Millán, J.d.R.; Galán, F.; Lew, E.; Chavarriaga, R. Non-Invasive Brain-Machine Interaction. Intern. J. Pattern Recognit. Artif. Intell. 2008, 22, 657–681. [Google Scholar] [CrossRef]
- Gao, Z.; Cui, X.; Wan, W.; Qin, Z.; Gu, Z. Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device. Sensors 2022, 22, 1898. [Google Scholar] [CrossRef] [PubMed]
- Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-Cost Off-the-Shelf Devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Tecnologico de Monterrey. Muse 2 Headband Specifications. 2022. Available online: https://ifelldh.tec.mx/sites/g/files/vgjovo1101/files/Muse_2_Specifications.pdf (accessed on 13 June 2024).
- Joe, C. Muse 2 EEG Device in TouchDesigner. YouTube. 2023. Available online: https://www.youtube.com/watch?v=Br0JXvuzWEI (accessed on 29 January 2025).
- Nowakowski, T. See What Your Brain Does When You Look at Art. Smithsonian Magazine, 15 November 2023. Available online: https://www.smithsonianmag.com/smart-news/this-headset-shows-you-what-your-brainwaves-do-when-you-look-at-art-180983261/ (accessed on 13 June 2024).
- Liao, L.D.; Lin, C.T.; McDowell, K.; Wickenden, A.E.; Gramann, K.; Jung, T.P.; Ko, L.W.; Chang, J.Y. Biosensor Technologies for Augmented Brain–Computer Interfaces in the Next Decades. Proc. IEEE 2012, 100, 1553–1567. [Google Scholar] [CrossRef]
- Suhaimi, N.S.; Mountstephens, J.; Teo, J. EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities. Comput. Intell. Neurosci. 2020, 2020, 8875426. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-R.; Park, J.-E.; Choi, S.; Sohn, J.-H.; Lee, J.-M. EEG Asymmetry and Anxiety. In Proceedings of the 2013 International Winter Workshop on Brain-Computer Interface (BCI), Gangwon Province, Republic of Korea, 18–20 February 2013. [Google Scholar] [CrossRef]
- Muse. Muse S Starter Guide. Available online: https://www.choosemuse.com (accessed on 13 June 2024).
- Shelansky, I. Denoising Sensors in TouchDesigner. Ian Shelanskey’s Blog. Available online: https://ianshelanskey.com/2019/11/14/denoising-sensors-in-touchdesigner/ (accessed on 13 June 2024).
- Schmeder, A.; Freed, A. Implementation and Applications of Open Sound Control Timestamps; ICMC: Geneva, Switzerland, 2008. [Google Scholar]
- Bitbrain Team. How Deep Learning is Changing Machine Learning AI in EEG Data Processing. Bitbrain.com, 23 April 2020. Available online: https://www.bitbrain.com/blog/ai-eeg-data-processing (accessed on 13 June 2024).
- Gavriluk, V. How to Use Stable Diffusion? AI-Generated Images. Arounda. 2023. Available online: https://arounda.agency/blog/how-to-use-stable-diffusion-ai-generated-images (accessed on 13 June 2024).
- Sorkhabi, E. DIY Stable Diffusion API ↔ TouchDesigner. Available online: https://derivative.ca/community-post/tutorial/diy-stable-diffusion-api-↔-touchdesigner/67525 (accessed on 13 June 2024).
- Tschepe, B. Audioreactive Graffiti—TouchDesigner X Streamdiffusion Tutorial 1 for Intermediate. Derivative.ca. Available online: https://derivative.ca/community-post/tutorial/audioreactive-graffiti-–-touchdesigner-x-streamdiffusion-tutorial-1/68987 (accessed on 13 June 2024).
- Epstein, Z.; Hertzmann, A.; Investigators of Human Creativity; Akten, M.; Farid, H.; Fjeld, J.; Frank, M.R.; Groh, M.; Herman, L.; Leach, N.; et al. Art and the Science of Generative AI: A Deeper Dive. 2023. Available online: https://arxiv.org/pdf/2306.04141 (accessed on 13 June 2024).
- Derivative. CHOP, TouchDesigner99 Documentation. Available online: https://docs.derivative.ca/CHOP (accessed on 4 June 2024).
- Woaswi, W.; Hanif, M.; Mohamed, S.; Hamzah, N.; Rizman, Z. Human Emotion Detection via Brain Waves Study by Using Electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1005. [Google Scholar] [CrossRef]
- Stone, J.; Hughes, J. Early History of Electroencephalography and Establishment of the American Clinical Neurophysiology Society. J. Clin. Neurophysiol. 2013, 30, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Bulut, S. The Brain-Computer Interface. In Proceedings of the International Conference on Technics, Technologies and Education ICTTE 2019, Yambol, Bulgaria, 16–18 October 2019; pp. 133–138. [Google Scholar] [CrossRef]
- Kawala-Sterniuk, A.; Browarska, N.; Al-Bakri, A. Summary of over Fifty Years with Brain-Computer Interfaces—A Review. Brain Sci. 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.J. Toward Direct Brain-Computer Communication. Annu. Rev. Biophys. Bioeng. 1973, 2, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Mullin, E. This Man Set the Record for Wearing a Brain-Computer Interface. Wired, 17 August 2022. Available online: https://www.wired.com/story/this-man-set-the-record-for-wearing-a-brain-computer-interface/ (accessed on 13 June 2024).
- Bush, V. As We May Think. 1945. Available online: http://archive.org/details/as-we-may-think (accessed on 13 June 2024).
- Copeland, B.J. Alan Turing and the Beginning of AI. Encyclopaedia Britannica, 29 January 2025. Available online: https://www.britannica.com/technology/artificial-intelligence/Alan-Turing-and-the-beginning-of-AI (accessed on 13 June 2024).
- McCorduck, P. Aaron’s Code: Meta-Art, Artificial Intelligence, and the Work of Harold Cohen; W.H. Freeman: New York, NY, USA, 1991; Available online: https://books.google.ro/books?id=r3UyBgAAQBAJ (accessed on 13 June 2024).
- Greene, T. 2010–2019: The Rise of Deep Learning. The Next Web, 2 January 2020. Available online: https://thenextweb.com/news/2010-2019-the-rise-of-deep-learning (accessed on 13 June 2024).
- Manovich, L. Cultural Analytics; MIT Press: Cambridge, MA, USA, 2020; Available online: https://books.google.ro/books?id=pIv-DwAAQBAJ (accessed on 13 June 2024).
- Riccio, P.; Bergaust, K.; Christensen-Scheel, B.; Martin, J.-C.; Zuluaga, M.; Nichele, S. AI-Based Artistic Representation of Emotions from EEG Signals: A Discussion on Fairness, Inclusion, and Aesthetics. arXiv 2022, arXiv:2202.03246. [Google Scholar] [CrossRef]
- Kaminer, A. Brain Waves Lift Me Higher. The New York Times, 22 June 2012. Available online: https://www.nytimes.com/2012/06/24/fashion/the-ascent-levitating-in-brooklyn.html (accessed on 13 June 2024).
- McLuhan, M.; Gordon, W.T. Understanding Media: The Extensions of Man; Gingko Press: Berkeley, CA, USA, 2003; Available online: https://books.google.ro/books?id=m7poAAAAIAAJ (accessed on 13 June 2024).
- Tairov, I.; Stefanova, N.; Aleksandrova, A.; Aleksandrov, M. Review of AI-Driven Solutions in Business Value and Operational Efficiency. Econ. Ecol. Socium 2024, 8, 55–66. [Google Scholar] [CrossRef]
- Makurin, A. Technological Aspects and Environmental Consequences of Mining Encryption. Econ. Ecol. Socium 2023, 7, 61–70. [Google Scholar] [CrossRef]
- Kaminsky, O.; Koval, V.; Yereshko, J.; Vdovenko, N.; Bocharov, M.; Kazancoglu, Y. Evaluating the Effectiveness of Enterprises’ Digital Transformation by Fuzzy Logic. In Advances in Soft Computing Applications; River: Aalborg, Denmark, 2023; pp. 75–90. [Google Scholar]
- Demianchuk, M.; Koval, V.; Hordopolov, V.; Kozlovtseva, V.; Atstaja, D. Ensuring Sustainable Development of Enterprises in the Conditions of Digital Transformations. E3S Web Conf. 2021, 280, 02002. [Google Scholar] [CrossRef]
- Koval, V.; Kremenetskaya, Y.; Markov, S. Promising Green Telecommunications Based on Hybrid Network Architecture. In Proceedings of the 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, 9–13 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Anadol, R. About Refik Anadol. Available online: https://refikanadol.com/refik-anadol/ (accessed on 4 June 2024).
- Anadol, R. Art in the Age of Machine Intelligence. TED. 2020. Available online: http://www.marilenabeltramini.it/learning-together-2122/UserFiles/Admin_teacher/art_in_the_age_of_machine_intelligence.pdf (accessed on 4 June 2024).
- Anadol, R. Melting Memories. Available online: https://refikanadol.com/works/melting-memories/ (accessed on 4 June 2024).
- Guljajeva, V.; Canet Sola, M. Interactive NeuroKnitting: Knitting with Your Brain. In Proceedings of the 16th International Symposium on Visual Information Communication and Interaction (VINCI ’23), 22–24 September 2013; New York, NY, USA; p. 49. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z. Diffusion: Emotional Visualization Based on Biofeedback Control by EEG. Artnodes 2021, 28, 1–11. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, X.; Shen, Y.; Nieuwoudt, M.; Pun, C.M.; Wang, S. Generative AI Enables EEG Data Augmentation for Alzheimer’s Disease Detection via Diffusion Model. In Proceedings of the 2023 IEEE International Symposium on Product Compliance Engineering-Asia (ISPCE-ASIA), Shanghai, China, 3–5 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puiac, A.V.; Cioca, L.-I.; Lakatos, G.D.; Groza, A. Real-Time Electroencephalogram Data Visualization Using Generative AI Art. Designs 2025, 9, 16. https://doi.org/10.3390/designs9010016
Puiac AV, Cioca L-I, Lakatos GD, Groza A. Real-Time Electroencephalogram Data Visualization Using Generative AI Art. Designs. 2025; 9(1):16. https://doi.org/10.3390/designs9010016
Chicago/Turabian StylePuiac, Andrei Virgil, Lucian-Ionel Cioca, Gheorghe Daniel Lakatos, and Adrian Groza. 2025. "Real-Time Electroencephalogram Data Visualization Using Generative AI Art" Designs 9, no. 1: 16. https://doi.org/10.3390/designs9010016
APA StylePuiac, A. V., Cioca, L.-I., Lakatos, G. D., & Groza, A. (2025). Real-Time Electroencephalogram Data Visualization Using Generative AI Art. Designs, 9(1), 16. https://doi.org/10.3390/designs9010016